

Computational Origami

Ryuhei Uehara
Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Today's Topic

5. Time Complexity

- "Folding complexity"
- Theoretically, the world fastest algorithm for pleat folding
- We can use some techniques in TCS.
- Recursive analysis and Fibonacci sequence
- Lower bound by counting method

6. Space Complexity (?)

- Stamp Folding Problem
- Minimization of Crease width
- NP-complete problem, FPT algorithm

7. Undecidable Origami Problem

- Diagonalization and undecidability тй

Stamp Folding Problem

Reference:
Ryuhei Uehara, Stamp foldings with a given mountain-valley assignment in ORIGAMI5, pp. 585-597, CRC Press, 2011.

- Pleat folding is...

Efficient Pleat Folding [Cardinal, Demaine, Demaine, Imahori,
Langerman, Uehara 2009]

- Can fold n-fold $M /$ V pleat
in $O\left(\lg ^{1+\sqrt{2}} n\right) \approx O\left(\lg ^{2.414} n\right)$ simple folds

Quite important!!

- Alternating foldings of Mountain and Valley
- Basic tool of Origami
- Many applications
>Extension to General Patterns and consider its complexity...

- Complexity of folding

- From the viewpoint of Computer Science
- Two resources of a computation model;

1. time
 2. space
 Crease width of a paper $=$
 - Two resources of Origami model?

 the number of papers between two hinged papers1. time...the number of foldings (operations)

- J. Cardinal, E. D. Demaine, M. L. Demaine, S. Imahori, T. Ito, M. Kiyomi, S. Langerman, R. Uehara, and T. Uno: Algorithmic Folding Complexity, Graphs and Combinatorics, accepted, 2010.

2. space...???

It is better to have less stretch at each crease point

New problem

Crease width minimization problem
Input: Paper of length $n+1$ and $s \in\{\mathrm{M}, \mathrm{V}\}^{n}$
Output: folded paper according to s
Goal: Find a good folded state with small crease width

- At each crease, the number of papers between the papers hinged at the crease is crease width.
- Two minimization problems;
- minimize maximum
- minimize total (=average)

It seems simple,
... so easy??
2020/01/29
1628E: Information Processing Theory

New problem

- Simple non-trivial example Input: MMVMMVMVVVV

The number of feasible folded states : 100
Goal: Find a good folded state with small crease width

- The unique solution having min. max. value 3
[5|4|3|6|7|1|2|8|10|12|11|9]

- The unique solution having min. total value 11 [5|4|3|1|2|6|7|8|10|12|11|9]

New problem

- Minimization problem for crease width

Input: Paper of length $n+1$ and $s \in\{\mathrm{M}, \mathrm{V}\}^{n}$
Output: folded paper according to s
Goal: Find a good folded state with small crease width

- Two minimization problems; max/total(average)
- A few facts;
- a pattern has a unique folded state iff it is pleats
- solutions of \{min max\} and \{min total\} are different depending on a crease pattern.
- there is a pattern having exponential combinations

$$
M \vee M V M V M V M V \mathbb{M} \mathbb{M} V M V M V M V M V M
$$

Minimization of crease width

- Open problem: (Solved later...)
- Tractable/Intractable?
- NP-hard?
- Poly-time solvable by Dynamic Programming?

It is NP-hard in general for min-max, and still open for total. If total is k, we find a fixed parameter tractable algorithm for k.

- Then, exhaust search technique, that produces all possible folding ways, works?

average?

exponential pattern

Average case...

The number of folding ways for a random pattern

- $\Theta\left(1.65^{n}\right)$ by experiments
- $\Omega\left(1.53^{n}\right)$ and $\mathrm{O}\left(2^{n}\right)$ by theoretical lower/upper bounds
... so a naïve program runs veeeerrrrrry slow.

This problem is known as a stamp folding problem, which is a classic open problem, and I accidentally improved the lower bound ()

Stamp folding problem

Average number of folding ways for a random pattern $=f(n) / 2^{n}$, where
$f(n)=$ \# of folding ways (or folded states) of a paper of length $n+1$ (summation for all possible patterns)

- I give some bounds of $f(n)$:
- "The On-Line Encyclopedia of Integer Sequences" tells us up to $n=28$ (by enumeration); $f(n) \sim \Theta\left(3.3^{n}\right)$.
- I have upper/lower bounds;
- upper bound: $f(n)=\mathrm{O}\left(4^{n}\right)$
- lower bound: $f(n)=\Omega\left(3.07^{n}\right)$

You should know OEIS

Stamp folding problem

The upper bound $\mathrm{O}\left(4^{n}\right)$ comes from the Catalan number.
[Proof] If the paper of length $n+1$ is folded, the crease points should be nested.

Stamp Folding Problem

Lower bound
[Theorem] Its lower bound is $\Omega\left(3.07^{n}\right)$.
[Proof] We consider "folding of the last $k+1$ unit papers"; $k+1$

We let

- $f(n)$: the number of folding ways of length $n+1$
- $g(k)$: the number of folding ways of length $k+1$ s.t. the leftmost endpoint is not covered
Then, we have

$$
f(n) \geq(g(k))^{\frac{n}{k-1}}=\left(g(k)^{1 /(k-1)}\right)^{n}
$$

Stamp Folding Problem

- Lower bound
[Theorem] Its lower bound is $\Omega\left(3.07^{n}\right)$.
[Proof] We consider "folding of the last $k+1$ unit papers"; $g(k)$: the number of folding ways of length $k+1$ s.t. the leftmost endpoint is not covered is equal to "the number of ways a semi-infinite directed curve can cross a straight line k times", A000682 in "The On-Line Encyclopedia of Integer Sequences". From that site, we have $g(43)=830776205506531894760$. Thus, by

$$
f(n) \geq(g(k))^{\frac{n}{k-1}}=\left(g(k)^{1 /(k-1)}\right)^{n}
$$

we have the lower bound.

Open problem and Future work
Minimization of crease width is basically settled;

- Erik D. Demaine, David Eppstein, Adam Hesterberg, Hiro Ito, Anna Lubiw, Ryuhei Uehara and Yushi Uno: Folding a Paper Strip to Minimize Thickness, WALCOM 2015, Lecture Notes in Computer Science Vol. 8973, pp. 113-124, 2015/02/262015/02/28, Dhaka, Bangladesh.
- Takuya Umesato, Toshiki Saitoh, Ryuhei Uehara, Hiro Ito, and Yoshio Okamoto: Complexity of the stamp folding problem, Theoretical Computer Science, Vol. 497, pp. 13-19, 2012.
- Some unsettled problems;
- Minimization of crease width for "total" model

For stamp folding problem;

- What is the most complex pattern of M / V that has the most feasible folded states?

Extension of Stamp Folding

2 dimensional \rightarrow Map Folding Problem
Input: 2 dimensional (orthogonal) M/V pattern
Output: Does it have folded state of size 1×1 ?

- The complexity of map of size $m \times n$ is famous open problem
- For map of size $2 \times n, O\left(n^{9}\right)$ time algorithm was proposed, but...
- Difficult example;

