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Polygons Folding to Plural Incongruent Orthogonal Boxes

Jun Mitani∗†and Ryuhei Uehara‡

Abstract

We investigate the problem of finding orthogonal poly-
gons that fold to plural incongruent orthogonal boxes.
There are two known polygons that fold to produce two
incongruent orthogonal boxes. In this paper, we show
that there are infinite such polygons. We also show
that there exists a tile that produces two incongruent
orthogonal boxes.

1 Introduction

Polygons that can fold to a convex polyhedron have
been investigated since Lubiw and O’Rourke posed the
problem in 1996 [5]. Recently, Demaine and O’Rourke
published a book about geometric folding algorithms
that includes many results about such polygons [3,
Chapter 25]. One of the many interesting problems in
this area is that whether there exists a polygon that
folds to plural incongruent orthogonal boxes. Biedl et
al. answered “yes” by finding two polygons that fold to
two incongruent orthogonal boxes [2] (see also [3, Figure
25.53]). However, are these two polygons exceptional?
We show that the answer is “no.”

In this paper, we first report that there are more than
twenty five thousands such polygons of several sizes.
These polygons are obtained by two randomized algo-
rithms. The first algorithm repeatedly produces many
nets of orthogonal boxes at random, and matches them
in a huge hash table. If two or more nets of distinct
boxes coincide, we have a desired polygon. The second
algorithm first holds two or more distinct orthogonal
boxes with the same surface area, and it randomly cuts
them open into a same net simultaneously. If the pro-
cess succeeds to the last step, we have a desired polygon.
The correctness of the algorithms are based on some
nontrivial properties of these nets of convex orthogonal
boxes.

Some of those polygons can be extended to general
size. Using this fact, we also show that there exist an
infinite number of polygons that can fold to two or-
thogonal boxes. Moreover, we show that there exists a
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simple polygon that can fold to two orthogonal boxes,
and that tiles the plane. This pattern may be used to
produce two kinds of boxes of two different volumes on
demand without loss of material.

We also consider some general cases of the problem.
If we admit to congruent orthogonal boxes, we have a
smallest net that can fold to an orthogonal box of size
1×1×2 in three different ways. When we admit to gen-
eral polyhedra, which may be concave, a puzzle called
“Cubigami puzzle” gives us one of the smallest nets that
can fold to seven (i.e., all possible) orthogonal polyhe-
dra of size 14. We also show that there is a simple net
that folds to at least k orthogonal distinct polyhedra
for any positive integer k. That is, if we admit concave
polyhedra, we have nets that fold to arbitrary many
orthogonal polyhedra.

2 Preliminaries

In this paper, we concentrate on orthogonal polygons
that consist of unit squares. For a positive integer S, we
denote by P (S) the set of three integers a, b, c with 0 <
a ≤ b ≤ c and ab + bc + ca = S, i.e., P (S) = {(a, b, c) |
ab + bc + ca = S}. Clearly, it is necessary to satisfy
|P (S)| ≥ k to have a polygon of size 2S that can fold to
k incongruent orthogonal boxes. For example, the two
known polygons in [2] correspond to P (11) = {(1, 1, 5),
(1, 2, 3)} and P (17) = {(1, 1, 8), (1, 2, 5)}. Similarly, we
have

