
Canonical Data Structure for Probe Interval Graphs

Ryuhei Uehara∗

2004/2/7

Abstract

The class of probe interval graphs is introduced to deal with the physical mapping and sequencing of
DNA as a generalization of interval graphs. The polynomial time recognition algorithms for the graph class
are known. However, the complexity of the graph isomorphism problem for the class is still unknown. In
this paper, extended MPQ-trees are proposed to represent the probe interval graphs. An extended MPQ-
tree is canonical and represents all possible permutations of the intervals. The extended MPQ-tree can be
constructed from a given probe interval graph in O(n2 +m) time. Thus we can solve the graph isomorphism
problem for the probe interval graphs in O(n2 + m) time. Using the tree, we can determine that any two
nonprobes are independent, overlapping, or their relation cannot be determined without an experiment.
Therefore, we can heuristically find the best nonprobe that would be probed in the next experiment. Also,
we can enumerate all possible affirmative interval graphs for given probe interval graph.
Keywords: Bioinformatics, graph isomorphism, probe interval graph.

1 Introduction

The class of interval graphs was introduced in the 1950’s by Hajös and Benzer independently. Since then
a number of interesting applications for interval graphs have been found including to model the topological
structure of the DNA molecule, scheduling, and others (see [8, 15, 5] for further details). The interval graph
model requires all overlap information. However, in many cases, only partial overlap data exist. The class of
probe interval graphs is introduced by Zhang in the assembly of contigs in physical mapping of DNA, which
is a problem arising in the sequencing of DNA (see [18, 20, 19, 15] for background). A probe interval graph is
obtained from an interval graph by designating a subset P of vertices as probes, and removing the edges between
pairs of vertices in the remaining set N of nonprobes. That is, on the model, only partial overlap information
(between a probe and the others) is given. A few efficient algorithms for the class are known; the recognition
algorithms [11, 14, 10], and an algorithm for finding a tree 7-spanner (see [4] for details). The recognition
algorithm in [11] also gives a data structure that represents all possible permutations of the intervals of a probe
interval graph.

A data structure called PQ-trees was developed by Booth and Lueker to represent all possible permutations
of the intervals of an interval graph [3]. Korte and Möhring simplified their algorithm by introducing MPQ-
trees [12]. An MPQ-tree is canonical; that is, given two interval graphs are isomorphic if and only if their
corresponding MPQ-trees are isomorphic. However, there are no canonical MPQ-trees for probe interval
graphs. In general, given probe interval graph, there are several affirmative interval graphs those are not
isomorphic, and their interval representations are consistent to the probe interval graph.

In this paper, we extend MPQ-trees to represent probe interval graphs. The extended MPQ-tree is
canonical for any probe interval graph, and the tree can be constructed in O(n2 + nm) time. Thus the graph
isomorphism problem for probe interval graphs can be solved in O(n2 + nm) time. From the theoretical point
of view, the complexity of the graph isomorphism of probe interval graphs was not known (see [17] for related
results and references). Thus the result improves the upper bound of the graph classes such that the graph
isomorphism problem can be solved in polynomial time.

From the practical point of view, the extended MPQ-tree is very informative, which is beneficial in the
Computational Biology community. The extendedMPQ-tree gives us the information between nonprobes; the

∗Natural Science Faculty, Komazawa University, Tokyo 154-8525, Japan. uehara@komazawa-u.ac.jp.

1

relation of two nonprobes is either (1) independent (they cannot overlap with each other), (2) overlapping, or
(3) not determined without experiments. Hence, to clarify the structure of the DNA sequence, we only have to
experiment on the nonprobes in the case (3). Moreover, given extendedMPQ-tree, we can find the nonprobe v
that has most nonprobes u such that v and u are in the case (3) in linear time. Therefore, we can heuristically
find the “best” nonprobe to fix the structure of the DNA sequence.

The extendedMPQ-tree also represents all possible permutations of the intervals of a probe interval graph
as in [11].

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V,E) is the set NG(v) = {u ∈ V |{u, v} ∈ E}, and the degree
of a vertex v is |NG(v)| and denoted by degG(v). For the vertex set U of V , we denote by NG(U) the set
{v ∈ V |v ∈ N(u) for some u ∈ U}. If no confusion can arise we will omit the index G. Given graph G = (V,E),
its cograph is defined by Ē = {{u, v}|u, v ∈ V and {u, v} 6∈ E}, and denoted by Ḡ = (V, Ē). A vertex set I is
independent set if G[I] contains no edges, and then the graph Ḡ[I] is said to be a clique.

For a given graph G = (V,E), a sequence of the vertices v0, v1, · · · , vl is a path, denoted by (v0, v1, · · · , vl),
if {vj , vj+1} ∈ E for each 0 ≤ j ≤ l − 1. The length of a path is the number of edges on the path. For two
vertices u and v, the distance of the vertices is the minimum length of the paths joining u and v. A cycle is a
path beginning and ending with the same vertex. An edge which joins two vertices of a cycle but is not itself
an edge of the cycle is a chord of that cycle. A graph is chordal if each cycle of length at least 4 has a chord.
Given graph G = (V,E), a vertex v ∈ V is simplicial in G if G[N(v)] is a clique in G. The following lemma is
a folklore:

Lemma 1 Given chordal graph, all simplicial vertices can be found in linear time.

Proof. It is well known that a graph G = (V,E) is chordal if and only if it is an intersection graph of subtrees
of a tree T (G). It can be assumed that the vertices of T (G) are the maximal cliques of G, and the subtrees Tv
for v ∈ V are defined by the occurrences of v in the maximal cliques of G. Such a tree T (G) is called a clique
tree of G, and can be found in linear time [9, 2, 7] (see [5, p. 7] for further details). In the clique tree T (G),
each vertex v is simplicial if and only if v appears exactly once in T (G). Thus we can find all simplicial vertex
in linear time.

The ordering (v1, · · · , vn) of the vertices of V is a perfect elimination ordering of G if the vertex vi is simplicial
in G[{vi, vi+1, · · · , vn}] for all i = 1, · · · , n. Then a graph is chordal if and only if it has a perfect elimination
ordering (see, e.g., [5, Section 1.2] for further details).

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if and only if there is a one-to-one mapping
φ : V → V ′ which satisfies {u, v} ∈ E if and only if {φ(u), φ(v)} ∈ E′ for every pair of vertices u and v. We
denote by G ∼ G′ if G is isomorphic to G′. The mapping φ is called an isomorphism from G to G′. Given
graphs G and G′, graph isomorphism problem is the problem to determine if G ∼ G′.

2.1 Interval graph representation

A graph (V,E) with V = {v1, v2, · · · , vn} is an interval graph if there is a set of intervals I = {Iv1 , Iv2 , · · · , Ivn}
such that {vi, vj} ∈ E if and only if Ivi ∩ Ivj 6= ∅ for each i and j with 1 ≤ i, j ≤ n. We call the set I of
intervals interval representation of the graph. For each interval I, we denote by R(I) and L(I) the right and
left endpoints of the interval, respectively (hence we have L(I) ≤ R(I) and I = [L(I), R(I)]).

A graph G = (V,E) is a probe interval graph if V can be partitioned into subsets P and N (corresponding
to the probes and nonprobes) and each v ∈ V can be assigned to an interval Iv such that {u, v} ∈ E if and only
if both Iu ∩ Iv 6= ∅ and at least one of u and v is in P . In this paper, we assume that P and N are given,
and then we denote by G = (P,N,E). By definition, N is an independent set, G[P] is an interval graph, and
G[P ∪ {v}] is also an interval graph for any v ∈ N . Let G = (P,N,E) be a probe interval graph. Let E+ be
a set of edges {t1, t2} with t1, t2 ∈ N such that there are two probes v1 and v2 in P such that {v1, t1} ∈ E,
{v1, t2} ∈ E, {v2, t1} ∈ E, {v2, t2} ∈ E, and {v1, v2} 6∈ E. Intuitively, nonprobes t1 and t2 are joined by an edge
in E+ if (1) there are two independent probes v1 and v2, and (2) both of v1 and v2 overlap t1 and t2. In the
case, we can know that intervals t1 and t2 have to overlap without experiment. Each edge in E+ is called an
enhanced edge, and the graph G+ := (P,N,E ∪E+) is said to be an enhanced probe interval graph. It is known

2

that a probe interval graph is weakly chordal [16], and an enhanced probe interval graph is chordal [18, 20]. For
further details and references can be found in [5, 15].

