Enumerating All Graphical Sequences
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1 Introduction

The degree sequence of simple graph G is a sequence of
degrees of vertices in G in decreasing order, whereas a
given integer sequence D is the degree sequence for some
simple graph, then D is a graphical sequence (also graphic
sequence). In this paper degree sequence and graphical
sequence are decreasing order sequence. Then for a given
graph, we can obtain the unique degree sequence, and for
a given graphical sequence D, we may obtain some graphs
whose degree sequences are D. For example, Figure 1
shows that there are two graphs for the degree sequence
D = (5,3,3,3,2,2). Furthermore the sequence (3,2,2,2)
is not graphical. In this paper we consider to generate
all graphical sequences.

Figure 1: Two graphs sharing the degree sequence
(5,3,3,3,2,2,).

A generating algorithm is CAT (Constant Amotized
Time) if its running time is propotional to the number of
generating objects. If experimental behavior of a generat-
ing algorithm is observed to be CAT, then the algorithm
is called alley CAT [3]. An alley CAT algorithm has
no proof (home) of CAT but its experimental behavior
shows it seemed to be a CAT algorithm.

Ruskey et al. [3] gave an alley CAT algorithm that
generates all degree sequences of length n, where n is a
given positive integer. By modifying their algorithm, we
design a CAT algorithm. That is, we give a “good home”
to the algorithm and show that it is no longer “an alley
CAT”.

This paper first provides a simple algorithm to gen-
erate all graphical sequences of at most n positive inte-
gers. The algorithm generates each sequence in constant
time for each without repetition. Then, by modifying

*Dept. Comp. and Info. Eng., Tsuyama National Coll. Tech.,
Okayama, JAPAN, kikuchi@tsuyama-ct.ac.jp

tGraduate School of Information Systems, University of Electro-
Communications, Tokyo, JAPAN, yamanaka®is.uec.ac.jp

Dept. Comp. Sci., Gunma University, Gunma, JAPAN
nakano@cs.gunma-u.ac.jp

the algorithm, we give an algorithm that generates ev-
ery graphical sequence of n integers in constant time on
average

A basic idea of the algorithm is as follows: 1. we define
a tree structure on the set of graphical sequences, 2. we
traverse the tree efficiently. Some algorithms based on
the similar but other ideas are known [1, 4, 5, 6].

2 Tree Structure

Havel gave an algorithmic characterization of graphi-
cal sequence and the chracterization is rediscovered by
Hakimi, and Erdés and Gallai gave a combinatorial
characterization[2, pp.12-15]. Our tree structure is based
on Havel and Hakimi’s characterization.

Let S,, be the set of degree sequences of graphs that
have at most n vertices, thus the set of graphical se-
quences of length at most n. For example, there are seven
sequences in S3 = {(0), (0,0), (1,1), (0,0,0), (2,1,1),
(1,1,0), (2,2,2)}.

A tree structure among S, is defined as follows. Sup-
pose a sequence D € S, \ {(0)}. Since the graphical se-
quence of length one is (0), the sequence D contains k > 1
integers, then D can be denoted by D = (dy,ds,...,dg).
Note that d; > do > --- > di. Let P(D) be an integer
sequence obtained from D. Then we will consider the
following two cases to obtain P(D) from D:

Case 1: d, = 0. P(D) is (dy,da,...,dg—1)-
Case 2: d;, # 0. P(D) is the sorted sequence of (dy —
1)d3 -1,. ">d1+d1 - 17d2+d17d3+d17‘ ">dk)'

If di > k, D is not a graphical sequence. Then
1+d; < kis held. In Case 2, if di+4, > d244, then,
(dz—l,dg—l,...,d1+dl —1,d2+d1,d3+d1,...,dk) is a de-
creasing sequence. Then we do not sort it. If di4q, =
d2+d1, (d2 — 1, d3 — 1, ey d1+d1 — 1, d2+d1, d3+d1 yee e ,dk)
is not a decreasing sequence. Then we need to sort it.
However we can obtain P(D) from D by the following
way instead of sorting. Let (dg,...,dy) be the maxi-
mum subsequence of D such that d, = dy144, = dp and
set ¢ = 1+4+d; —a+ 1. Then we can obtain P(D) =
(d2 - ]-7 d3 - 1) RS dafl - ]-7 da> lerav R dbfcv dbchrl -
Ldp—cqa — 1,...,dpy — L,di4p,...,di) from D without
sorting. Thus, after removing d; from D, we reduce each
value from two subsequences from ds to d,_; and from
dp—ct+1 to dp by 1. Then we obtain P(D) from D. If
a=2orb=1+d;, we reduce each value from one sub-
sequence. Moreover dy_.41 is equal to dp in both D and
P(D).

In Case 1 and Case 2, P(D) is a graphical sequence by
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sequences in S,. This section gives such a generating
algorithm. Let D = (dy,ds,...,dr—1) be a graphical se-
quence. The child sequences of D can be classified the
following four types by the way of adding one or zero to
each digit in D.

Type 0: C[0] = (dy,ds,...,dk-1,0).

Type 1. Clz] = (z,1 + di,1 + do,...,1 +
dy,di4z,doya,...,drg—1). Note that x < k — 1.

Type 2: Clz,s] = (x,d1,do,...,ds—1,1 + ds,1 +
ds+1, o1+ d5+z_1, ds+z, d5+z+1, R dk—l)- Note that
dy=ds—1=1+d;and z < k-1

Type 3: Clz,r,s] = (x,1 + d1,1 + da,...,1 +
dr7d1+r7d2+7‘7"'7dsfl7]- + d37]- + ds7"'71 +
dy,dit1,diy2,...dg—1), where s > r + 1 and

t = s+a—r — 1. Note that d,41 and ds—; are
invariable and x < k — 1.
Each child of D is one of these three type. Note that
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Figure 2: The family tree T5.

Lemma 1, and the length of P(D) is equal to the length
of D minus one.

Lemma 1 [2, p.13] A sequence D = (dy,ds, ...
graphical if and only if D = (do — 1,d3 — 1
dy) is graphical.

,dk) 18
) d1+d1 -
L, dotd,, dsqdys -

So, let P(D) be the parent sequence of D and D be
a child sequence of P(D). Note that D has the unique
parent sequence P(D), and on the other hand P(D) may
have some child sequences.

For an arbitrary D € S, \ {(0)}, repeatedly finding
the parent sequence of the derived sequence produces
the unique sequence D, P(D), P(P(D)),... of graphical
sequences in S,,, which eventually ends with the root se-
quence (0). By merging these sequences we have the fam-
ily tree of S,,, denoted by T,,, in which each vertex at the
depth k corresponds to the graphical sequence of length
k+1in S,, and each edge corresponds to the pair of each
D and P(D). For instance, T5 is shown in Fig. 2.

3 Algorithm

If an algorithm can generate all child sequences of a given
graphical sequence in S,,, then the algorithm traverses
T, in a recursive manner, and generates all graphical

D may have no child for some type.
By the above classification we can have the following
theorem.

-

Theorem 1 By the above classification, one can gener-
ate each graphical sequence in S,. The algorithm uses
O(n) space and runs in O(|S,|) time.

By Theorem 1 the algorithm generates each sequence
in O(1) time on average. So, each sequence cannot be
generated in O(1) time in worst case. However, a simple
modification [7] improves the algorithm to generate each
sequence in O(1) time.

By modifying the algorithm such that it outputs only
sequences corresponding to the leaves in T;,, we have the
following theorem.

Theorem 2 One can generate all graphical sequences of
length exactly n in O(1) time on average.
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