

Computational Origami

Ryuhei Uehara
Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

T002y...

1. Basic facts for unfolding
2. Dolygons foldable two or more boxes
3. Common unfolding of regular polyhedra (or Platonic solids)
4. Common unfolding of a regular tetrahedron and a cube
5. Common unfolding of a regular tetrahedron and JohnsonZalgaller solids

Construction of Common Unfolding of

a Regular Tetrahedron and a Cube

Reference：
－Toshihiro Shirakawa，Takashi Horiyama，and Ryuhei Uehara：On Common Unfolding of a Regular Tetrahedron and a Cube，Japan Conference on Discrete and Computational Geometry（JCDCG 2011）， 2011／11／28－29，Tokyo，Japan．
－正4面体と立方体の共通の展開図に関する研究（On Common Unfolding of a Regular Tetrahedron and a Cube），白川俊博•堀山貴史•上原隆平，『折り紙の科学』，Vol．4，No．1，pp．45－54， 2015.

Introduction

- Open problem 25.6
(by M. Demaine, F. Hurtado, E. Pegg)Can any Platonic solid be cut open and unfolded to a polygon that may be refolded to a different Platonic solid?

For ex., may a cube be so dissected to a tetrahedron ?

Tetrahedron Cube Octahedron Dodecahedron

Icosahedron (Hexahedron)

Introduction

Is there any polygon that can be folded to two（or more）different Platonic solids ？

Tetrahedron （Hexahedron）
 Cube Octahedron Dodecahedron

Icosahedron ）

Is there any polygon that can be folded to

 two (or more) different Platonic solids?

Close call! [O'Rourke] Regular Octahedron
\Leftrightarrow Tetramonohedron
(tetrahedron that consists of congruent triangles)

Close call!! [Hirata] Regular Tetrahedron
\Leftrightarrow Box $1 \times 1 \times 1.232$

Is there any polygon that can be folded to two (or more) different Platonic solids ?

Regular Octahedron
\Leftrightarrow Tetramonohedron 1.0072 : $0.9965: 0.9965$

Close calls
Cube (Regular hexahedron) \Leftrightarrow Tetramonohedron
$1: 0.972: 0.972$

Regular Icosahedron
\Leftrightarrow Tetramonohedron 1:1.145:1.25

Introduction

Our Results

A procedure that produces points s.t.
(1) they seem to converge to a polygon that can fold to a cube and a regular tetrahedron (with infinitely many points)

- we solve the open problem in a sense!
- ... but we left some conjectures
(2)

Introduction

Our Results

A procedure that produces points s.t.
(1) they seem to converge to a polygon that can fold to a cube and a regular tetrahedron (with infinitely many points)
(2) they certainly form a polygon that folds to a cube and an almost regular tetramonohedron with error $\varepsilon<2.89 \times 10^{-1796}$

Ansos

The Key Theorem

- Theorem [Akiyama 2007, Akiyama Nara 2007]

Let \mathbf{P} be a development of a regular tetrahedron.
Then, \mathbf{P} is a tiling. That is, \mathbf{P} fills a plane.

The Key Theorem

- Theorem [Akiyama 2007, Akiyama Nara 2007]
\mathbf{P} is a development of a regular tetrahedron iff
(1) \mathbf{P} has a p2 tiling, i.e., tiling by 180° rotations
(2) 4 of the rotation centers define the triangular lattice
(3) no two of the 4 rotation centers belong to the same equivalent class on the tiling

The Key Theorem

- Theorem [Akiyama 2007, Akiyama Nara 2007]
\mathbf{P} is a development of a regular tetramonohedron if
(1) \mathbf{P} has a p2 tiling, i.e., tiling by 180° rotations
(2) 4 of the rotation centers define a nonregular triangular lattice
(3) no two of the 4 rotation centers belong to the same equivalent class on the tiling

Construction of a development

- We modify the unfolding of a cube with the following invariants:
- it is a development of a cube
- it is a p2 tiling $=$ a unfolding of a tetramonohedron

Initial unfolding of a cube

Construction of a development

- make L_{1} and L_{2} parallel to $c_{1} c_{2}$
$\ldots c_{3}$ and c_{4} can be symmetrically moved to any position
- make each face an isosceles triangle
- we have to stretch c_{1} ca 2 littleto make the ixianglés to regular ones.
- ...so we'll stretch them horizontally!!

Construction of a development

- We have some "fixed points" that have to be on an edge of the unfolding

8
: they have to make a center of a top/bottom square : they form a vertex of the unit cube

- "shift" the center c_{1} to c_{1} ' with distance l_{1}
- fixed points have their images since they should form a p2 tiling.
- these images of fixed points generate the unfolding of a cube and a tetramonohedron with center $c_{1}{ }^{\prime}$
- "shift" the center c_{1} to c_{1} ' with distance l_{1}
- l_{1} is rational: finite points form a certain unfolding
- l_{1} is irrational: infinite points converge to an unfolding

An example

common unfolding of a cube and an almost regular tetramonohedron

TIST

Property of the curve

- [Observation/Conjecture] The "fractal curves" are defined by the value of l_{1} in continued fraction form

$$
l_{1}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

Property of the curve

- [Observation/Conjecture] The "fractal curves" are defined by the value of l_{1} in continued fraction form

$$
l_{1}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

Summary

Our Results

$$
\sqrt{2 \sqrt{3}} \pm \varepsilon
$$

A procedure that produces points s.t.

Future work

- [Obser Theorem ecture] The "curves" are defined by the value of l_{1} in continued fraction form
- Other Platonic solids
- Easy?: Tetrahedron and Octahedron
- Middle?. Tetrahedron and leosahedron
- Hard?: Other pair except tetrahedron

(Regular) Cube and
(Nonregular) Octahedron

Simple Exercises

- Find "good" common unfolding of a regular octagon or a regular icosahedron AND a tetramonohedron. Estimate how "good" it is.

- Consider why a dodecahedron has no common unfolding with a tetramonohedron or a non-regular icosahedron?