For given probe interval graph G, an interval graph G′ is said to be affirmative if and only if G′ gives
one possible interval representations for G. More precisely, given probe interval graph G = (P,N,E), an
interval graph G′ = (V,E′) is affirmative if and only if there is a partition of V into P and N such that
E = {{u, v}|{u, v} ∈ E′ and at least one of u and v is in P}. In general, for a probe interval graph G, there
are several non-isomorphic affirmative interval graphs. For given probe interval graph G = (P,N,E), the
affirmative interval graph G′ is also said to be affirmative to the corresponding enhanced probe interval graph
G+ = (P,N,E ∪ E+).

2.2 PQ-trees and MPQ-trees

PQ-trees were introduced by Booth and Lueker [3], and which can be used to recognize interval graphs as
follows. A PQ-tree is a rooted tree T with two types of internal nodes: P and Q, which will be represented
by circles and rectangles, respectively. The leaves of T are labeled 1-1 with the maximal cliques of the interval
graph G. The frontier of a PQ-tree T is the permutation of the maximal cliques obtained by the ordering of
the leaves of T from left to right. PQ-tree T and T ′ are equivalent, if one can be obtained from the other by
applying the following rules a finite number of times; (1) arbitrarily permute the successor nodes of a P-node,
or (2) reverse the order of the successor nodes of a Q-node. In [3], Booth and Lueker showed that a graph G
is an interval graph if and only if there is a PQ-tree T whose frontier represents a consecutive arrangement of
the maximal cliques of G. They also developed an O(|V | + |E|) algorithm that either constructs a PQ-tree
for G, or states that G is not an interval graph. If G is an interval graph, then all consecutive arrangements of
the maximal cliques of G are obtained by taking equivalent PQ-trees.

Lueker and Booth [13], and Colbourn and Booth [6] developed labeled PQ-trees in which each node contains
information of vertices as labels. Their labeled PQ-trees are canonical; given interval graphs G1 and G2 are
isomorphic if and only if corresponding labeled PQ-trees T1 and T2 are isomorphic. Since we can determine if
two labeled PQ-trees T1 and T2 are isomorphic, the isomorphism of interval graphs can be determined in linear
time.
MPQ-trees, which stands for modified PQ-trees, are developed by Korte and Möhring to simplify the

construction of PQ-trees [12].The MPQ-tree T ∗ assigns sets of vertices (possibly empty) to the nodes of a
PQ-tree T representing an interval graph G = (V,E). A P-node is assigned only one set, while a Q-node has
a set for each of its sons (ordered from left to right according to the ordering of the sons).

For a P-node P̂ , this set consists of those vertices of G contained in all maximal cliques represented by the
subtree or P̂ in T , but in no other cliques†. For a Q-node Q̂, the definition is more involved. Let Q1, · · · , Qm
(m ≥ 3) be the set of the sons (in consecutive order) of Q̂, and let Ti be the subtree of T with root Qi. We
then assign a set Si, called section, to Q̂ for each Qi. Section Si contains all vertices that are contained in all
maximal cliques of Ti and some other Tj , but not in any clique belonging to some other subtree of T that is
not below Q̂.

In [12], Korte and Möhring showed two algorithms that construct an MPQ-tree for given interval graph.
The first one constructs an MPQ-tree for given interval graph using its PQ-tree. The MPQ-tree directly
corresponds to the labeled PQ-tree; the sets of vertices assigned in the MPQ-tree directly correspond to the
“characteristic nodes” in [6]. Since the labeled PQ-tree is canonical, so is the constructed MPQ-tree. The
second algorithm constructs anMPQ-tree from given interval graph directly without constructing PQ-trees in
[3]. Although it does not shown explicitly, the MPQ-tree constructed by the second algorithm is the same as
the MPQ-tree by the first algorithm. Thus the graph isomorphism problem can be solved in linear time using
the MPQ-trees, which can be obtained without constructing PQ-trees in [3].

The property of MPQ-trees is summarized as follows [12, Theorem 2.1]:

Theorem 2 Let T ∗ be the canonical MPQ-tree for given interval graph G = (V,E). Then

(a) T ∗ can be obtained in O(|V | + |E|) time and O(|V |) space.

(b) Each maximal clique of G corresponds to a path in T ∗ from the root to a leaf, where each vertex v ∈ V
is as close as possible to the root.

†We will use P̂ , Q̂, and N̂ for describing a P-node, Q-node, any node, respectively to distinguish probe set P and nonprobe set
N .

3

f
g

c
d

e

a
b

4
2

1
9 3

65
8

7

Probes

Nonprobes

Figure 1: Given probe interval graph G

2,4,7,

8,b

1,2,7,

8,b

1,2,5,

7,8,c

1,2,7,

c,d

1,2,6,

7,c,f

1,6,7,

c,f

1,6,

7,f

[9][a]

4,7,

8

1,2,5,

7,c,d

[e] [3]

1,2,6,

7,c,d

Figure 2: The MPQ-tree of G− g

(c) In T ∗, each vertex v appears in either one leaf, one P-node, or consecutive sections Si, Si+1, · · ·, Si+j
(with j > 0) in a Q-node.

(d) The root of T ∗ contains all vertices belonging to all maximal cliques, while the leaves contain the simplicial
vertices.

Proof. The claims (a) and (b) are stated in [12, Theorem 2.1]. The claim (c) is immediately obtained by the
fact that the maximal cliques containing a fixed vertex occur consecutively in T ; see [12] for further details.
The claim (d) is also stated in [12, p. 71].

We note that there are no vertices that appear in only one section in a Q-node (since such a vertex appears
in the subtree of the section). Thus each vertex in a Q-node appears at least two consecutive sections.

Lemma 3 Let Q̂ be a Q-node in the canonicalMPQ-tree. Let S1, · · · , Sk (in this order) be the sections of Q̂,
and let Ui denote the set of vertices occurring below Si with 1 ≤ i ≤ k. Then we have the following;

(a) Si−1 ∩ Si 6= ∅ for 2 ≤ i ≤ k,

(b) S1 ⊆ S2 and Sk ⊆ Sk−1,

(c) U1 6= ∅ and Uk 6= ∅,
(d) (Si ∩ Si+1) \ S1 6= ∅ and (Si−1 ∩ Si) \ Sk 6= ∅ for 2 ≤ i ≤ k − 1,

(e) Si−1 6= Si with 2 ≤ i ≤ k − 1, and

(f) (Si−1 ∪ Ui−1) \ Si 6= ∅ and (Si ∪ Ui) \ Si−1 6= ∅ for 2 ≤ i ≤ k.

Proof. The results in [12] lead us from (a) to (e) immediately. Thus we show (f). If (Si−1 ∪ Ui−1) \ Si = ∅, we
have Ui−1 = ∅ and Si−1 ⊂ Si. In the case, Si−1 is redundant section; we can obtain more compact MPQ-tree
by removing Si−1. This fact contradicts that the MPQ-tree is canonical. Thus (f) is settled.

Given enhanced probe interval graph G+ = (P,N,E ∪E+), let u and v be any two nonprobes with {u, v} 6∈
E+. Then, we say that u intersects v if Iu ∩ Iv 6= ∅ for all affirmative interval graphs of G+. The nonprobes
u and v are independent if Iu ∩ Iv = ∅ for all affirmative interval graphs of G+. Otherwise, we say that the
nonprobe u potentially intersects v. Intuitively, if u potentially intersects v, we cannot determine their relation
without experiments.

We define depth of each node in an MPQ-tree as follows: the root has depth 0, and the other node has
depth d+ 1, where d is the depth of its parent. We also define depth of a vertex in G by the depth of the node
in the MPQ-tree that contains v. By Theorem 2(c), the depth of a vertex v in the MPQ-tree is uniquely
determined, and we denote by dep(v).

