

Computational Origami

Ryuhei Uehara
Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Today's Topic

5. Time Complexity

- "Folding complexity"
- Theoretically, the world fastest algorithm for pleat folding
- We can use some techniques in TCS.
- Recursive analysis and Fibonacci sequence
- Lower bound by counting method

6. Space Complexity (?)

- Stamp Folding Problem
- Minimization of Crease width
- NP-complete problem, FPT algorithm

7. Undecidable Origami Problem

- Diagonalization and undecidability

Reference:

J. Cardinal, E. D. Demaine, M. L. Demaine, S. Imahori, T. Ito, M. Kiyomi, S. Langerman, R. Uehara, and T. Uno: Algorithmic Folding Complexity, Graphs and Combinatorics, Vol. 27, pp. 341-351, 2011.

Pleat foiding is...

Pleat folding

- Pleat folding (in 1D)

- Naïve algorithm: n time folding is a trivial solution \circ
- We have to fold at least $\log n$ times to make n creases
- More efficient ways...?
- General Mountain/Valley pattern?

- proposed at Open Problem Session on CCCG 2008 by R. Uehara.
- Many people get together with some ideas.
- Complexity of Pleat

Model:

Paper has 0 thickness
[Main Motivation] Do we have to make n foldings to make a pleat folding with n creases??

1. The answer is "No"!

- Any pattern can be made by $\lfloor n / 2\rfloor+[\log n\rceil$ foldings

2. Can we make a pleat folding in o(n) foldings?

- Yes!! ...it can be folded in $\mathrm{O}\left(\log ^{2} n\right)$ foldings.

3. Lower bound; $\log n$

- (We stated $\Omega\left(\log ^{2} n / \log \log n\right)$ lower bound for pleat folding!!)

- Complexity of Pleat Folding

[Next Motivation] What about general pleat folding problem for a given M/V pattern of length n ?

- Any pattern can be made by $\lfloor n / 2\rfloor+[\log n]$ foldings

Upper bound:
Any M/V pattern can be folded by $(4+\varepsilon) \frac{n}{\log n}+o\left(\frac{n}{\log n}\right)$ foldings
Lower bound:
Almost all mountain/valley patterns require $\frac{n}{3+\log n}$ foldings
[Note] Ordinary pleat folding is exceptionally easy pattern!

Difficulty/Interest come from two kinds of Parities:

- "Face/back" determined by layers
- Stackable points having the same parity

Input: Paper of length $n+1$ and a string s in $\{M, V\}^{n}$
Output: Well-creased paper according to s at regular intervals.
Basic operations

1. Flat \{mountain/valley\} fold \{all/some\} papers at an integer point (= simple folding)
2. Unfold \{all/rewind/any\} crease points (= reverse of simple foldings)

Rules

1. Each crease point remembers the last folded direction
2. Paper is rigid except those crease points

Goal:
Minimize the number of folding operations
Note We ignore the cost of unfoldings

- Any pattern can be made by $\lfloor n / 2\rfloor+\lceil\log n\rceil$ foldings

1. M / V fold at center point according to the assignment
2. Check the center point of the folded paper, and count the number of $M \mathrm{~s}$ and $V \mathrm{~s}$ (we have to take care that odd depth papers are reversed)
3. M / V fold at center point taking majority
4. Repeat steps 2 and 3
5. Unfold all (cf. on any model)
6. Fix all incorrect crease points one by one

Steps $1 \sim 4$ require $\log n$ and step 6 requires $n / 2$ foldings

Upper bound of Pleat Folding(1)

[Observation]

If $f(n)$ foldings achieve n mountain foldings, n pleat foldings can be achieved by $2 f(n / 2)$ foldings.

The following strategy works;

- Make $f(n / 2)$ mountain foldings at odd points;
- Reverse the paper;
- Make $f(n / 2)$ mountain foldings at even points.

> We will consider the "mountain folding problem"

CF: $\mathrm{O}\left(n^{0.69}\right)$ algorithm

[Th] Mountain folding problem can be solved in $\mathrm{O}\left(n^{0.69}\right)$ time
[Proof] Let $n=2^{k}$, and use the following algorithm;

1. Fold the leftmost point to make length $2^{k}-1$
2. Fold in half at the central point
3. Repeat [2] up to length 1
4. Open all...

