

Computational Origami

Ryuhei Uehara

Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science

uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Today's Topic

5. Time Complexity

- "Folding complexity"
 - Theoretically, the world fastest algorithm for pleat folding
- We can use some techniques in TCS.
 - Recursive analysis and Fibonacci sequence
 - Lower bound by counting method

6. Space Complexity (?)

- Stamp Folding Problem
- Minimization of Crease width
 - NP-complete problem, FPT algorithm

7. Undecidable Origami Problem

Diagonalization and undecidability

J. Cardinal, E. D. Demaine, M. L. Demaine, S. Imahori, T. Ito, M. Kiyomi, S. Langerman, R. Uehara, and T. Uno: Algorithmic Folding Complexity, *Graphs and Combinatorics*, Vol. 27, pp. 341-351, 2011.

steam

Fold and...

http://km-sewing.seesaa.net/article

Repeating of mountain and valley foldings

Basic operation in some origami

Many applications

Pleat folding (in 1D)

- We have to fold at least $\log n$ times to make n creases
- More efficient ways…?
- General Mountain/Valley pattern?

- proposed at Open Problem Session on CCCG 2008 by R. Uehara.
- Many people get together with some ideas.

Complexity of Pleat Paper has 0 thickness

Model:

[Main Motivation] Do we have to make n foldings to make a pleat folding with *n* creases??

- The answer is "No"!
 - \square Any pattern can be made by $\lfloor n/2 \rfloor + \lceil \log n \rceil$ foldings
- 2. Can we make a pleat folding in o(n) foldings?
 - Yes!! ...it can be folded in $O(\log^2 n)$ foldings.
- 3. Lower bound; $\log n$
 - (We stated $\Omega(\log^2 n/\log\log n)$ lower bound for pleat folding!!)

Complexity of Pleat Folding

[Next Motivation] What about general pleat folding problem for a given M/V pattern of length n?

- \square Any pattern can be made by $\lfloor n/2 \rfloor + \lceil \log n \rceil$ foldings
- 1. Upper bound: Any M/V pattern can be folded by $(4+\varepsilon)\frac{n}{\log n} + o\left(\frac{n}{\log n}\right)$ foldings
- 2. Lower bound: Almost all mountain/valley patterns require $\frac{n}{3 + \log n}$ foldings

[Note] Ordinary pleat folding is exceptionally easy pattern!

Difficulty/Interest come from two kinds of *Parities*:

- "Face/back" determined by layers
- Stackable points having the same parity

Output: Well-creased paper according to s at regular intervals.

Basic operations

- 1. Flat {mountain/valley} fold {all/some} papers at an integer point (= simple folding)
- Unfold {all/rewind/any} crease points (= reverse of simple foldings)

<u>Rules</u>

- Each crease point <u>remembers the last folded direction</u>
- Paper is rigid except those crease points

Goal: Minimize the number of folding operations

Note: We ignore the cost of unfoldings

TE OF OLOGY

Upper bound of Unit FP (1)

- \blacksquare Any pattern can be made by $\lfloor n/2 \rfloor + \lceil \log n \rceil$ foldings
- 1. M/V fold at center point according to the assignment
- 2. Check the center point of the folded paper, and count the number of Ms and Vs (we have to take care that odd depth papers are reversed)
- 3. M/V fold at center point taking majority
- 4. Repeat steps 2 and 3
- 5. Unfold all (cf. on any model)
- 6. Fix all incorrect crease points one by one

Steps 1~4 require $\log n$ and step 6 requires n/2 foldings

Upper bound of Pleat Folding(1)

[Observation]

If f(n) foldings achieve n mountain foldings, n pleat foldings can be achieved by 2 f(n/2) foldings.

The following strategy works;

- Make f(n/2) mountain foldings at odd points;
- Reverse the paper;
- Make f(n/2) mountain foldings at even points.

We will consider the "mountain folding problem"

CF: $O(n^{0.69})$ algorithm

[Th] Mountain folding problem can be solved in $O(n^{0.69})$ time

[Proof] Let $n=2^k$, and use the following algorithm;

- 1. Fold the leftmost point to make length 2^k -1
- 2. Fold in half at the central point
- 2. Repeat [2] up to length 1
- 4. Open all...