4

2,4,7,

8,b

1,2,7,

8,b

1,2,5,

7,8,c

1,2,5,

7,c,d

2,4,7,

8,b

1,2,7,

8,b

1,2,5,

7,8,c

1,2,5,

7,c,d

[g]

X

[g]

Figure 3: Four MPQ-trees of G

2,4,7,

8,b

1,2,7,

8,b

1,2,5,

7,8,c

1,2,7,

c,d

1,2,6,

7,c,f

1,6,7,

c,f

1,6,

7,f

[9][a]

4,7,

8

1,2,5,

7,c,d

[e] [3]

1,2,6,

7,c,d

g

Figure 4: The extended MPQ-tree of G

2.3 Extended MPQ-trees

If given graph is an interval graph, the corresponding MPQ-tree is uniquely determined up to isomorphism.
However, for a probe interval graph, this is not in the case. For example, consider a probe interval graph
G = (P,N,E) with P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and N = {a, b, c, d, e, f, g} given in Figure 1. If the graph does
not contain the nonprobe g, we have the canonical MPQ-tree in Figure 2. However, the graph is a probe
interval graph and we do not know if g intersects b and/or c since they are nonprobes. According to the
relations between g and b and/or c, we have four possibleMPQ-trees that are affirmative to G shown in Figure
3, where X is either {1, 2, 7, 8}, {1, 2, 7, 8, c}, or {1, 2, 7, 8, b, c}. We call such a vertex g floating leaf (later, it
will be shown that such a vertex has to be a leaf in anMPQ-tree). For a floating leaf, there is a corresponding
Q-node (which also will be shown later). Thus we extend the notion of a Q-node to contain the information of
the floating leaf. A floating leaf appears consecutive sections of a Q-node Q̂ as the ordinary vertices in Q̂. To
distinguish them, we draw them over the corresponding sections; see Figure 4. Further details will be discussed
in Section 3.

3 Construction of Extended MPQ-tree of Probe Interval Graph

Let G = (P,N,E) be a given probe interval graph, and G+ = (P,N,E ∪ E+) be the corresponding enhanced
probe interval graph, where E+ is the set of enhanced edges. In our algorithm, simplicial nonprobes play an
important role; we partition the set N of nonprobes to two sets N∗ and NS defined as follows;

NS = {u|u is simplicial in G+},
N∗ = N \NS .

For example, for the graph G = (P,N,E) in Figure 1, E+ = {{c, d}, {c, f}}, NS = {a, e, g}, and N∗ =
{b, c, d, f}. Then the outline of the algorithm is as follows.

A0. Given probe interval graph G = (P,N,E), compute the enhanced probe interval graph G+ = (P,N,E ∪
E+);

A1. Partition N into two subsets N∗ and NS ;

A2. Construct theMPQ-tree T ∗ of G∗ = (P,N∗, E∗), where E∗ is the set of edges induced by P ∪N∗ from
G+;

A3. Embed each nonprobe v in NS into T ∗.

Note that the tree constructed in step A2 is an ordinary MPQ-tree. In step A3, it will be modified to the
extended MPQ-tree. The following observation is obtained by definition:

Observation 4 Let v be a nonprobe in NS . Then for any two vertices u1, u2 ∈ NG+(v), Iu1 ∩ Iu2 6= ∅.
It is also easy to see that if G = (P,N,E) is connected, so is G∗.

5

2,7,

8,b

1,2,7,

8,b

1,2,5,

7,c,d

1,2,6,

7,c,d

1,2,6,

7,c,f

1,6,7,

c,f

1,6,

7,f

[9] [3][4]

1,2,5,

7,8,c

Figure 5: The canonical MPQ-tree T ∗ of G∗

3.1 Construction of MPQ-tree of G∗

Let G∗ = (P,N∗, E∗) be the enhanced probe interval graph induced by P and N∗. The following lemma plays
an important role in this subsection.

Lemma 5 Let u and v be any nonprobes in N∗. Then there is an interval representation of G∗ such that
Iu ∩ Iv 6= ∅ if and only if {u, v} ∈ E+.

Proof. If {u, v} ∈ E+, Iu ∩ Iv 6= ∅ by definition. Thus we assume that {u, v} 6∈ E+, and show that there is
an interval representation of G∗ such that Iu ∩ Iv = ∅. We fix an interval representation of G∗, and assume
that Iu ∩ Iv 6= ∅. When N(u) ∩ N(v) = ∅, it is easy to modify to satisfy Iu ∩ Iv = ∅. Thus we assume that
N(u) ∩ N(v) 6= ∅. We first show that N(u) 6⊆ N(v) and N(v) 6⊆ N(u). If N(u) ⊆ N(v), since {u, v} 6∈ E+,
all vertices in N(u) intersect with each other. Thus, N(u) induces a clique, which contradicts u ∈ N∗. Hence
N(u) 6⊆ N(v) and N(v) 6⊆ N(u). Without loss of generality, we can assume that L(u) < L(v) < R(u) < R(v).
Let w1 and w2 are any probes which intersect the interval [L(v), R(u)]. Then, since {u, v} 6∈ E+, Iw1 ∩ Iw2 6= ∅.
Thus, by the Helly property (see, e.g.,[1]), there is a point p in the interval [L(v), R(u)] such that all probes
contain p. We replace the point p in all intervals by a small interval [p − ε, p + ε], and then we replace Iu by
[L(u), p− ε] and Iv by [p+ ε, R(v)]. The replacement has no effect to the relations between u (or v) and probes.
We here show that the replacement also has no effect to the relations between u (or v) and other nonprobes. To
derive contradictions, we assume hat the relation between u and a nonprobe w is changed. Since the interval
Iu is shortened, w ∈ N(u) becomes w 6∈ N(u) by the replacement. Since both of u and w are nonprobes, there
are two independent probes t1 and t2 that guarantee w ∈ N(u). Then, replacing [L(u), R(u)] by [L(u), p − ε],
at least one of t1 and t2, say t, changes from t ∈ N(u) to t 6∈ N(u). However this contradicts the definition of
the point p, which should be contained in t, and we have t ∈ N(u) after replacement. Thus the replacement
has no effect to the relations between u (or v) and other nonprobes. Hence we obtain a new valid interval
representation of G∗ with Iu ∩ Iv = ∅. Repeating this process for each pair we have the lemma.

The definition of (enhanced) probe interval graphs and Lemma 5 imply the main theorem in this section:

Theorem 6 The enhanced probe interval graph G∗ = (P,N∗, E∗) is an interval graph.

Hereafter we call the graph G∗ = (P,N∗, E∗) the backbone interval graph of G+ = (P,N,E ∪ E+). For any
given interval graph, its corresponding MPQ-tree can be computed in linear time [12]. Thus we also have the
following corollary:

Corollary 7 The canonical MPQ-tree T ∗ of G∗ can be computed in linear time.

Thus the step A2 is rewritten as follows;

A2. Construct the canonical MPQ-tree T ∗ of the backbone interval graph G∗ = (P,N∗, E∗) of G+ =
(P,N,E ∪ E+);

In the canonical MPQ-tree T ∗, for each pair of nonprobes u and v, their corresponding intervals intersect if
and only if {u, v} ∈ E+. This implies the following observation.

Observation 8 The canonicalMPQ-tree T ∗ gives us the possible interval representations of G∗ such that two
nonprobes in N∗ do not intersect as possible as they can.

For example, for the graph G = (P,N,E) in Figure 1, the canonical MPQ-tree of the backbone interval graph
G∗ = (P,N∗, E∗) is described in Figure 5. In the MPQ-tree, Id ∩ If = ∅.

We note that in T ∗, with suitable labels, we can distinguish nonprobes from probes, and nonprobes in N∗

from nonprobes in NS , which will be added later. Now, our main task is that embedding each vertex in NS
into the canonical MPQ-tree T ∗ without breaking canonicality.