P (11) ={(1, 1, 5), (1, 2, 3)}, P (15) = {(1, 1, 7), (1, 3, 3)},
P (17) ={(1, 1, 8), (1, 2, 5)}, P (19) = {(1, 1, 9), (1, 3, 4)},
P (23) ={(1, 1, 11), (1, 2, 7), (1, 3, 5)},
P (27) ={(1, 1, 13), (1, 3, 6), (3, 3, 3)},
P (29) ={(1, 1, 14), (1, 2, 9), (1, 4, 5)},
P (31) ={(1, 1, 15), (1, 3, 7), (2, 3, 5)},
P (32) ={(1, 2, 10), (2, 2, 7), (2, 4, 4)},
P (35) ={(1, 1, 17), (1, 2, 11), (1, 3, 8), (1, 5, 5)},
P (44) ={(1, 2, 14), (1, 4, 8), (2, 2, 10), (2, 4, 6)},
P (45) ={(1, 1, 22), (2, 5, 5), (3, 3, 6)},
P (47) ={(1, 1, 23), (1, 2, 15), (1, 3, 11), (1, 5, 7), (3, 4, 5)},
P (56) ={(1, 2, 18), (2, 2, 13), (2, 3, 10), (2, 4, 8), (4, 4, 5)},
P (59) ={(1, 1, 29), (1, 2, 19), (1, 3, 14), (1, 4, 11), (1, 5, 9),

(2, 5, 7)},
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P (68) ={(1, 2, 22), (2, 2, 16), (2, 4, 10), (2, 6, 7), (3, 4, 8)},
P (75) ={(1, 1, 37), (1, 3, 18), (3, 3, 11), (3, 4, 9), (5, 5, 5)},

and so on.
Let B be an orthogonal box of size a × b × c. Then

there are six faces that consist of two rectangles of size
a × b, b × c, and c × a, respectively. We regard each
rectangle as a set of unit squares. That is, B consists
of 2(ab + bc + ca) unit squares. Then, for B, we define
a dual graph G(B) = (V,E) of B as follows; V is the
set of 2(ab + bc + ca) unit squares, and E contains an
edge {u, v} iff two unit squares u and v share an edge
on B, or they are incident on B. It is easy to see that
G(B) is a 4-regular graph of 2(ab+bc+ca) vertices, and
hence |E| = 4(ab+ bc+ ca). Then we have the following
observation:

Observation 1 Let T be a spanning tree of G(B) for
some B. For every edge {u, v} not in T , we cut the
edge shared by two unit squares u and v on B. Then,
we obtain a net P of B.

That is, we can make a net P of B for any orthogonal
box B. In the case, we say that the spanning tree T
produces P . However, spanning trees themselves are
not good to represent nets of a box. Suppose that a
polygon P can fold to an orthogonal box B. In general,
P contains a rectangle R of size x × y with x > 1 and
y > 1. Then, no spanning tree T generates P since T
forces unnecessary cuts of inside of R. The following
lemma patches this problem.
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Figure 1:
Gluing.
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Figure 2: A half of a nonsimple polygon
folding to a box.

Lemma 1 Let P be a polygon that can fold to a box
B. If P has a cut between two unit squares A and D
in Figure 1, we glue them and obtain P ′. Then P ′ also
can fold to B.

Proof. Since B is a convex orthogonal box, it fol-
lows. ¤

Repeating the gluing in Lemma 1, we obtain a polygon
P that has no two consecutive identical edges, which
means P contains no unnecessary cuts. From the view-
point of programming, it is sufficient to represent each
polygon P by a usual 0/1 matrix in a natural way, and

ignore such cuts. Hence, hereafter, we assume that poly-
gons have no two consecutive identical edges.

Let P be a polygon that can fold to a box B (or
convex orthogonal polyhedron). We say that P overlaps
if P contains two unit squares s1 and s2 such that s1

and s2 overlap when we lay out P . We also say that P
touches if P contains two unit squares s1 and s2 such
that though s1 and s2 do not share an edge on B, so
are they when we lay out P . P is said to be simple if P
neither overlaps nor touches. One may think that any
polygon that can fold to a box is simple. However, it is
not the case.

Lemma 2 Let B be an orthogonal box and P a polygon
that can fold to B. Then, P is not necessarily simple.