By $k+1$ folding, we have $2^{k-1}+1$ mountains $\& 2^{k-1}-1$ valleys

CF: $\mathrm{O}\left(n^{0.69}\right)$ algorithm

[Th] Mountain folding problem can be solved in $\mathrm{O}\left(n^{0.69}\right)$ time [Proof]

$2^{k-1}-1$ valleys can be split into $k-1$ independent and uniform

 layers!!$$
\begin{aligned}
\therefore & f\left(2^{k}\right)=1+k+f\left(2^{k-2}\right)+f\left(2^{k-3}\right)+\cdots+f(4)+f(2)+f(1) \\
& f\left(2^{k-1}\right)=k+\quad f\left(2^{k-3}\right)+\cdots+f(4)+f(2)+f(1) \\
& f\left(2^{k}\right)-f\left(2^{k-1}\right)=f\left(2^{k-2}\right)+1 \\
& \left(f\left(2^{k}\right)+1\right)=\left(f\left(2^{k-1}\right)+1\right)+\left(f\left(2^{k-2}\right)+1\right)
\end{aligned}
$$

CF: $\mathrm{O}\left(n^{0.69}\right)$ algorithm

[Th] Mountain folding problem can be solved in $\mathrm{O}\left(n^{0.69}\right)$ time
[Proof]

Fibonacci sequence for k !

$$
\left(f\left(2^{k}\right)+1\right)=\left(f\left(2^{k-1}\right)+1\right)+\left(f\left(2^{k-2}\right)+1\right)
$$

[Fibonacci sequence]
$F_{0}=0, F_{1}=1, F_{i}=F_{i-1}+F_{i-2}(i>1)$ $0,1,1,2,3,5,8,13,21,34, \ldots$

$$
F_{i}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\left(\frac{1-\sqrt{5}}{2}\right)^{i}\right)
$$

$$
f\left(2^{0}\right)=1, f\left(2^{1}\right)=2, f\left(2^{2}\right)=4
$$

Initial state:

Thus

$$
\begin{array}{r}
\therefore f(n)=f\left(2^{k}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k+3}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+3}\right)-1 \\
=O\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\log n}\right)=O\left(n^{\log \frac{1+\sqrt{5}}{2}}\right)=O\left(n^{0.694242}\right)
\end{array}
$$

\square

Mountain folding in $\log ^{2} n$ foldings

Step 1； していね
1．Fold in half until it becomes of length［vvv］（ $\log n-2$ foldings）
2．Mountain fold 3 times and obtain［MMM］
3．Unfold；$v M M M v v v v v M M M v v v v v M M M v v v v v M M M v v v v v . .$.
Step 2；
1．Fold in half until all＂vvvvv＂s are piled up（log $n-3$ foldings）
2．Mountain fold 5 times［MMMMMMM］，and unfold
3．$v M v M M M M M M M v M v v v v v M v M M M M M M M v M v v v v v M v M$
Step 3；Repeat step 2 until just one＂vvvvv＂remains vMvMMMvMMMvMMMMMMMvMMMvMMMvMvvvvvMvM

Step 4；Mountain fold all irregular vs step by step．
－\＃iterations of Steps 2～3； $\log n$
－\＃valleys at step 4； $\log n$

```
#foldings in total~}(\operatorname{log}n\mp@subsup{)}{}{2
```


Lower bound of Unit FP

[Thm] Almost all patterns but $\mathrm{o}\left(2^{n}\right)$ exceptions require $\Omega(n / \log n)$ foldings.
[Proof] A simple counting argument:

- \# patterns with n creases $>2^{n} / 4=2^{n-2}$
- \# patterns after k foldings $<$

- We cannot fold most patterns after at most k foldings if
- Letting

$$
\sum_{i=0}^{k}(2 n(n+1))^{i} \leq(2 n(n+1)+1)^{k}<2^{n-2}
$$

$$
n \geq 2, k=O\left(\frac{n}{\log n}\right) \text { we have } \quad(2 n(n+1)+1)^{k}=o\left(2^{n}\right)
$$

Any pattern can be folded in $c n / \log n$ foldings

- Split into chunks of size b;

1. Each chunk is small and easy to fold
2. \#kinds of different b s are not so big

Main alg.
For each possible b

1. pile the chunks of pattern b and mountain fold them
2. fix the reverse chunks
3. fix the boundaries

- Open Problems

- Pleat foldings
- Make upper bound $\mathrm{O}\left(\log ^{2} n\right)$ and lower bound $\Omega\left(\log ^{2} n / \underline{\log \log n}\right)$ closer
- "Almost all patterns are difficult", but...
- No explicit M/V pattern that requires $(c n / \log n)$ foldings
- When "unfolding cost" is counted in...
- Minimize \#foldings + \#unfoldings
- Extension to 2 dimensional and general intervals