6

3.2 Embedding of Nonprobes in NS

We first show two lemmas for the nonprobes in NS .

Lemma 9 For each nonprobe v in NS , all vertices in N(v) are probes.

Proof. To derive a contradiction, we assume that a nonprobe v′ is in N(v). Then {v, v′} is in E+. Thus there
are two probes u and u′ such that {u, v}, {u, v′}, {u′, v}, and {u′, v′} are in E, and {u, u′} is not in E, which
contradicts Observation 4.

Lemma 10 For any probe interval graph G, there is an affirmative interval graph G′ such that every nonprobe
v in NS of G is also simplicial in G′.

Proof. Let v be any nonprobe in NS such that v is not simplicial in G′. By the Helly property, there is a point
p such that all probes in N(v) contains p. We replace the point p in all intervals by a small interval [p− ε, p+ ε],
and we set R(v) = L(v) = p. Then v is simplicial in the interval graph corresponding to the new interval
representation, and the interval graph is still affirmative. Thus, repeating this process, we have the lemma.

By Lemma 10 and Theorem 2(d), we have the following corollary.

Corollary 11 For any probe interval graphG, there is an affirmative interval graphG′ such that every nonprobe
v in NS of G is in a leaf of the MPQ-tree of G′.

Our embedding is an extension of the embedding by Korte and Möhring [12] to deal with nonprobes. Each
node N̂ (including Q-node) of the current tree T ∗ and each section S of a Q-node is labeled according to how
the nonprobe v in NS is related to the probes in N̂ or S. Nonprobes in N̂ or S are ignored. The label is ∞,
1, or 0 if v is adjacent to all, some, or no probe from N̂ , or S, respectively. Empty sets (or the sets containing
only nonprobes) obtain the label 0. Labels 1 and ∞ are called positive labels.

Lemma 12 For a nonprobe v in NS , all nodes with a positive label are contained in a unique path of T ∗.

Proof. By definition, v is simplicial, or N(v) induce a clique. Thus Theorem 2(b) implies the lemma.
Let P′ be the unique minimal path in T ∗ containing all nodes with positive label. Let P be a path from the

root of the MPQ-tree T ∗ to a leaf containing P′ (a leaf is chosen in any way). Let N̂∗ be the lowest node in
P with positive label. (That is, N̂∗ is the node of the largest depth in P′.) If P contains nonempty P-nodes
or sections above N̂∗ with label 0 or 1, let N̂∗ be the highest such P-node or Q-node containing the section.
Otherwise put N̂∗ = N̂∗.

When N̂∗ 6= N̂∗, we have the following lemma:

Lemma 13 We assume that N̂∗ 6= N̂∗. Let Q̂ be any Q-node with sections S1, · · ·, Sk in this order between
N̂∗ and N̂∗. If Q̂ is not N̂∗, all neighbors of v in Q̂ appear in either S1 or Sk.

Proof. We first observe that N̂∗ contains at least one probe w of v with w 6∈ N(v) since N̂∗ is non-empty
and the label of N̂∗ is 0 or 1. We assume that v has a neighbor u in Q with u 6∈ S1 and u 6∈ Sk to derive a
contradiction. Let U1 and Uk be the set of vertices occurring below S1 and Sk, respectively. By Lemma 3(c),
U1 6= ∅ and Uk 6= ∅. Thus there are two vertices u1 ∈ U1 and uk ∈ Uk such that Iu1 ⊆ Iw, Iu ⊆ Iw, Iuk ⊆ Iw,
and R(Iu1) < L(Iu) < R(Iu) < L(uk) (or R(Iuk) < L(Iu) < R(Iu) < L(u1)). Thus we have Iu ⊂ Iw, which
contradicts that w 6∈ N(v) and u ∈ N(v).

Note that Lemmas 12 and 13 correspond to [12, Lemma 4.1]. However, Lemma 13 does not hold at the node
N̂∗. We are now ready to use the bottom-up strategy from N̂∗ to N̂∗ as in [12]. In [12], the ordering of vertices
are determined by LexBFS. In our algorithm, the step A3 consists of the following substeps;

A3.1. while there is a nonprobe v such that N̂∗ 6= N̂∗ for v, embed v into T ∗;

A3.2. while there is a nonprobe v such that N̂∗ = N̂∗ for v and v is not a floating leaf, embed v into T ∗;

A3.3. embed each nonprobe v (such that N̂∗ = N̂∗ for v and v is a floating leaf) into T ∗.

As shown later, an embedding of a nonprobe v with N̂∗ 6= N̂∗ merges some nodes into one new Q-node. Thus,
during step A3.1, embedding of a nonprobe v can change the condition of other nonprobes u from “N̂∗ 6= N̂∗” to
“N̂∗ = N̂∗”. We note that A3.1 and A3.2 do not generate floating leaves, and all floating leaves are embedded

7

[A ∪B ∪ C]

[v] [B ∪ C]

B ∪ C = ∅
[A ∪ {v}]

B ∪ C 6= ∅

A

Figure 6: Template L1 when N̂∗ = N̂∗ is a leaf

T1 Tk· · ·

T1 Tk

A ∪B ∪ C

· · ·

T1 Tk· · ·

A

[v]

B ∪ C = ∅

B ∪ C 6= ∅

A

B ∪ C
[v]

Figure 7: Template P1 when N̂∗ = N̂∗ is a P-node

in step A3.3, which will be shown later. Hence the templates used in steps A3.1 and A3.2 are not required to
manage floating leaves.

Hereafter, we suppose that the algorithm picks up some nonprobe v from NS and it is going to embed v
into T ∗. In most cases, the vertex set VN of the current node or section is partitioned into A, B, and C defined
as follows;

A := P ∩ VN ∩N(v),
B := (P ∩ VN) \A,
C := N ∩ VN .

Since we extend the templates in [12], we use the same names of templates as L1, P2, and so on, which is an
extension of the corresponding templates in [12] (templates from Q4 to Q7 are new templates). We also use the
help templates H1 and H2 in [12] if they can be applied; it is simple and omitted here. Through the embedding,
we keep the following assertion:

Assertion 14 (1) Each nonprobe in NS has no intersection with unnecessary nonprobes,

(2) each leaf contains either vertices in P ∪N∗ or one nonprobe in NS , and

(3) each nonprobe in NS is in a leaf.

3.2.1 Templates for the nonprobe with N̂∗ = N̂∗

We first assume that N̂∗ = N̂∗, which occurs in steps A3.2 and A3.3. If the node is a leaf or a P-node, we use
template L1 in Figure 6 or P1 in Figure 7, respectively. If N̂∗ = N̂∗ is a Q-node with sections S1, · · ·, Sk in this
order, v can be a floating leaf. We let A := (∪1≤i≤kSi)∩N(v). Let ` be the minimum index with A ⊆ S` and r
be the maximum index with A ⊆ Sr. That is, A 6⊆ Si for each i < ` and i > r, and A ⊆ Sj for each ` ≤ j ≤ r.
Then there are four cases:
(a) ` = 1 and A ⊂ S` ∩ P . In the case, v may be a leaf of a new section S0 := A ⊂ S1. The case r = k and
A ⊂ Sk ∩ P is symmetric.
(b) A = Sj ∩ P for some ` ≤ j ≤ r. In the case, v may be a leaf under the section Sj .
(c) A = Sj ∩Sj+1 ∩P for some ` ≤ j < r. In the case, v may be a leaf under the new section S between Sj and
Sj+1 with S := A ∪ (Sj ∩ Sj+1 ∩N).

