

I216E: Computational Complexity and Discrete Mathematics

Answers and Comments on Report 2

HOANG, Duc Anh (1520016)

November 17, 2016

Ph.D Student @ Uehara Lab Japan Advanced Institute of Science and Technology hoanganhduc@jaist.ac.jp

We define an equivalence relation \equiv_m^p as follows.

$$A \equiv^p_m B \leftrightarrow A \leq^p_m B \text{ and } B \leq^p_m A.$$

Prove that the relation \equiv_m^p is surely an equivalence relation. Precisely, you need to show that it is reflexive, symmetric and transitive.

We show that the relation \equiv^p_m is

- 1. reflexive: $A \equiv_m^p A$.
 - It is clear because $A \leq_m^p A$. (Take function h(x) = x for any $x \in A$.)
- 2. symmetric: if $A \equiv_m^p B$ then $B \equiv_m^p A$.
 - By definition, $A \equiv_m^p B$ if and only if $A \leq_m^p B$ and $B \leq_m^p A$.
 - Also by definition, $B \leq_m^p A$ and $A \leq_m^p B$ imply $B \equiv_m^p A$.
- 3. transitive: if $A \equiv_m^p B$ and $B \equiv_m^p C$ then $A \equiv_m^p C$.
 - By definition, $A \equiv_m^p B$ if and only if $A \leq_m^p B$ and $B \leq_m^p A$. Similarly, $B \equiv_m^p C$ if and only if $B \leq_m^p C$ and $C \leq_m^p B$.
 - $A \leq_m^p B$ and $B \leq_m^p C$ imply $A \leq_m^p C$. $C \leq_m^p B$ and $B \leq_m^p A$ imply $C \leq_m^p A$. Finally, $A \leq_m^p C$ and $C \leq_m^p A$ imply $A \equiv_m^p C$.

Hence, the relation \equiv^p_m is an equivalence relation.

It is nonsense that defining the class coP because coP = P. Prove coP = P.

Problem 2 (Answer)

Recall that for a language $L \subseteq \Sigma^*$, $\overline{L} = \{x \in \Sigma^* : x \notin L\}$. We define the class coP is the set of all languages L such that $\overline{L} \in P$. Now, if for any language $L \in P$, $\overline{L} \in P$, then we can conclude that coP = P because

- For any $L \in P$, by our assumption, $\overline{L} \in P$; then by definition $\overline{\overline{L}} = L \in coP$, hence $P \subseteq coP$.
- For any $L \in coP$, by definition $\overline{L} \in P$; then by our assumption $\overline{L} = L \in P$, hence $coP \subseteq P$.

It is sufficient to show that for any language $L \in P$, $\overline{L} \in P$. By definition, $L \in P$ if and only if the function $f : \Sigma^* \to \{0, 1\}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$
(1)

is polynomial-time computable. Then, the following function $g: \Sigma^* \to \{0, 1\}$ is also polynomial-time computable

$$g(x) = \begin{cases} 0 & \text{if } x \in L \text{ (i.e. } x \notin \bar{L}) \\ 1 & \text{if } x \notin L \text{ (i.e. } x \in \bar{L}) \end{cases}$$
(2)

This means that $\overline{L} \in P$.

Prove KNAP \leq_m^p BIN.

Prove KNAP \leq_m^p BIN.

Knapsack Problem (KNAP)

- Input: n+1 tuple of natural numbers $\langle a_1, a_2, \ldots, a_n, b \rangle$.
- Question: Is there a set of indices $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} a_i = b$?

Bin Packing Problem (BIN)

- Input: n+2 tuple of natural numbers $\langle a_1, a_2, \ldots, a_n, b, k \rangle$.
- Question: Is there a partition of the set of indices $U = \{1, \ldots, n\}$ into U_1, \ldots, U_k such that $\sum_{i \in U_j} a_i \leq b$ for each j?

