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Problem 1

We define an equivalence relation ≡p
m as follows.

A ≡p
m B ↔ A ≤p

m B and B ≤p
m A.

Prove that the relation ≡p
m is surely an equivalence relation. Precisely, you need to show that

it is reflexive, symmetric and transitive.
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Problem 1 (Answer)

We show that the relation ≡p
m is

1. reflexive: A ≡p
m A.

• It is clear because A ≤p
m A. (Take function h(x) = x for any x ∈ A.)

2. symmetric: if A ≡p
m B then B ≡p

m A.

• By definition, A ≡p
m B if and only if A ≤p

m B and B ≤p
m A.

• Also by definition, B ≤p
m A and A ≤p

m B imply B ≡p
m A.

3. transitive: if A ≡p
m B and B ≡p

m C then A ≡p
m C.

• By definition, A ≡p
m B if and only if A ≤p

m B and B ≤p
m A.

Similarly, B ≡p
m C if and only if B ≤p

m C and C ≤p
m B.

• A ≤p
m B and B ≤p

m C imply A ≤p
m C.

C ≤p
m B and B ≤p

m A imply C ≤p
m A.

Finally, A ≤p
m C and C ≤p

m A imply A ≡p
m C.

Hence, the relation ≡p
m is an equivalence relation.
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Problem 2

It is nonsense that defining the class coP because coP = P . Prove coP = P .
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Problem 2 (Answer)

Recall that for a language L ⊆ Σ∗, L̄ = {x ∈ Σ∗ : x /∈ L}. We define the class coP is the set of all

languages L such that L̄ ∈ P . Now, if for any language L ∈ P , L̄ ∈ P , then we can conclude that

coP = P because

• For any L ∈ P , by our assumption, L̄ ∈ P ; then by definition ¯̄L = L ∈ coP , hence P ⊆ coP .

• For any L ∈ coP , by definition L̄ ∈ P ; then by our assumption ¯̄L = L ∈ P , hence coP ⊆ P .

It is sufficient to show that for any language L ∈ P , L̄ ∈ P . By definition, L ∈ P if and only if the

function f : Σ∗ → {0, 1} defined by

f(x) =

{
1 if x ∈ L

0 if x /∈ L
(1)

is polynomial-time computable. Then, the following function g : Σ∗ → {0, 1} is also polynomial-time

computable

g(x) =

{
0 if x ∈ L (i.e. x /∈ L̄)

1 if x /∈ L (i.e. x ∈ L̄)
(2)

This means that L̄ ∈ P .
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Problem 3

Prove KNAP ≤p
m BIN.

Knapsack Problem (KNAP)

• Input: n + 1 tuple of natural numbers 〈a1, a2, . . . , an, b〉.
• Question: Is there a set of indices S ⊆ {1, . . . , n} such that

∑
i∈S ai = b?

Bin Packing Problem (BIN)

• Input: n + 2 tuple of natural numbers 〈a1, a2, . . . , an, b, k〉.
• Question: Is there a partition of the set of indices U = {1, . . . , n} into U1, . . . , Uk such

that
∑

i∈Uj
ai ≤ b for each j?
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Problem 3 (Answer)

To prove that KNAP ≤p
m BIN

We need to define a function h such that

(a) h is a total function, i.e., for each instance x of KNAP, h(x) is defined (as an instance of

BIN);

(b) x is a yes-instance of KNAP if and only if h(x) is a yes-instance of BIN;

(c) h is polynomial-time computable.

Two steps need to be done:

• Step 1: Define h.

• Step 2: Check if h satisfies (a), (b) and (c).
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Problem 3 (Answer) – Step 1

• Step 1: Define h. Let 〈a1, a2, . . . , an, b〉 be an instance of KNAP. We construct an

instance 〈A1, . . . , An+2, B,K〉 of BIN as follows. Let A =
∑n

i=1 ai. We define Ai = ai for

i ∈ {1, 2, . . . , n}, An+1 = |2A− b|, An+2 = A + b, B = 2A and K = 2. In other words,

h(〈a1, a2, . . . , an, b〉) = 〈a1, . . . , an, |2A− b|, A + b, 2A, 2〉.
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Problem 3 (Answer) – Step 2 i

• Step 2: Check if h satisfies (a), (b) and (c). (a) and (c) are clear from the definition

of h. It remains to check if (b) holds. That is, we need to check: x is a yes-instance of

KNAP if and only if h(x) is a yes-instance of BIN.

• Let x = 〈a1, a2, . . . , an, b〉 be a yes-instance of KNAP, i.e., there exists a set of indices

S ⊆ {1, . . . , n} such that
∑

i∈S ai = b. In this case, note that

2A− b ≥ 2
∑

i∈S ai − b = b ≥ 0, which means |2A− b| = 2A− b. We show that

h(x) = 〈a1, . . . , an, 2A− b, A+ b, 2A, 2〉

is a yes-instance of BIN.

Choose U1 = S ∪ {n+ 1} and U2 = U \ U1, where U = {1, 2, . . . , n+ 2}. Hence,∑
i∈U1

Ai =
∑
i∈S

ai + (2A− b) = b+ (2A− b) = 2A = B.

∑
i∈U2

Ai =
∑
i/∈S

ai + (A+ b) = (A− b) + (A+ b) = 2A = B.

8/9



Problem 3 (Answer) – Step 2 ii

• Let h(x) = 〈a1, . . . , an, |2A− b|, A+ b, 2A, 2〉 be a yes-instance of BIN, i.e., there exists a

partition U1, U2 of U = {1, 2, . . . , n+ 2} such that
∑

i∈Uj
Ai ≤ B = 2A for j ∈ {1, 2}. We

show that

x = 〈a1, a2, . . . , an, b〉

is a yes-instance of KNAP.

Since h(x) is a yes-instance of BIN, it must happen that 2A− b ≥ 0. Assume for the

contradiction that 2A− b < 0, i.e., b > 2A. Then An+2 = A+ b > 3A, which means that

one cannot partition U into U1, U2 such that
∑

i∈Uj
Ai ≤ B = 2A for j ∈ {1, 2}, i.e., h(x)

is a no-instance Hence, |2A− b| = 2A− b.

Since
∑

i∈U Ai = 4A, it must happen that
∑

i∈U1
Ai =

∑
i∈U2

Ai = 2A. Moreover, since

An+1 +An+2 = (2A− b) + (A+ b) > 2A, without loss of generality, we can assume that

n+ 1 ∈ U1 and n+ 2 ∈ U2. Hence, one can pick S = U1 \ {n+ 1}, and we have∑
i∈S

ai =
∑
i∈U1

Ai − (2A− b) = 2A− (2A− b) = b.
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