Proof. For B of size 1 × 2 × 3, we make a (half of)
polygon P as in Figure 2. Then, clearly, P is a polygon
that can fold to B, but P overlaps. If we cut between d
and e, instead of b and e, P touches. ¤

To characterize simple polygon P that can fold to
B, we introduce some notations. We imagine that a
polygon P is represented by a usual 0/1 matrix in a
natural way. For a polygon P , the silhouette P ′ of P
is given by the 0/1 matrix after laying out of P . Then,
a boundary edge of P ′ is an edge between 0-pixel and
1-pixel. Given any boundary edge e of P ′, it is easy
to follow the whole boundary containing e. In general,
a polygon P ′ has a single external boundary and any
number of internal boundaries delimiting internal holes.
In this paper, we assume 8-connectivity. That is, the
fourth polygon in Figure 4 contains no hole, and the
silhouette of P in Figure 2 contains one hole.

Theorem 3 Let B be an orthogonal box and P a poly-
gon that can fold to B. By Lemma 1, we assume that
P contains no unnecessary cuts. We lay out P on the
plane, and let P ′ be a silhouette of P . Then P is simple
if and only if P ′ does not contain a hole.

Proof. We first assume that P touches and show that
P ′ has a hole. To derive a contradiction, we suppose P ′

does not have a hole. Let e1 be an external boundary
edge of P ′. Then P has a boundary e1, e2, . . . , ek such
that they appear in this order. Since P touches, there
are two edges ei and ej such that they are placed at
the same place when we lay out P , and hence they do
not appear on the external boundary of P ′. It is easy
to see that there are no four indices i < i′ < j < j′

such that ei and ej are placed at the same place, ei′

and ej′ are placed at the same place, and these places
are distinct. Hence, without loss of generality, we can
assume that i < j and they are minimal; that is, there
is no edge ei′ with i < i′ < j such that P touches at
ei′ . Then we have i + 1 < j by Lemma 1. Moreover,
we can assume that there is no external boundary edge
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between ei and ej . (That is, external boundary edges
are in e1, . . . , ei−1 and ej+1, . . . , ek.) Now we consider
two edges ei+1 and ej−1 (Figure 3). Since ei and ej are

ej

ej-1

ei+1

ei

s

ej

ej-1

ei+1
ei

s

Figure 3: Touching edges ei and ej .

minimal edges with respect to touch, ei+1 and ej−1 are
placed at the different places. Since they are edges of
unit squares, we have three possible cases. In Figure 3,
the first two cases are illustrated. The third case is
symmetric to the first one, and hence omitted. Now we
assume that P ′ has no hole. Hence, in any case, we
have a unit square s incident to ei+1 but not incident
to ei as depicted in Figure 3. Let e be the edge of s
placed on the same place of ei+1. By the minimality
of ei and ej , e is not between ei and ej . Hence e < ei

or e > ej . However, this contradicts that e1, e2, . . . , ek

be edges appearing on the boundary of P in this order;
if e < ei or e > ej , the boundary of P is twisted and
hence P is disconnected. Thus there is no square s at
this place, and hence P ′ has a hole.

When P overlaps, we remove duplicate regions that
occur when we lay out P , and reduce P to P ′′ that does
not overlap but touches. Then we can use the same
argument again for P ′′ and have the theorem. ¤

3 Randomized Algorithms

In this section, we give two randomized algorithms and
their experimental results.

3.1 Random unfolding based on spanning tree

The first algorithm randomly generates the nets of
boxes of a same size. It maintains a huge hush table
and matches the nets. Precisely, it is described below:

Input : S with |P (S)| > 1;
Output: Polygons of size 2S that fold to plural

boxes;
clear a hash table H;1

while true do2

choose a type t = (a, b, c) in P (S) at random;3

generate a spanning tree T of G(B) for an4

orthogonal box B of size a × b × c at random;
represent a polygon P corresponding to T by a5

0/1 matrix;
if (t′, P ) is in H with t 6= t′ then output P6

(and all associate types);
if P is not in H then add (t, P ) into H;7

end8

We aim at finding polygons shared by two or more
types. Hence, the algorithm ignores weak points men-
tioned in Preliminaries. More precisely, the algorithm
has the following flaws; (1) it does not generate the poly-
gons uniformly at random, and (2) some polygons may
not be simple.