8

A ∪ B ∪ C

T2T1T1 T2

S2 · · ·

[v]

A ∪ B ∪ C · · ·A S2

Figure 8: Template Q2 for (1) N̂∗ = N̂∗ and A ⊂ S1 ∩ P , or (2) N̂ = N̂∗ 6= N̂∗, A ⊆ S1, and A 6⊆ ∩1≤i≤kSi

∅

T1

· · · A ∪ C · · · · · · A ∪ C · · ·

[v]

∅

· · ·T1 Tk

∅

· · ·T1 Tk

· · · A ∪ C · · · · · · A ∪ C · · ·

[v]

· · · A ∪ C · · ·

T1

· · · A ∪ C · · ·

[v]

(Q6-1)

(Q6-2)

(Q6-3)

Figure 9: Template Q6 for N̂∗ = N̂∗ and A = Sj ∩ P for some ` ≤ j ≤ r

(d) Sj ∩ Sj+1 ∩ P ⊂ A ⊂ Sj ∩ P or Sj ∩ Sj+1 ∩ P ⊂ A ⊂ Sj+1 ∩ P for some ` ≤ j < r. In the case, v may be a
leaf under the new section S between Sj and Sj+1 with S := A ∪ (Sj ∩ Sj+1 ∩N).

The algorithm checks if the position of the v is uniquely determined. If it is uniquely determined, the
algorithm embeds v into the place in step A3.2. If exactly one of the cases (a) to (d) occurs, we use the
templates as follows. In the case (a), template Q2 in Figure 8 is used. In the case (b), we use three templates
Q6-1, Q6-2, and Q6-3 in Figure 9 as follows; if the section Sj has no child, template Q6-1 is used and v is added
as a leaf under Sj ; if the root of the subtree under Sj is a P-node with empty label, template Q6-2 is used and
v is added as a leaf under the P-node; or otherwise, template Q6-3 is used and v is added as a leaf under a
new P-node with empty label under Sj . We note that Assertion 14(2) holds if R̂ contains nonprobes. In the
case (c) or (d), template Q7 in Figure 8 is used; we note that we have A ∪ (Sj ∩ Sj+1 ∩N) = Sj ∩ Sj+1 in the
case (c). We have one more case that the position of the v may be uniquely determined; ` = 1, r = k, and
(Si ∩ Si+1 ∩ P) \ A 6= ∅ for each 1 ≤ i < k. In the case, we use the template Q1-1 in Figure 11. In Figure 11,
for each 1 ≤ i ≤ k, Bi := (Si ∩P) \N(v) and Ci denotes nonprobes in Si. We note that Bi ∩Bi+1 6= ∅ for each
1 ≤ i < k; otherwise, v can be a floating leaf under the section between Si and Si+1.

If the position is not uniquely determined, v is a floating leaf. Thus, in the case, the embedding is postponed
until step A3.3. Then we use template Q4 in Figure 12 for such ` and r; in the figure, Ri denotes the set of
floating leaves in Si. Hereafter, we assume that each section Si between R` and Rr knows if the vertex v can be
a floating leaf “under Si”, “right of Si”, and “left of Si”; that is, if v can be a leaf [v] under S between Si and
Si+1, they know that v can be a floating leaf at the left side of Si, and the right side of Si+1, respectively. If v
can be a floating leaf under such sections (including non-existent sections), we say v can hang down the section.

We have the following observation.

Observation 15 In steps A3.2 and A3.3, all Q-nodes are neither divided nor merged.

3.2.2 Templates for the nonprobe with N̂∗ 6= N̂∗

When N̂∗ 6= N̂∗, we use the same bottom-up strategy from N̂∗ to N̂∗ as in [12]. Let N̂ denote the current
node that starts from N̂∗ and ends up at N̂∗. The algorithm consists of three phases; (1) N̂ = N̂∗, (2) N̂ 6= N̂∗

Tj

· · ·· · · Sj

Tj+1

Sj+1

Tj

· · ·· · · Sj

Tj+1

Sj+1A ∪ (Sj ∩ Sj+1 ∩N)

[v]

Figure 10: Template Q7 for N̂∗ = N̂∗ and Sj ∩ Sj+1 ∩ P ⊂ A ⊆ Sj+1 ∩ P or Sj ∩ Sj+1 ∩ P ⊂ A ⊆ Sj ∩ P

9

T1 · · · Tk

A ∪ B1 ∪ C1 A ∪ Bk ∪ Ck· · ·

T1 · · · Tk

B1 ∪ C1 Bm ∪ Ck· · ·

[v]

A

Figure 11: Template Q1-1

TkT1 T` Tr

· · ·S1 SkS` · · · · · ·Sr

R` · · ·

TkT1 T` Tr

· · ·S1 SkS` · · · · · ·Sr

R` ∪ {v} · · · Rr ∪ {v}Rr

Figure 12: Template Q4

and N̂ 6= N̂∗, and (3) N̂ = N̂∗. The first two phases are the natural extension of the templates in [12] by
Lemmas 12 and 13 which correspond to [12, Lemma 4.1]. However, the algorithm uses one more template in
the third phase, since Lemma 13 does not hold. The templates in the case N̂∗ 6= N̂∗ never generate floating
leaves. Therefore, since they are applied in step A3.1, the templates in the case are not required to manage
floating leaves.

(1) N̂ = N̂∗ 6= N̂∗. Since the label of N̂ = N̂∗ is positive, A := N̂ ∩ N(v) 6= ∅. If N̂ is a leaf or a P-node,
the algorithm uses template L2 in Figure 13 or P2 in Figure 14, respectively. When N̂ is a Q-node, we can use
Lemmas 12 and 13 in this case. Thus we have two subcases, which correspond to templates Q1 and Q2 in [12].
By Lemma 13, we assume that A ⊆ S1 without loss of generality. The algorithm uses template Q1-2 in Figure
15 if A ⊆ Sk, and otherwise, it uses template Q2 in Figure 8.

Observation 16 In any case, v becomes a leaf [v] under a non-empty section S1 of a Q-node since A 6= ∅.

(2) N̂ 6= N̂∗ and N̂ 6= N̂∗. If N̂ is a P-node, the algorithm uses template P3 in Figure 16. If N̂ is a Q-node,
we can use Lemmas 12 and 13 again and the algorithm uses template Q3 in Figure 17. By a simple induction of
the length of the path P with Observation 16, we again have the following observation (since S1 6= ∅ in Figures
16 and 17):

Observation 17 In any case, v becomes a leaf [v] under a non-empty section S1 of a Q-node.

(3) N̂ = N̂∗ 6= N̂∗. If N̂ is a P-node, the algorithm uses the template P3 in Figure 16 again. If N̂ is a Q-node,
we cannot use Lemmas 13. Let S′i be the section in N̂ such that the subtree T ′i contains [v]. If S′i is the leftmost

[v] [B ∪ C]

A[A ∪ B ∪ C] A

Figure 13: Template L2 for N̂ = N̂∗ 6= N̂∗

· · ·T1 Tk

[v]

A ∪ B ∪ C

T1 Tk· · ·

AA

B ∪ C

Figure 14: Template P2 for N̂ = N̂∗ 6= N̂∗

10

T1 · · · Tk

A ∪ B1 ∪ C1 A ∪ Bk ∪ Ck· · ·

T1 · · · Tk

B1 ∪ C1 Bk ∪ Ck· · ·

[v]

A A

Figure 15: Template Q1-2 for N̂ = N̂∗ 6= N̂∗ and A ⊆ ∩1≤i≤kSi

T2 · · ·

· · ·T ′1 T ′`

[v]

A ∪ B ∪ C

∅

A ∪ S1

[v] Tk

S2S1 Sk· · ·

A ∪ B ∪ C ∪ S2 A ∪ B ∪ C ∪ Sk A ∪ B ∪ C

· · ·T ′1 T ′`

T2 · · · Tk

· · ·

Figure 16: Template P3 for N̂ 6= N̂∗ and N̂ 6= N̂∗

· · ·

Tk T ′2T2

T ′2

S′2A ∪ B ∪ C

[v]

· · ·S′2

T2[v]

S1 S2

A ∪ S1

Tk

Sk

· · ·

· · ·

Sk ∪ A ∪ B ∪ CS2 ∪ A ∪ B ∪ C

Figure 17: Template Q3 for N̂ 6= N̂∗ and N̂ 6= N̂∗

11

· · ·

T ′i−1

· · ·· · ·

S′i+1

[v]T2[v]

S1 S2

Tk

Sk· · ·

T2

S′i ∪ S2

Tk

· · ·

S′i−1

T ′i+1

S′i+1

T ′i−1

S′i−1· · · A ∪ C′ ∪ S1

T ′i+1

S′i ∪ Sk

A ∪ B ∪ C

· · · · · ·

Figure 18: Template Q5 for N̂ = N̂∗ 6= N̂∗ and B ⊆ S′i+1

or rightmost section in N̂ , we can use the template Q3 in Figure 17 again. Thus we assume that 1 < i < k′,
where k′ is the number of sections in the Q-node N̂ . Let S′i−1 and S′i+1 be the left and right sections of S′i,
respectively. We now define A := N(v) ∩ S′i and B := (S′i ∩ P) \ A. Then, since the label of S′i is 0 or 1, we
have B 6= ∅. For the set B, we have the following lemma:

Lemma 18 Either B ⊆ S′i+1 \ S′i−1 or B ⊆ S′i−1 \ S′i+1.