By k+1 folding, we have $2^{k-1}+1$ mountains & $2^{k-1}-1$ valleys

CF: $O(n^{0.69})$ algorithm

[Th] Mountain folding problem can be solved in $O(n^{0.69})$ time [Proof]

2^{k-1} -1 valleys can be split into k-1 independent and uniform layers!!

$$f(2^{k}) = 1 + k + f(2^{k-2}) + f(2^{k-3}) + \dots + f(4) + f(2) + f(1)$$

$$f(2^{k-1}) = k + f(2^{k-3}) + \dots + f(4) + f(2) + f(1)$$

$$f(2^{k}) - f(2^{k-1}) = f(2^{k-2}) + 1$$

$$f(2^{k}) + 1) = (f(2^{k-1}) + 1) + (f(2^{k-2}) + 1)$$
Fibonacci section is a section of the property of

Fibonacci sequence for k!

CF: $O(n^{0.69})$ algorithm

[Th] Mountain folding problem can be solved in $O(n^{0.69})$ time

[Proof]

$(f(2^k)+1) = (f(2^{k-1})+1)+(f(2^{k-2})+1)$

Initial state:

$$f(2^{0}) = 1, f(2^{1}) = 2, f(2^{2}) = 4$$
Thus
$$f(2^{k}) + 1 = F_{k+3}$$

$$F_0$$
=0, F_1 =1, F_i = F_{i-1} + F_{i-2} (i >1) 0,1,1,2,3,5,8,13,21,34,...

$$F_i = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^i - \left(\frac{1 - \sqrt{5}}{2} \right)^i \right)$$

$$f(n) = f(2^{k}) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+3} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+3} \right) - 1$$

$$= O\left(\left(\frac{1 + \sqrt{5}}{2} \right)^{\log n} \right) = O\left(n^{\log \frac{1 + \sqrt{5}}{2}} \right) = O(n^{0.694242})$$

Mountain folding in log² n foldings

Step 1;

- Fold in half until it becomes of length [vvv] (log n-2 foldings)
- 2. Mountain fold 3 times and obtain [MMM]
- 3. Unfold; vMMMvvvvvMMMvvvvvMMMvvvvvMMMvvvvv...

Step 2;

[MvvvvvM]

- 1. Fold in half until all "vvvvv"s are piled up (log n-3 foldings)
- 2. Mountain fold 5 times [MMMMMMMM], and unfold
- 3. **VMVMMMMMMMVVVVVMVMMMMMMMMVMVVVVVMVM**

Step 3; Repeat step 2 until just one "vvvvv" remains

vMvMMMvMMMMMMMMMMMMMMMMMMMMVMVvvvvMvM

Step 4; Mountain fold all irregular vs step by step.

- #iterations of Steps 2 $^{\sim}$ 3; $\log n$
- #valleys at step 4; $\log n$

#foldings in total** $(\log n)^2$

Lower bound of Unit FP

[Thm] Almost all patterns but $o(2^n)$ exceptions require $\Omega(n/\log n)$ foldings.

{surface/reverse} × {front/back}

[Proof] A simple counting argument:

- # patterns with n creases $> 2^n/4 = 2^{n-2}$
- # patterns after k foldings <

$$(2 \times n) \times (n+1) \times (2 \times n) \times (n+1) \times \dots \times (n+1) \times (2 \times n)$$
Position Possible unfoldings $<(2n(n+1))^k$

• We cannot fold most patterns after at most k foldings if

$$\sum_{i=0}^{k} (2n(n+1))^{i} \le (2n(n+1)+1)^{k} < 2^{n-2}$$

$$n \ge 2, k = O\left(\frac{n}{\log n}\right)$$
 we have $(2n(n+1)+1)^k = o(2^n)$

Any pattern can be folded in $cn/\log n$

foldings

Select suitable *b* depending on *n*.

Prelim.

- Split into chunks of size b;
 - 1. Each chunk is small and easy to fold
 - 2 . #kinds of different bs are not so big

Main alg.

- For each possible b
 - 1. pile the chunks of pattern b and mountain fold them
 - 2. fix the reverse chunks
 - 3. fix the boundaries

Open Problems

- Pleat foldings
 - Make upper bound $O(\log^2 n)$ and lower bound $O(\log^2 n / \log \log n)$ closer
- "Almost all patterns are difficult", but...
 - No explicit M/V pattern that requires $(cn/\log n)$ foldings
- When "unfolding cost" is counted in...
 - Minimize #foldings + #unfoldings
- Extension to 2 dimensional and general intervals