Fortunately, the flaws cause few errors through our
experiments; in fact, among 2165 outputs, the algo-
rithm produced 2139 simple polygons, which are solu-
tions, and only 26 non-simple polygons, which are not
solutions. We note that from the algorithmic point of
view, it is easy to avoid the flaw (2) in linear time when
the algorithm outputs each solution. By Theorem 3, we
can avoid the flaw (2) by finding a hole of the silhouette
of P , and that can be done in linear time (for example,
Asano and Tanaka propose a simple linear time algo-
rithm with constant working space [1]).

3.1.1 Experimental results

Table 1: Experimental results (1)
2S(S) |P (S)| ∼RG(×107) Sols Errs
22(11) 2 6.7 541 15
30(15) 2 18.6 72 1
34(17) 2 28.4 708 0
38(19) 2 30.4 41 0
46(23) 3 191.0 660 8
54(27) 3 126.7 3 0
58(29) 3 89.3 37 0
62(31) 3 82.4 5 0
64(32) 3 204.8 56 2
70(35) 4 91.3 14 0
88(44) 4 217.0 2 0
90(45) 3 34.6 0 0
94(47) 5 51.3 0 0

112(56) 5 36.0 0 0
118(59) 6 35.5 0 0

Total - - 2139 26
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Table 2: Experimental results (2)
2S(S) Types Sols Errs
46(23) (1,1,11), (1,3,5) 568 3

(1,2,7), (1,3,5) 92 5
54(27) (1,1,13), (3,3,3) 2 0

(1,3,6), (3,3,3) 1 0
58(29) (1,1,14), (1,4,5) 37 0
62(31) (1,3,7), (2,3,5) 5 0
64(32) (1,2,10), (2,2,7) 50 2

(2,2,7), (2,4,4) 6 0
70(35) (1,1,17), (1,5,5) 3 0

(1,2,11), (1,3,8) 11 0
88(44) (2,2,10), (1,4,8) 2 0

We first ran the algorithm on a laptop (IBM
ThinkPad X40: 1 Processor with 1.5GB Memory). This
generated approximately 3 × 106 polygons in 1 hour,
and obtained around 100 solutions for P (11). To exper-
iment more efficiently, we used a supercomputer (SGI
Altix 4700: 96 Processors with 2305GB Memory). We
used an implement of the Mersenne Twister algorithm1

to generate random numbers. Our results are summa-
rized in Tables 1 and 2. In Table 1, “2S(S)” denotes the
(half) size of a polygon, “|P (S)|” denotes the number of
distinct box types, “RG” denotes the number of random
generations, “Sols” denotes the number of simple poly-
gons that can fold to two incongruent orthogonal boxes,
and “Errs” denotes the number of non simple polygons.
For example, for P (11), the algorithm generates around
6.7 × 107 nets of boxes of size (1, 1, 5) or (1, 2, 3), and
we have 556 outputs. Among them, 15 polygons have
a hole, and hence we have 541 distinct simple polygons
that can fold to boxes of size (1, 1, 5) and (1, 2, 3). In
total, we have 2139 distinct simple polygons that can
fold to two incongruent orthogonal boxes. For each S
with |P (S)| > 2, more details can be found in Table 2.
All cases are checked in parallel on the machine, and the
computations take from a few days to a few weeks (we
stopped execution when each process requires too much
memory). Some solutions are illustrated in Figure 4,
and all solutions can be found at http://www.jaist.
ac.jp/~uehara/etc/origami/nets/index-e.html.

