

I216E: Computational Complexity and Discrete Mathematics

Answers and Comments on Report 3

HOANG, Duc Anh (1520016)

November 24, 2016

Ph.D Student @ Uehara Lab Japan Advanced Institute of Science and Technology hoanganhduc@jaist.ac.jp

Let $S = \mathbb{R} \setminus \{-1\}$ and consider an operation defined by $a \circ b = a + b + ab$. Then prove that " \circ " is an operation on S. Here, we suppose that arithmetic operations over \mathbb{R} are defined.

It is sufficient to show that if $a, b \in S$ then $a \circ b = a + b + ab \in S$. In other words, we need to show that for $a, b \in \mathbb{R}$, if $a \neq -1$ and $b \neq -1$ then $a \circ b = a + b + ab \neq -1$.

Assume that there are some $a, b \in \mathbb{R}$ with $a \neq -1$, $b \neq -1$ and $a \circ b = a + b + ab = -1$. It follows that a + b + ab + 1 = (a + 1)(b + 1) = 0, which implies that either a = -1 or b = -1, a contradiction.

In the problem 1, prove that (S, \circ) is a group. (Not need to prove "Closure.")

Problem 2 (Answer)

We show that (S, \circ) is a group by definition.

- Close under the operation "o": see Problem 1.
- Associative: We check that for $a, b, c \in S$, $(a \circ b) \circ c = a \circ (b \circ c)$. Indeed, we have

$$(a \circ b) \circ c = (a + b + ab) \circ c$$
$$= (a + b + ab) + c + (a + b + ab)c$$
$$= a + b + ab + c + ac + bc + abc$$
$$= a + (b + c + bc) + a(b + c + bc)$$
$$= a \circ (b + c + bc)$$
$$= a \circ (b \circ c).$$

• Identity element: $0 \in S$ is the identity element, since for any $a \in S$,

$$a \circ 0 = 0 \circ a = a + 0 + a \cdot 0 = a$$
.

• Inverse element: For $a \in S$, $\frac{-a}{a+1} \in S$ is the inverse element of a, since

$$a \circ \frac{-a}{a+1} = a - \frac{a}{a+1} - \frac{a^2}{a+1} = 0.$$
 4/1

Let G be an Abelian group and k be a positive integer. Prove that $G^{(k)} = \{x^k \in G \mid x \in G\}$ is a subgroup of G. Here, you can use $(a \cdot b)^n = a^n \cdot b^n$ for $a, b \in G$ when G is an Abelian group.

Let G be an Abelian group and k be a positive integer. Prove that $G^{(k)} = \{x^k \in G \mid x \in G\}$ is a subgroup of G. Here, you can use $(a \cdot b)^n = a^n \cdot b^n$ for $a, b \in G$ when G is an Abelian group. Recall that

Theorem 8.3

Let H be a nonempty subset of a group G. Then H is a subgroup of G if and only if H satisfies the following two conditions (1) and (2):

```
(1) \forall a, b \in H \Rightarrow a \cdot b \in H
```

```
(2) \forall a \in H \Rightarrow a^{-1} \in H
```

Moreover, two conditions (1) and (2) are equivalent to the following single condition:

```
(3) \forall a, b \in H \Rightarrow a \cdot b^{-1} \in H
```

Problem 3 (Answer)

We use Theorem 8.3(3) to show that for an Abelian group G and a positive integer k, $G^{(k)} = \{x^k \in G \mid x \in G\}$ is a subgroup of G. That is, we show that for $a, b \in G^{(k)}$, $a \cdot b^{-1} \in G^{(k)}$.

From the definition of $G^{(k)}$, $a = x^k \in G$ and $b = y^k \in G$ for some $x, y \in G$. Our goal is to show that $x^k \cdot (y^k)^{-1} \in G^{(k)}$.

First of all, we prove that $(y^k)^{-1} = (y^{-1})^k$. Let e be the identity element of G. Since $y^k \in G$, $e = y^k \cdot (y^k)^{-1}$. On the other hand, $e = e^k = (y \cdot y^{-1})^k = y^k \cdot (y^{-1})^k$. Therefore, $e = y^k \cdot (y^k)^{-1} = y^k \cdot (y^{-1})^k$, which implies that $(y^k)^{-1} = (y^{-1})^k$ (multiply both sides by $(y^k)^{-1}$ from the left).

Thus, $x^k \cdot (y^k)^{-1} = x^k \cdot (y^{-1})^k = (x \cdot y^{-1})^k$.

Therefore, to show that $x^k \cdot (y^k)^{-1} \in G^{(k)}$, it is sufficient to show $(x \cdot y^{-1})^k \in G^{(k)}$.

•
$$x \cdot y^{-1} \in G$$
, because $x, y \in G$.

• $(x \cdot y^{-1})^k \in G$, because $x^k, y^k \in G$ and $(x \cdot y^{-1})^k = x^k \cdot (y^k)^{-1}$.

Prove that the group whose order is a prime number is a cyclic group without proper subgroup. (Hint: Prove it is a cyclic group, and it does not have a proper subgroup.)

Problem 4 (Answer)

Lagrange's Theorem

Let G be a finite group, and H a subgroup of G. Then

- (1) |G| = |G:H||H|, that is, |G:H| = |G|/|H|
- (2) Both of order and index of H divide the order of G.

Let G be a group whose order |G|=p for some prime number p. Let e be the identity element of G. Then,

• G is a cyclic group.

Let $a \neq e$ be any element of G and let $H = \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. Then, H is a cyclic subgroup of G. By Lagrange's Theorem, |H| divides |G| = p. Since p is a prime number, |H| is either 1 or p. Since $a \neq e$, $|H| \neq 1$, i.e., |H| = p. Hence, H = G, that is, G is a cyclic group.

• G does not have a proper subgroup.

Assume that K is a proper subgroup of G, i.e., K is a subgroup that is different from $\{e\}$ and G. By Lagrange's Theorem, |K| divides |G| = p. Since p is a prime number, |K| is either 1 or p. That is, K is either $\{e\}$ or G, a contradiction.

Problem 5

Let H be the subgroup of a group G. Prove that H is a normal subgroup, when H has the index 2. (Hint: It is better to divide into $a \in H$ and $a \notin H$.)

Problem 5

Let H be the subgroup of a group G. Prove that H is a normal subgroup, when H has the index 2. (Hint: It is better to divide into $a \in H$ and $a \notin H$.)

Recall that

Normal subgroup

A subgroup N of a group G satisfies the following, N is said to be a normal subgroup of G, and denoted by $G \triangleright N$.

 $aN = Na \ (\forall a \in G).$

Index

- When G/H is a finite set, so $H \setminus G$ is, and the number of the left and right congruent are equal to each other.
- This number is denoted by |G:H| and called index of H on G.
- When |G:H| = 2, we have $G = a_1H + \cdots + a_nH$.
- Especially, note that $|G:\{e\}| = |G|$, |G:G| = 1.

Let H be the subgroup of a group G with |G:H| = 2. We prove that H is a normal subgroup by definition, i.e., we show that for every $a \in G$, aH = Ha.

- Case 1: $a \in H$. Since $a \in H$, it follows that aH = H = Ha.
- Case 2: $a \notin H$.

Since |G:H| = 2, we have G = H + aH. It follows that $aH = G \setminus H$. Similarly, $Ha = G \setminus H$. Therefore, $aH = Ha = G \setminus H$.