Proof. Let u be any vertex in B. By theorem 2(c), u ∈ S′i−1 or u ∈ S′i+1. Since B 6= ∅, S′i−1 ∩B = S′i+1 ∩B = ∅
does not occur. Thus it is sufficient to show that S′i−1 ∩ B 6= ∅ and S′i+1 ∩ B 6= ∅ implies a contradiction. We
assume that there are two vertices u1 and u2 such that u1 ∈ S′i−1 ∩B and u2 ∈ S′i+1 ∩B. Then [v] cannot be a
leaf under any sections S′i−1, S′i, and S′i+1. This implies that the graph G is not a probe interval graph, which
is a contradiction.

Without loss of generality, we assume that Lemma 18(a) occurs. That is, all vertices in B appear from the
section S′i to the some sections on the right side of S′i. Let C ′ := S′i−1 ∩ S′i ∩ N . That is, C ′ is the set of
nonprobes appearing both of S′i−1 and Si. Then we use template Q5 in Figure 18. In the figure, C denotes the
nonprobes in S′i; that is, S′i = A ∪B ∪ C. We note that C ′ ⊆ C, and Assertion 14(1) holds.

Example 19 For the graph G = (P,N,E) in Figure 1 with its backbone interval graph in Figure 5, the
extended MPQ-tree T̃ is shown in Figure 4. The algorithm uses templates L2 and Q3 to embed a, and uses
template Q4 to embed g since it is a floating leaf. For the nonprobe e, only the case (c) in Section 3.2.1 can
be applied; {1, 2, 7, 8, c, d} ∩ {1, 2, 6, 7, c, d} ∩ P = {1, 2, 7} = N(e). Thus its position is uniquely determined,
and embedded between the sections. Note that we can know that e intersects both of c and d with neither
experiments nor enhanced edges. We also note that Ia and Ib could have intersection, but they are standardized
according to Assertion 14(1).

3.3 Analysis of Algorithm

Correctness

Since the correctness of steps A0, A1, and A2 follows from Theorem 6, we concentrate on step A3. First, the
templates cover all formally distinct cases. All templates for the case N̂∗ = N̂∗ with the help-templates H1 and
H2 in [12] are easily shown to be correct. Thus we consider the case N̂∗ 6= N̂∗.

Theorem 20 When N̂∗ 6= N̂∗, v is not a floating leaf.

Proof. We first assume that N̂ = N̂∗ 6= N̂∗. Let S1 be the section having the leaf [v]. If the algorithm uses the
template P3 or Q3, the same technique in the proof of Theorem 4.3 in [12] works: Since the label of N̂ is 0 or
1, B 6= ∅ in the templates, and S1 is not empty by Observation 17. Thus there are no other place that [v] can
be put into. Thus we assume that the algorithm uses the template Q5. Since S1 is not empty by Observation
17, [v] cannot be under the sections in N̂ except S′i. On the other hand, since B 6= ∅, [v] cannot be under the
sections A ∪ B ∪ C ∪ S′1, A ∪ B ∪ C ∪ S′2, · · ·, A ∪ B ∪ C ∪ S′k. Thus, the only possible sections are between
S′i−1 and S′i or between S′i and S′i+1. However, by Lemma 18, one of them is prohibited. Thus the place of [v]
is uniquely determined, and v is not a floating leaf.

We have the following corollary which corresponds to Corollary 4.4 in [12]:

Corollary 21 When N̂∗ 6= N̂∗, all nodes properly between N̂∗ and N̂∗ on the path P will become inner sections
of a Q-node after embedding of v.

12

Theorem 22 The resulting extended MPQ-tree is canonical up to isomorphism.

Proof. To derive contradictions, given probe interval graph G, assume that we have two nonisomorphic trees
T1 and T2 for G. We moreover suppose that G has the minimum number of vertices among such graphs. Then
there are two vertices v1 in T1 and v2 in T2 such that both of v1 and v2 correspond to v in G, and v1 and v2

guarantee that T1 is not isomorphic to T2. When v is in G∗, we immediately have a contradiction to Corollary
7. Thus, v is a simplicial nonprobe in NS . If the positions of v1 and v2 are uniquely determined when they
are embedded, we can show that v1 and v2 have to be embedded in the same place using the same argument
in [13], which derives a contradiction. Thus at least one of v1 and v2 is a floating leaf and embedded in step
A3.3. If both of v1 and v2 are floating leaves embedded in step A3.3, by Observation 15, the positions of v1 and
v2 are the same place since N(v1) = N(v2). Thus, without loss of generality, we assume that v1 is a floating
leaf embedded in A3.3, and v2 is embedded in A3.1 or A3.2. However, by Theorem 20, v2 is not a floating leaf,
which is a contradiction.

Implementation and Complexity

Theorem 23 For given probe interval graph G = (P,N,E), let T̃ be the canonical extended MPQ-tree, and
G+ = (P,N,E ∪E+) be the corresponding enhanced interval graph. Let Ẽ be the set of edges {v1, v2} joining
nonprobes v1 and v2 which is given by T̃ ; more precisely, we regard T̃ as an ordinary MPQ-tree, and the
graph G̃ = (P ∪ N,E ∪ E+ ∪ Ẽ) is the interval graph given by the MPQ-tree T̃ (thus a floating leaf is not
a leaf; the vertex appears in consecutive sections in the corresponding Q-node). Then T̃ can be computed in
O((|P | + |N |) |E| + |E+| +

∣∣∣Ẽ
∣∣∣) time and O(|P | + |N | + |E| + |E+| +

∣∣∣Ẽ
∣∣∣) space.

Proof. Let ∆ be the maximum degree of probes in G = (P,N,E). Then the step A0 can be performed in
O(|P | + |N | + ∆ |E|) time and O(|P | + |N | + |E| + |E+|) space shown in Appendix A. An enhanced probe
interval graph is chordal graph [18, 20]. Thus, using Lemma 1, all simplicial nonprobes can be found in linear
time and space. Thus the step A1 can be performed in linear time and space. The step A2 can be performed
in O(|P | + |N∗| + |E∗|) time and space. The implementation of step A3 is based on the algorithms in [3, 12].
When the vertex v is not a floating leaf, the algorithm deals with the new set C with the set B, and the
additional process requires O(1) time and space per iteration with modified implementations in [3, 12]. Thus,
its total running time and space for such vertices would be O(|P ∪N | +

∣∣∣E ∪ E+ ∪ Ẽ
∣∣∣) in amortized manner

(see [3, 12] for further details). When the vertex v is a floating leaf, the algorithm checks if the one of the
conditions (a), (b), (c), (d) in Section 3.2.1 holds for the section Si for each i with 1 ≤ i ≤ k. Each check
at section Si can be performed in O(deg(v)) time, and k = O(|P | + |N |) in general. Thus this step requires
O((|P | + |N |)deg(v)) time for each nonprobe in NS . Hence the total running time required to deal with floating
leaves through the algorithm is bounded above by O((|P | + |N |) |E|). Therefore we have the theorem.

Corollary 24 The graph isomorphism problem for the class of (enhanced) probe interval graphs G is solvable
in O(n2 + nm) time and O(n2) space, where n and m are the number of vertices and edges of an affirmative
interval graph of G, respectively.