To prove that $KNAP \leq_m^p BIN$

We need to define a function \boldsymbol{h} such that

- (a) h is a total function, i.e., for each instance x of KNAP, h(x) is defined (as an instance of BIN);
- (b) x is a YES-instance of KNAP if and only if h(x) is a YES-instance of BIN;
- (c) h is polynomial-time computable.

Two steps need to be done:

- Step 1: Define h.
- Step 2: Check if h satisfies (a), (b) and (c).

• Step 1: Define *h*. Let $\langle a_1, a_2, \ldots, a_n, b \rangle$ be an instance of KNAP. We construct an instance $\langle A_1, \ldots, A_{n+2}, B, K \rangle$ of BIN as follows. Let $A = \sum_{i=1}^n a_i$. We define $A_i = a_i$ for $i \in \{1, 2, \ldots, n\}$, $A_{n+1} = |2A - b|$, $A_{n+2} = A + b$, B = 2A and K = 2. In other words,

$$h(\langle a_1, a_2, \dots, a_n, b \rangle) = \langle a_1, \dots, a_n, |2A - b|, A + b, 2A, 2 \rangle.$$

- Step 2: Check if h satisfies (a), (b) and (c). (a) and (c) are clear from the definition of h. It remains to check if (b) holds. That is, we need to check: x is a YES-instance of KNAP if and only if h(x) is a YES-instance of BIN.
 - Let $x = \langle a_1, a_2, \dots, a_n, b \rangle$ be a YES-instance of KNAP, i.e., there exists a set of indices $S \subseteq \{1, \dots, n\}$ such that $\sum_{i \in S} a_i = b$. In this case, note that $2A b \ge 2\sum_{i \in S} a_i b = b \ge 0$, which means |2A b| = 2A b. We show that

$$h(x) = \langle a_1, \dots, a_n, 2A - b, A + b, 2A, 2 \rangle$$

is a YES-instance of BIN.

Choose $U_1 = S \cup \{n+1\}$ and $U_2 = U \setminus U_1$, where $U = \{1, 2, \dots, n+2\}$. Hence,

$$\sum_{i \in U_1} A_i = \sum_{i \in S} a_i + (2A - b) = b + (2A - b) = 2A = B.$$
$$\sum_{i \in U_2} A_i = \sum_{i \notin S} a_i + (A + b) = (A - b) + (A + b) = 2A = B.$$

Problem 3 (Answer) – Step 2 ii

• Let $h(x) = \langle a_1, \ldots, a_n, |2A - b|, A + b, 2A, 2 \rangle$ be a YES-instance of BIN, i.e., there exists a partition U_1, U_2 of $U = \{1, 2, \ldots, n + 2\}$ such that $\sum_{i \in U_j} A_i \leq B = 2A$ for $j \in \{1, 2\}$. We show that

$$x = \langle a_1, a_2, \dots, a_n, b \rangle$$

is a YES-instance of KNAP.

Since h(x) is a YES-instance of BIN, it must happen that $2A - b \ge 0$. Assume for the contradiction that 2A - b < 0, i.e., b > 2A. Then $A_{n+2} = A + b > 3A$, which means that one cannot partition U into U_1, U_2 such that $\sum_{i \in U_j} A_i \le B = 2A$ for $j \in \{1, 2\}$, i.e., h(x) is a NO-instance Hence, |2A - b| = 2A - b.

Since $\sum_{i \in U} A_i = 4A$, it must happen that $\sum_{i \in U_1} A_i = \sum_{i \in U_2} A_i = 2A$. Moreover, since $A_{n+1} + A_{n+2} = (2A - b) + (A + b) > 2A$, without loss of generality, we can assume that $n + 1 \in U_1$ and $n + 2 \in U_2$. Hence, one can pick $S = U_1 \setminus \{n + 1\}$, and we have

$$\sum_{i \in S} a_i = \sum_{i \in U_1} A_i - (2A - b) = 2A - (2A - b) = b.$$