3.2 Random simultaneous unfolding

The first algorithm generates each spanning tree of a
net uniformly at random. This means that a “fat” net,
which contains a large rectangle, appears with higher
probability than a “thin” net, which consists of small
rectangles. Thus we developed another algorithm which
was based on a different idea. The second algorithm
keeps plural boxes, say B1 and B2, of a same size with

1http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.

html
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Figure 4: A part of solutions.
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their correspondence of unit squares. First, the algo-
rithm picks up two unit squares s1

1 on B1 and s1
2 on

B2 uniformly at random. These squares s1
1 and s1

2 have
the “direction”, which is also determined uniformly at
random. Now the algorithm regards them as the same
unit square on the resultant polygon P , which will be
extended to a common net of B1 and B2. The algorithm
checks each external boundary edge e of the current P .
The neighbor square s of P at the edge e corresponds
to two unit squares s′ on B1 and s′′ on B2, respectively.
If both of them are not yet in P , the edge is extensi-
ble. The algorithm then picks up an extensible edge
of P uniformly at random, and add the square s to P .
Repeating this process, the algorithm meets one of two
possible cases. First, P contains all squares. Then P
is a common net of B1 and B2. Second, P has no ex-
tensible edge before the first case. This case is fail to
find a solution. Then the algorithm halts, and we will
start it again. Precisely, it is described below for find-
ing a polygon that can fold to two incongruent boxes.

Input : S with |P (S)| > 1;
Output: Polygon of size 2S that folds to two

boxes;
choose desired types t1 = (a1, b1, c1) and1

t2 = (a2, b2, c2) in P (S);
pick up two start unit squares s1

1 on the box B1 of2

type t1 and s1
2 on the box B2 of type t2 uniformly

at random;
set polygon P to contain a unit square3

corresponding to both of s1
1 on B1 and s1

2 on B2;
repeat4

check each external boundary edge e of P if e is5

extensible on B1 and B2;
if no edge is extensible then output “fail to6

find” and halt;
pick up an extensible edge e of P uniformly at7

random;
attach one unit square s to P at e;8

until all squares on B1 and B2 are attached to P ;9

output P .10

It is easy to extend the algorithm to handle with three
or more boxes. This algorithm always outputs a correct
answer.

3.2.1 Experimental results

The second algorithm was run on a desktop (Intel Xeon
CPU 5110 1.60GHz Windows Vista). For each pair of
two orthogonal boxes of the same size, the algorithm
tried to find common nets 1 × 107 times. The results
are summarized in Table 3. In Table 3, “2S(S)” denotes
the (half) size of a polygon, “Types” denotes the dis-
tinct box types, “Time” denotes the computation time
of 1 × 107 trials, “Sols” denotes the number of simple
polygons that can fold to two given orthogonal boxes,

Table 3: Experimental results (3)
2S(S) Types Time(sec) Sols Errs
22(11) (1,1,5),(1,2,3) 194 6495 29
30(15) (1,1,7),(1,3,3) 290 1142 0
34(17) (1,1,8),(1,2,5) 371 11291 2
38(19) (1,1,9),(1,3,4) 402 2334 0
54(27) (1,1,13),(3,3,3) 659 1735 1
54(27) (1,1,13),(1,3,6) 648 1806 1
54(27) (1,3,6),(3,3,3) 878 387 3
88(44) (1,4,8),(2,2,10) 1740 218 0
88(44) (2,2,10),(2,4,6) 1782 86 1
Total - 6964 25494 37

and “Errs” denotes the number of non simple polygons.
For example, for P (17), during 1× 107 independent tri-
als, the algorithm found 11291 simple polygons and 2
non-simple polygons that can fold to two boxes of sizes
1 × 1 × 8 and 1 × 2 × 5 in 371 seconds. In total, we
have 25494 distinct simple polygons that can fold to
two incongruent orthogonal boxes.

For P (11), a graph of the number of trials and the
number of solutions is depicted as follows:
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According to the graph, the number of nets that can
fold to boxes of sizes 1 × 1 × 5 and 1 × 2 × 3 seems to
be around 7 × 103.