Proof. By Theorem 22, given (enhanced) probe interval graphs G1 and G2, G1 ∼ G2 if and only if their
corresponding canonical extended MPQ-trees are isomorphic. If they have no floating leaves, using the same
technique in [13, 6], the graph isomorphism problem can be solved in linear time. Even if they have floating
leaves, it is not difficult to see that comparing two floating leaves v in G1 and G2 can be done in O(deg(v))
time, which completes the proof.

We note that |E+| +
∣∣∣Ẽ
∣∣∣ can be Θ(|N | 2) = Θ(n2) even if |E| = O(n), where n = |P | + |N | . Thus the

running time in the main theorem can be Θ(n3) even if given probe interval graph has O(n) edges.

4 Applications

Given canonical extendedMPQ-tree T̃ , using a standard depth first search technique, we can compute in linear
time if each subtree in T̃ contains only nonprobes. Thus, hereafter, we assume that each section Si knows if its
subtree contains only nonprobes or not.

13

4.1 Relations between nonprobes

We first consider the following problem:

Input: An enhanced probe interval graph G+ = (P,N,E ∪ E+) and the canonical extended MPQ-tree T̃ ;

Output: Mapping f from each pair of nonprobes u, v with {u, v} 6∈ E+ to “intersecting”, “potentially inter-
secting”, or “independent”;

We denote by Ei and Ep the sets of the pairs of intersecting nonprobes, and the pairs of potentially intersecting
nonprobes, respectively. That is, each pair of nonprobes u, v is either in E+, Ei, Ep, or otherwise, they are
independent.

Theorem 25 The sets Ei and Ep can be computed in O(|E| + |E+| + |Ei| + |Ep|) time for given enhanced
probe interval graph G+ = (P,N,E ∪ E+) and the extended MPQ-tree T̃ .

Proof. We first analyze the relation between two nonprobes. Let u and v be two nonprobes such that dep(u) ≤
dep(v), u is in node N̂u, and v is in node N̂v. When N̂u (and N̂v) is a Q-node, we assume that u appears from
Sul to Sur (and v appears from Svl to Svr, respectively). There are three cases we have to consider:
(1) N̂u = N̂v. If N̂u(= N̂v) is a leaf, by Assertion 14(2), both of u and v are in N∗. Moreover, by Theorem
2(d), u and v are simplicial. Thus u and v are in NS , which is a contradiction. Thus N̂u is not a leaf. If N̂u
is a P-node, it has at least two subtrees T1 and T2 under N̂u. If both of T1 and T2 contain probes, we have
{u, v} ∈ E+, which contradicts that {u, v} 6∈ E+. Thus at most one subtree T1 under N̂u contains probes,
and all probes in T1 intersect with each other. We first assume that such subtree T1 containing probes exists.
Then, by the construction of the canonical extended MPQ-tree, u and v should be added after probes in T1

and they should be embedded as leaves under T1, which is a contradiction. Thus all subtrees of N̂u contain
only nonprobes, which also contradicts Assertion 14(1). Therefore N̂u is not a P-node. If N̂u is a Q-node, we
have three subcases.
(1-1) Neither u nor v are floating leaves. In the case, {u, v} ∈ Ei if and only if they share common sections;
that is, max{ul, vl} ≤ min{ur, vr}. If max{ul, vl} − 1 = min{ur, vr}, {u, v} ∈ Ep; otherwise, u and v are
independent.
(1-2) u is a floating leaf, and v is not (symmetric case is omitted). Let Su be the set of sections that u can hang
down, and Sv be the set of sections between Svl and Svr. If Su ⊆ Sv, we have {u, v} ∈ Ei. If Su ∩ Sv 6= ∅ and
Su \ Sv 6= ∅, we have {u, v} ∈ Ep. Otherwise (Su ∩ Sv = ∅), they are independent.
(1-3) Both of u and v are floating leaves. Let Su and Sv be the sets of sections that u and v can hang down,
respectively. In the case, {u, v} ∈ Ep if and only if Su ∩ Sv 6= ∅. Otherwise, they are independent.
(2) N̂u is an ancestor of N̂v (symmetric case is omitted). If N̂u is a P-node, clearly, {u, v} ∈ Ei. Thus we
assume that N̂u is a Q-node, and N̂v is in the subtree Ti under the section Si in N̂u.

We first assume that u is not a floating leaf. Then, {u, v} ∈ Ei if and only if ul ≤ i ≤ ur. If i < ul − 1 or
i > ur+ 1, they are independent. We assume that i = ul− 1 or i = ur+ 1. In the case, intuitively, if the vertex
v can appear in the leftmost or rightmost node in Ti, {u, v} is in Ep, or otherwise, they are independent. To
check this, we use the following procedure Adj(N̂u, v), and we have {u, v} ∈ Ep if it returns “Yes”, or otherwise
they are independent:

Procedure Adj(N̂u, v):

(1) for each node N̂ on the path joining the nodes N̂u, · · · , N̂v, do the following;

(1.1) if N̂ = N̂u, proceed to the next node;
(1.2) if N̂ is a P-node and N̂ 6= N̂v, proceed to the next node;
(1.3) if N̂ is a Q-node and N̂ 6= N̂v, do the following;

(1.3.1) let Si be the section in N̂ such that its subtree contains N̂v, and let k be the number of
sections in N̂ ;

(1.3.2) if all sections S1, S2, · · · , Si−1 have subtrees containing only nonprobes, and all probes in
sections S1, S2, · · · , Si−1 are contained in Si, or its symmetric case holds, proceed to the next
node; otherwise, return “No”;

(1.4) if N̂ = N̂v, do the following;

14

(1.4.1) if N̂ is a leaf or a P-node, return “Yes”;
(1.4.2) if N̂ is a Q-node with sections S1, · · · , Sk, do the following;

(1.4.2.1) let Si be the section in N̂ that contains L(v), and Sj be the section in N̂ that
contains R(v);

(1.4.2.2) if i = 1 or j = k then return “Yes”;
(1.4.2.3) if all sections S1, S2, · · · , Si−1 have subtrees containing only nonprobes, and all

probes in sections S1, S2, · · ·, Si−1 are contained in Si, or its symmetric case holds,
return “Yes”, otherwise, return “No”.

We next assume that u is a floating leaf. If u cannot hang down Si−1, Si, Si+1, the section between Si−1

and Si, and the section between Si and Si+1, clearly, u and v are independent. Thus we assume that u can
hang down at least one of those sections. If the subtree of Si contains only nonprobes, by Assertion 14(1) and
(2), {u, v} ∈ Ep. Thus, we assume that the subtree of Si contains not only nonprobes, but also probes w. In
the case, w 6∈ N(u). Thus we have {u, v} ∈ Ep if and only if there are arrangements of intervals such that
the interval [min{R(u), R(v)}, max{L(u), L(v)}] contains no R(w)s and L(w)s for each probe w in the subtree.
More precisely, {u, v} ∈ Ep if and only if Adj(N̂u, v) returns “Yes”, or otherwise, u and v are independent.
(3) N̂u is not an ancestor of N̂v, and N̂v is not an ancestor of N̂u. Let N̂c be the nearest common ancestor of
N̂v and N̂u. In the case, {u, v} ∈ Ep if and only if there are arrangements of intervals such that the interval
[min{R(u), R(v)}, max{L(u), L(v)}] contains no R(w)s and L(w)s for each probe w in the subtree rooted at
N̂c. Thus we can determine if {u, v} ∈ Ep using the following algorithm:

(1) If N̂c is a P-node, {u, v} ∈ Ep if and only if both of Adj(N̂c, u) and Adj(N̂c, v) return “Yes”, otherwise, u
and v are independent.

(2) If N̂c is a Q-node, let Si and Sj be the sections in N̂c such that Si and Sj contain N̂v and N̂u, respectively.
Without loss of generality, we assume that i < j. Then, {u, v} ∈ Ep if and only if both of Adj(N̂c, u) and
Adj(N̂c, v) return “Yes”, and either (a) j− i = 1 or (b) all sections Si+1, · · · , Sj−1 have subtrees containing
only nonprobes, and Si ∩ P = Si+1 ∩ P = · · · = Sj−1 ∩ P = Sj ∩ P . Otherwise, u and v are independent.

