Enumerating All Graphical Sequences

(Extended Abstract)

Yosuke Kikuchi*, Katsuhisa Yamanaka[†]and Shin-ichi Nakano[‡]

1 Introduction

The degree sequence of simple graph G is a sequence of degrees of vertices in G in decreasing order, whereas a given integer sequence D is the degree sequence for some simple graph, then D is a graphical sequence (also graphic sequence). In this paper degree sequence and graphical sequence are decreasing order sequence. Then for a given graph, we can obtain the unique degree sequence, and for a given graphical sequence D, we may obtain some graphs whose degree sequences are D. For example, Figure 1 shows that there are two graphs for the degree sequence D=(5,3,3,3,3,2,2). Furthermore the sequence (3,2,2,2) is not graphical. In this paper we consider to generate all graphical sequences.

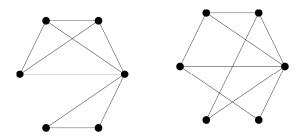


Figure 1: Two graphs sharing the degree sequence (5,3,3,3,2,2,).

A generating algorithm is CAT (Constant Amotized Time) if its running time is proportional to the number of generating objects. If experimental behavior of a generating algorithm is observed to be CAT, then the algorithm is called $alley\ CAT$ [3]. An alley CAT algorithm has no proof (home) of CAT but its experimental behavior shows it seemed to be a CAT algorithm.

Ruskey et al. [3] gave an alley CAT algorithm that generates all degree sequences of length n, where n is a given positive integer. By modifying their algorithm, we design a CAT algorithm. That is, we give a "good home" to the algorithm and show that it is no longer "an alley CAT".

This paper first provides a simple algorithm to generate all graphical sequences of at most n positive integers. The algorithm generates each sequence in constant time for each without repetition. Then, by modifying

the algorithm, we give an algorithm that generates every graphical sequence of n integers in constant time on average

A basic idea of the algorithm is as follows: 1. we define a tree structure on the set of graphical sequences, 2. we traverse the tree efficiently. Some algorithms based on the similar but other ideas are known [1, 4, 5, 6].

2 Tree Structure

Havel gave an algorithmic characterization of graphical sequence and the chracterization is rediscovered by Hakimi, and Erdös and Gallai gave a combinatorial characterization[2, pp.12–15]. Our tree structure is based on Havel and Hakimi's characterization.

Let S_n be the set of degree sequences of graphs that have at most n vertices, thus the set of graphical sequences of length at most n. For example, there are seven sequences in $S_3 = \{(0), (0,0), (1,1), (0,0,0), (2,1,1), (1,1,0), (2,2,2)\}.$

A tree structure among S_n is defined as follows. Suppose a sequence $D \in S_n \setminus \{(0)\}$. Since the graphical sequence of length one is (0), the sequence D contains k > 1 integers, then D can be denoted by $D = (d_1, d_2, \ldots, d_k)$. Note that $d_1 \geq d_2 \geq \cdots \geq d_k$. Let P(D) be an integer sequence obtained from D. Then we will consider the following two cases to obtain P(D) from D:

Case 1: $d_k = 0$. P(D) is $(d_1, d_2, \dots, d_{k-1})$.

Case 2: $d_k \neq 0$. P(D) is the sorted sequence of $(d_2 - 1, d_3 - 1, \dots, d_{1+d_1} - 1, d_{2+d_1}, d_{3+d_1}, \dots, d_k)$.

If $d_1 \geq k$, D is not a graphical sequence. Then $1 + d_1 \le k$ is held. In Case 2, if $d_{1+d_1} > d_{2+d_1}$ then, $(d_2-1,d_3-1,\ldots,d_{1+d_1}-1,d_{2+d_1},d_{3+d_1},\ldots,d_k)$ is a decreasing sequence. Then we do not sort it. If $d_{1+d_1} =$ $d_{2+d_1}, (d_2-1, d_3-1, \dots, d_{1+d_1}-1, d_{2+d_1}, d_{3+d_1}, \dots, d_k)$ is not a decreasing sequence. Then we need to sort it. However we can obtain P(D) from D by the following way instead of sorting. Let (d_a, \ldots, d_b) be the maximum subsequence of D such that $d_a = d_{1+d_1} = d_b$ and set $c = 1 + d_1 - a + 1$. Then we can obtain P(D) = $(d_2-1,d_3-1,\ldots,d_{a-1}-1,d_a,d_{1+a},\ldots,d_{b-c},d_{b-c+1}-1)$ $1, d_{b-c+2} - 1, \dots, d_b - 1, d_{1+b}, \dots, d_k$ from D without sorting. Thus, after removing d_1 from D, we reduce each value from two subsequences from d_2 to d_{a-1} and from d_{b-c+1} to d_b by 1. Then we obtain P(D) from D. If a=2 or $b=1+d_1$, we reduce each value from one subsequence. Moreover d_{b-c+1} is equal to d_b in both D and P(D).

