Rainbow Colorings of Generalized Petersen Graphs

Timothy James L. Yusun, Mari-Jo P. Ruiz^{*}, Ian June L. Garces Mathematics Department Ateneo de Manila University

Abstract

The generalized Petersen graph GP(n,k) for positive integers n,k and $n \neq 2k, k \leq n-1$ is the graph with vertex set $V[GP(n,k)] = \{0, 1, 2, ..., (n-1), 0', 1', 2', ..., (n-1)'\}$ and edge set $\{(i, i+1), (i, i'), \text{ and } (i', (i+k)')\}$. These edges are also called *rim*, *spoke*, and *hub* edges, respectively. Some examples are shown below. Note that by symmetry, GP(n,k) = GP(n,n-k).

Figure 1. The graphs GP(5,2), GP(8,3) and GP(11,4)

An edge-coloring of a graph G is a function c which assigns a color c(x) to each edge $x \in E(G)$. An edge-coloring is called *proper* if $c(x) \neq c(y)$ for all pairs of incident edges $x, y \in E(G)$. In this paper, we define a proper edge-coloring of the generalized Petersen graph GP(n, k) to be rainbow if for any chordless cycle of length $L \leq k+3$, each edge has a distinct color. Note that we consider only colorings which are proper.

Let g(n,k) be the least integer such that there exists a rainbow coloring of GP(n,k). Then clearly, g(n,k) is at least k+3 for any n,k. In this paper, we prove that g(n,k) = k+3 when kdivides n, when k = 2, and when k = 1 (for n > 3). This value g(n,k) = k+3 is best possible, since any rainbow coloring of GP(n,k) will necessarily have at least k+3 colors, to assure that in any cycles of length $L \leq k+3$, each edge has a distinct color.

*presentor

As an example, note that in the 5-coloring of GP(5,2) shown in Figure 2, each edge of any 5-cycle has a distinct color. Therefore, g(5,2) = 5.

Figure 2. A rainbow coloring of GP(5,2)

In P(n, k), we refer to the (k + 3)-cycles comprised by k adjacent rim edges, two spoke edges and one hub edge as a *fundamental cycle*. In general, for $n \ge 3k$, GP(n, k) contains no nonfundamental cycles, which leads us to the following:

Conjecture: g(n,k) = k+3 for GP(n,k), $n \ge 3k$.

A similar problem has been studied by, Faudree, et.al. [FGS96]. In the paper a rainbow coloring is defined as a proper coloring of a graph such that in any C_4 , chordless cycle of length four, each edge has a distinct color. The authors prove that for $n \ge 6$, the minimum number of colors needed for a rainbow coloring of $K_n \times K_n$ is n, denoted by rb(n) = n. In another paper [FGLS93] Faudree, et.al. considered the hypercube Q_n where $Q_k = Q_{k-1} \times K_2$ for $k \ge 1$ and $Q_0 = K_1$. They proved that for $n \ge 4$, $d \ne 5$, $rb(Q_d) = d$.

References

[FGLS93] Faudree, R.J., Gyáfás, A., Lesniak, L., Schelp, R.H.: Rainow coloring the cube. J. Graph Theory 17, 607-612 (1993)

[FGS96] Faudree, R.J., Gyáfás, A., Schelp, R.H.: An edge coloring problem for graph products. J. Graph Theory **23**, 297-302 (1996)