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Abstract

It is known that dried concrete contains numerous pores which allow for concrete deterioration
by providing chloride ions a path to the supporting rebar. A new method called electrokinetic
packing using nanoparticles to fill the pores was proposed and at least two different sizes of
nanoparticles must be used.

We found a simple approximate relation for the two sizes of spheres that provide a high density
in the multi-sized random sphere packing problem into a container C by using only the parameter
β = B/V where B is the surface area of C and V is the volume of C.

1 Regular Crystal Structures and Random Packings

A highest density for mono-sized sphere packing in R3 has been considered for centuries. Kepler’s
Conjecture (1611), proved by Hales (1998): The highest packing density of spheres in the 3-dim space
is π√

18

.= 0.74048．For example, the Face-Centered Cubic Crystal Structure in the Figure provides
this density. If we add smaller spheres to pack the vacancy of the previous packing, we can increase
the density further. If we pack infinitesimally small spheres into the previous structure, then we can

reach to the limit density 1 −
(
1 − π√

18

)2 .= 0.93265
In application, nanoparticles are randomly packed and the density will be lower than the highest

density 0.74048 of regular packing. In literature, there are two distinct random packings when we
pack objects in a container: Random Close Packing(RCP) and Random Loose Packing(RLP). In
RCP, a higher packing density is obtained by shaking the container after a random packing than RLP
where no shaking of container is performed. In 1969, the approximate density 0.64 of RCP of mono-
sized spheres was obtained from the experiment packing steel spheres to a container and shaking the
container.

We will now describe our packing methods and results. Our method uses a deterministic algorithm
with a random initial case. As a result we can achieve varied results using multiple initial conditions.
We first determine all the positions where a new sphere touches 3 old spheres which we refer to as pits.
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We place the center of a new sphere at the pit whose z-coordinate is the lowest among all possible
pits.

For example, we pack spheres of radius 0.02 to a 2 × 2 × 2 cubic container C having a random
shaped base (figure in the previous page). The following figure(left) shows the packing density as
a function of the distance from the boundary of C. The average of the packing densities about the
center of C is 0.604. By assuming the average density to be 0.604, shown by the large lightly(blue)
shaded region, we can calculate how much we should consider as a loss around the boundary of C. As
a result of our estimate, 0% to 30% of the radius from ∂ C can be subtracted, shown as the smaller
darkly(red) shaded region. We did this experiment for several different shapes and sizes of C and
obtained almost the same results as above.

From now on, let V be the volume of a container C and B the surface area of C. Suppose we pack a
container C with identical spheres of radius r. From the experiment, we can approximate the influence
of the ∂C as a loss of 0.3r neighborhood (See the previous graph) or 0.3Br volume reduction and use the
average density 0.604. More precisely, we can assume we pack spheres in a space of having the volume
V − 0.3Br, instead of V , with the average density of 0.604. Therefore, the total density after random
loose packing of spheres with radius r can be approximated by 0.604(V −0.3Br)

V = 0.604 − 0.1812βr.
where β = B

V .
We pack a container C with spheres of two different sizes with radii r1 > r2. First, we pack

C with large spheres having radius r1. The total volume of large spheres: (0.604 − 0.1812βr1)V
The total surface area of large spheres is (0.604 − 0.1812βr1)V 3

r1
. The volume remaining is V1 =

V − (0.604− 0.1812βr1)V and the new surface area which now includes the packed sphere surfaces is
now B1 = B + 3(0.604− 0.1812βr1)V/r1. Now if we pack small spheres of radius r2 into C1, then the
total volume is 0.604(V1−0.3B1r2). The total density after randomly packing spheres of radii r1 > r2

is
0.843184 − 0.0717552βr1 − 0.0826997βr2 − 0.328334

r2

r1
. (1)

From this formula, we can see that the total density is maximized when r1 = 2.14
√

r2
β .

2 Computational Experiments

We assume that the small size of radius r2 is fixed at 0.02. Then, the problem is to choose a radius
r1 to achieve maximal density when packing pores. In order to determine the optimal value, we run
multiple simulations packing spheres in a rectangular box with a 2×2 base and determine the optimal
values empirically. We limit the range of r1 from 0.05 to 0.5. See the following figure (center). The
solid curve shows the above approximation (1). The last figure is the packing of case r1 = 0.214,
which maximizes the value of (1).
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