In Case 1 and Case 2, P(D) is a graphical sequence by

^{*}Dept. Comp. and Info. Eng., Tsuyama National Coll. Tech., Okayama, JAPAN, kikuchi@tsuyama-ct.ac.jp

[†]Graduate School of Information Systems, University of Electro-Communications, Tokyo, JAPAN, yamanaka@is.uec.ac.jp

 $^{^{\}ddagger} \mathrm{Dept.}$ Comp. Sci., Gunma University, Gunma, JAPAN nakano@cs.gunma-u.ac.jp

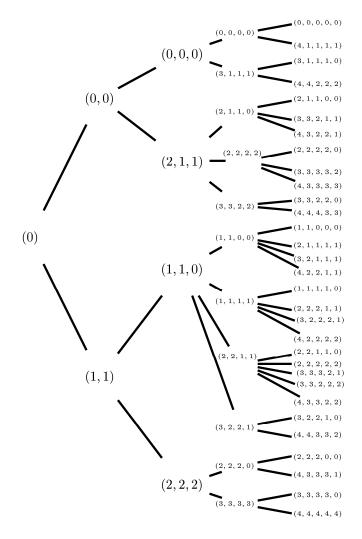


Figure 2: The family tree T_5 .

Lemma 1, and the length of P(D) is equal to the length of D minus one.

Lemma 1 [2, p.13] A sequence $D = (d_1, d_2, ..., d_k)$ is graphical if and only if $D = (d_2 - 1, d_3 - 1, ..., d_{1+d_1} - 1, d_{2+d_1}, d_{3+d_1}, ..., d_k)$ is graphical.

So, let P(D) be the parent sequence of D and D be a child sequence of P(D). Note that D has the unique parent sequence P(D), and on the other hand P(D) may have some child sequences.

For an arbitrary $D \in S_n \setminus \{(0)\}$, repeatedly finding the parent sequence of the derived sequence produces the unique sequence $D, P(D), P(P(D)), \ldots$ of graphical sequences in S_n , which eventually ends with the root sequence (0). By merging these sequences we have the family tree of S_n , denoted by T_n , in which each vertex at the depth k corresponds to the graphical sequence of length k+1 in S_n , and each edge corresponds to the pair of each D and P(D). For instance, T_5 is shown in Fig. 2.

3 Algorithm

If an algorithm can generate all child sequences of a given graphical sequence in S_n , then the algorithm traverses T_n in a recursive manner, and generates all graphical

sequences in S_n . This section gives such a generating algorithm. Let $D=(d_1,d_2,\ldots,d_{k-1})$ be a graphical sequence. The child sequences of D can be classified the following four types by the way of adding one or zero to each digit in D.

Type 0: $C[0] = (d_1, d_2, \dots, d_{k-1}, 0)$.

Type 1: $C[x] = (x, 1 + d_1, 1 + d_2, ..., 1 + d_k, d_{1+k}, d_{2+k}, ..., d_{k-1})$. Note that $x \le k - 1$.

Type 2: $C[x,s] = (x,d_1,d_2,\ldots,d_{s-1},1+d_s,1+d_{s+1},\ldots,1+d_{s+x-1},d_{s+x},d_{s+x+1},\ldots,d_{k-1})$. Note that $d_1 = d_{s-1} = 1+d_s$ and x < k-1.

Type 3: $C[x,r,s] = (x,1+d_1,1+d_2,\ldots,1+d_r,d_{1+r},d_{2+r},\ldots,d_{s-1},1+d_s,1+d_s,1+d_s,\ldots,1+d_t,d_{t+1},d_{t+2},\ldots d_{k-1})$, where s>r+1 and t=s+x-r-1. Note that d_{r+1} and d_{s-1} are invariable and x< k-1.

Each child of D is one of these three type. Note that D may have no child for some type.

By the above classification we can have the following theorem.

Theorem 1 By the above classification, one can generate each graphical sequence in S_n . The algorithm uses O(n) space and runs in $O(|S_n|)$ time.

By Theorem 1 the algorithm generates each sequence in O(1) time on average. So, each sequence cannot be generated in O(1) time in worst case. However, a simple modification [7] improves the algorithm to generate each sequence in O(1) time.

By modifying the algorithm such that it outputs only sequences corresponding to the leaves in T_n , we have the following theorem.

Theorem 2 One can generate all graphical sequences of length exactly n in O(1) time on average.

References

- [1] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math., 6, 21–46, 1996.
- [2] G. Chartrand and L. Lesniak, *Graphs & Digraphs*, 4th ed., Chapman & Hall, 2005.
- [3] F. Ruskey, P. Eades, B. Cohen and A. Scott, *Alley CATs in search of good homes*, Congressus Numerantium., 102, 97–110, 1994.
- [4] S. Nakano, Enumerating floorplans with n rooms, Proc. ISAAC2001, LNCS 2223, 104–115, 2001.
- [5] S. Nakano, Efficient generation of plane trees, Inf. Process. Lett., 84, 167–172, 2002.
- [6] S. Nakano, Efficient generation of triconnected plane triangurations, Computational Geometry, Theory and Applications, 27, 109–122, 2004.
- [7] S. Nakano and T. Uno, Constant time generation of trees with specified diameter, Proc. WG2004, LNCS 3353, 33–45, 2004.