Notes: We note that some values of S are related; for
example, the solutions for P (11) give the solutions for
P (44) by dividing a unit square into four unit squares.
For example, by the first algorithm, although we have
541 solutions for P (11) after 6.7 × 107 random genera-
tions (it takes 3 days), we have only two solutions for
P (44) after 217.0 × 107 random generations (it takes
1 month). After these experiments, we still have no
polygon that can fold to three (or more) incongruent
orthogonal boxes.
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4 Special patterns

In this section, we show some special patterns found in
the solutions.

Tiling: The discovered polygonal patterns reminded us
of tiling. Indeed, there exists a simple polygon that can
fold to two incongruent orthogonal boxes and it forms
a tiling. The polygon in Figure 5 can fold to two boxes
of size 1 × 1 × 8 and 1 × 2 × 5, and it tiles the plane.

+ makes 1x2x5
+ makes 1x1x8

Figure 5: Polygon folding to two boxes of 1× 1× 8 and
1 × 2 × 5, and tiling the plane.

A polygon is called a double packable solid if it tiles
the plane and a polyhedron from the polygon fills the
space [4, Section 3.5.2]. It is easy to see that every
orthogonal box fills the space. Therefore, the polygon
in Figure 5 forms two double packable solids!

Disjoint crease patterns: There exists a simple poly-
gon that can fold to two incongruent orthogonal boxes
and that foldings to two boxes are disjoint; the last poly-
gon in Figure 4 satisfies the property.

Cross-free patterns: There exists a simple polygon
that can fold to two incongruent orthogonal boxes and
that foldings to two boxes are cross free. The second
last polygon in Figure 4 satisfies the property. We note
that the previously known results in [2] also satisfy the
property.

We have not checked if there exists a simple polygon
such that foldings are disjoint and cross free.

5 Infinite polygons

A natural question is whether or not there are infinite
distinct2 polygons that can fold to plural boxes? The
answer is “yes.” Some polygons obtained by the exper-
iments can be generalized. From two of them, we have
the following theorem.

2Precisely, distinct means gcd(a, b, c, a′, b′, c′) = 1 for two
boxes of size a × b × c and a′ × b′ × c′.

Theorem 4 For any positive integer k, there is a dis-
tinct polygon that can fold to two incongruent orthogonal
boxes of sizes (1) 1 × 1 × (6k + 2) and 1 × 5 × 2k, and
(2) 1 × 1 × (8k + 11) and 1 × 3 × (4k + 5).
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+ makes 1x1x(6k+2)
+ makes 1x5x2k

Figure 6: Polygon folding to two boxes of 1×1×(6k+2)
and 1 × 5 × 2k by stretch.
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+ makes 1x1x(8k+11)
+ makes 1x3x(4k+5)

Figure 7: Polygon folding to two boxes of 1×1×(8k+11)
and 1 × 3 × (4k + 5) by spiral.

Proof. The first one is obtained by stretching a poly-
gon. For any positive integer k, Figure 6 gives a polygon
that satisfies (1). The second one is obtained by a spiral
extension of a polygon. For any positive integer k, we
copy in the leftside polygon in Figure 7 and glue it to
the leftmost square (with overlapping at gray areas) and
repeat it k times. Then the polygon satisfies (2). ¤

Corollary 5 There exist an infinite of distinct polygons
that can fold to two incongruent orthogonal boxes.

6 Generalizations

Since |P (S)| = 1 for S < 11, there is no smaller net
than the solutions for P (11). If we admit to congruent
orthogonal boxes, we have smaller one. See Figure 8;
we can make three orthogonal congruent boxes in three
different ways (bold lines are cut lines). Each of all
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Figure 8: Three folding ways of a net

eleven distinct nets of a unit cube can fold to the unit
cube in a unique way. Thus the net in Figure 8 is a
smallest net that can fold to an orthogonal box in plural
ways.

Next we consider the net that can fold to plural in-
congruent orthogonal polyhedra which may be concave.
In this case, there is a net of size 18 which can fold
to seven different (and all possible) orthogonal polyhe-
dra. This is sold as the Cubigami puzzle, originated by
Miller and Knuth (Figures 9 and 10). This puzzle won

Figure 9: The Cubigami
puzzle.

Figure 10: Seven possible
polyhedra of Cubigami.

an Honorable Mention in the 2005 World Puzzle Con-
test (see http://www.puzzlepalace.com/resources/
t9/index.html for further details). The Cubigami is
not a simple net (we remind that Lemma 1 holds only for
convex polyhedra), but there are 68 simple nets which
can fold to seven orthogonal polyhedra according to the
results by Knuth. One of them is depicted in Figure 11,
which is found by our second algorithm after around
1 × 108 trials. These patterns are not smallest in this
context; extending the net in Figure 8, we can also ob-
tain a smallest net that can fold to plural orthogonal
polyhedra in three different ways; see Figure 12.

Now it is natural to ask if there exist nets that fold
to arbitrary many orthogonal polyhedra. We give an
affirmative answer.

Figure 11: Net folding to seven orthogonal polyhedra.
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Figure 12: Three folding ways of a net

Theorem 6 For any positive integer k, there exists a
simple net that folds to at least k orthogonal incongruent
polyhedra.

Proof. We use a polygon that fold to two boxes of size
1 × 1 × 8 and 1 × 2 × 5 in Figure 13(a). Two black

Lid

Hole

Pipe

(a) (b) (c)

(d)
(e)

Hole

Hole

Hole

Hole

Figure 13: Gadget for a chain of polyhedra.

squares in Figure 13(a) is called “lids” that are placed
at opposite sides on both boxes. On the polygon, we
replace two lids by two gadgets called “pipes” that con-
sist of gray squares in Figure 13(b-e). Two pipes on
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a polygon make two “holes” on both boxes at oppo-
site sides as Figure 13(c)(e). Using this gadget, we can
connect k′ polygons as follows; we prepare k′ gadgets
and join them by their pipes. At two endpoint gad-
gets, we use the lids instead of pipes. See Figure 14
for k′ = 3: It is easy to see that each gadget can fold

Figure 14: Polygon obtained by joining three gadgets.

to two boxes of size 1 × 1 × 8 or 1 × 2 × 5 indepen-
dently. Among 2k′

polyhedra, 2dk
′/2e polyhedra are

symmetric (with respect to reverse). Hence we have
(2k′ − 2dk

′/2e)/2 + 2dk
′/2e = 2k′−1 + 2dk

′/2e−1 incongru-
ent orthogonal polyhedra. (Hence Figure 14 gives us
a net of 4 + 2 = 6 incongruent orthogonal polyhedra.)
Thus, letting k′ large enough, we have the theorem. ¤

7 Concluding remarks

From the theoretical point of view, uniform ran-
dom generation and/or enumeration of all simple
nets for a given box of size a × b × c are inter-
esting problems. This is an extension work of one
done by Knuth (see http://www.puzzlepalace.com/
resources/t9/index.html for further details). How-
ever, those algorithms are not necessarily useful to find
polygons that can fold to plural incongruent orthogonal
boxes. Indeed we may have to search “similar” poly-
gons heuristically to find such polygons. It is an open
question if a polygon exists that can fold to three or
more orthogonal boxes. The authors conjecture “yes;”
through experience, there is a polygon that seems to be
“close” to the answer. The polygon in Figure 15 can
fold to two boxes of size 1 × 1 × 17 and 1 × 5 × 5 in
the similar ways in Figure 6. Moreover, it also can fold
to the box of size 1 × 3 × 8 with only two overlapping
squares (and hence with two holes); a and b overlap with
a′ and b′, respectively (with a cut between a and a′).
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Figure 15: A polygon folding to two boxes of 1×1×17,
1 × 5 × 5, and “close” to 1 × 3 × 8.
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