Now we prove the theorem. The correctness of the above analysis can be done by the induction for the length
of the path(s) between N̂u and N̂v; which is straightforward but the details are rather tedious, and therefore
omitted. Using the standard dynamic programming technique from the leaves to the root, those relations can
be computed in O(|E| + |E+| + |Ei| + |Ep|) time and space.

By Theorem 25, we can heuristically find the “best” nonprobe to fix the structure of the DNA sequence:

Corollary 26 For given enhanced probe interval graph G+ = (P,N,E ∪ E+) and the canonical extended
MPQ-tree T̃ , we can find the nonprobe v that has most potentially intersecting nonprobes in O(|E| + |E+| +
|Ei| + |Ep|) time.

4.2 Enumeration of all affirmative interval representations

We next consider the following problem:

Input: A probe interval graph G = (P,N,E) and the canonical extended MPQ-tree T̃ ;

Output: All affirmative interval graphs.

Theorem 27 For given enhanced probe interval graph G = (P,N,E) and the canonical extended MPQ-tree
T̃ , all affirmative interval graphs can be enumerated in polynomial time and space of |P | + |N | + |M | , where
M is the number of the affirmative interval graphs.

Proof. We here show how to generate one possible affirmative interval graph of G. It is easy to modify it
to enumerate all affirmative interval graphs in polynomial time and space of |P | + |N | + |M | . We first fix
each floating leaf as a leaf under the corresponding Q-node (in arbitrary way). Then, we have an affirmative
MPQ-tree for some interval graph. However, to generate all possible interval graphs, we have to consider two
more cases; (1) two adjacent nonprobes in N∗ might have intersection as noted in Observation 8, and (2) two
adjacent nonprobes in NS might have intersection as noted in Assertion 14(1). Those two cases can be analyzed

15

in the same case-analysis in the proof of Theorem 25. Then we next fix the relations between each pair of
nonprobes (We note that some pair of nonprobes u and v may be determined by the relation of the other pair
of nonprobes u and w). It is easy to see that for each possible affirmative interval graph, its MPQ-tree can be
generated in this way.

5 Concluding Remarks

It may seem to be straightforward to modify the algorithm to solve the recognition problem for probe interval
graphs (with its vertex partition). However, it is not true. Our algorithm does not mind the consistency of the
floating leaves. In section 3.2.1, let us suppose there are many floating leaves vi that satisfy the condition (d);
Sj ∩ Sj+1 ∩ P ⊂ Ai ⊂ Sj ∩ P for some fixed j and i = 1, 2, · · ·. In the case, we have to check if they can be
linearly sorted in inclusion at this point. The check of the consistency can be solved in O(n2) time. Thus it
is possible to modify our algorithm to solve the recognition problem for the (enhanced) probe interval graphs;
but the algorithms in [11, 14, 10] are faster.

References

[1] C. Berge. Hypergraphs. Elsevier, 1989.

[2] J.R.S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique Trees. In Graph Theory and
Sparse Matrix Computation, volume 56 of IMA, pages 1–29. (Ed. A. George and J.R. Gilbert and J.W.H.
Liu), Springer, 1993.

[3] K.S. Booth and G.S. Lueker. Testing for the Consecutive Ones Property, Interval Graphs, and Graph
Planarity Using PQ-Tree Algorithms. Journal of Computer and System Sciences, 13:335–379, 1976.

[4] A. Brandstädt, F.F. Dragan, H.-O. Le, V.B. Le, and R. Uehara. Tree Spanners for Bipartite Graphs and
Probe Interval Graphs. In 29th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG ’03), pages 106–118. Lecture Notes in Computer Science Vol. 2880, Springer-Verlag, 2003.

[5] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

[6] C.J. Colbourn and K.S. Booth. Linear Time Automorphism Algorithms for Trees, Interval Graphs, and
Planar Graphs. SIAM Journal on Computing, 10(1):203–225, 1981.

[7] P. Galinier, M.Habib, and C. Paul. Chordal Graphs and Their Clique Graphs. In WG ’95, pages 358–371.
Lecture Notes in Computer Science Vol. 1017, Springer-Verlag, 1995.

[8] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[9] W.-L. Hsu and T.-H. Ma. Substitution Decomposition on Chordal Graphs and Applications. In ISA ’91,
pages 52–60. Lecture Notes in Computer Science Vol. 557, Springer-Verlag, 1991.

[10] J.L. Johnson, R.M. McConnell, and J.P. Spinrad. Linear Time Recognition of Probe Interval Graphs. in
preparation, 2002.

[11] J.L. Johnson and J.P. Spinrad. A Polynomial Time Recognition Algorithm for Probe Interval Graphs. In
Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 477–486. ACM, 2001.

[12] N. Korte and R.H. Möhring. An Incremental Linear-Time Algorithm for Recognizing Interval Graphs.
SIAM Journal on Computing, 18(1):68–81, 1989.

[13] G.S. Lueker and K.S. Booth. A Linear Time Algorithm for Deciding Interval Graph Isomorphism. Journal
of the ACM, 26(2):183–195, 1979.

[14] R.M. McConnell and J.P. Spinrad. Construction of Probe Interval Models. In Proc. 13th Ann. ACM-SIAM
Symp. on Discrete Algorithms, pages 866–875. ACM, 2002.

16

[15] T.A. McKee and F.R. McMorris. Topics in Intersection Graph Theory. SIAM, 1999.

[16] F.R. McMorris, C. Wang, and P. Zhang. On Probe Interval Graphs. Discrete Applied Mathematics,
88:315–324, 1998.

[17] T. Nagoya, R. Uehara, and S. Toda. Completeness of Graph Isomorphism Problem for Bipartite Graph
Classes. In IEICE Technical Report, volume COMP2001-93, pages 1–5, 3/12 2002.

[18] P. Zhang. Probe Interval Graphs and Its Applications to Physical Mapping of DNA. manuscript, 1994.

[19] P. Zhang. Probe Interval Graph and Its Applications to Physical Mapping of DNA. RECOMB 2000, Poster
Session; available at http://recomb2000.ims.u-tokyo.ac.jp/Posters/list-posters.html, 2000.

[20] P. Zhang. United States Patent. Method of Mapping DNA Fragments. [Online] Available
http://www.cc.columbia.edu/cu/cie/techlists/patents/5667970.htm, July 3 2000.

A Computing Enhanced Edges

In this section, we show an efficient algorithm for generating enhanced edges. More precisely, given probe
interval graph G = (P,N,E), the set E+ of enhanced edges can be computed in O(|P | + |N | + ∆ |E|) time
and O(|P | + |N | + |E| + |E+|) space, where ∆ is the maximum degree of probes in P . We note that |E+|
can be Θ((|P | + |N |)2) even if |E| = O(|P | + |N |) in general. The algorithm contains two phases.

First, the algorithm constructs one of possible interval representations I = {I1, · · · , In1} of the interval graph
G[P], which runs in O(|P | + |E|) time and space (see, e.g., [12]). Without loss of generality, we assume that
the intervals do not share common endpoints, and each endpoint is an integer in [1, 2 |P |]. We note that G[P]
is not connected in general, while G = (P,N,E) is connected.

Then the second phase of the algorithm is the following:

C0. set E+ := ∅;
C1. for each i = 1, 2, · · · , 2 |P | do the following;

C1.1. if i = R(Iv) for some Iv, take each pair of nonprobes {u1, u2} with u1, u2 ∈ N(v), and record
“the pair {u1, u2} is a candidate”;

C1.2. if i = L(Iv) for some Iv, take each pair of nonprobes {u1, u2} with u1, u2 ∈ N(v), and if the pair
{u1, u2} is a candidate, add it into E+;

Theorem 28 The algorithm finds all enhanced edges in O(|P | + |N | + ∆ |E|) time and O(|P | + |N | + |E| +
|E+|) space.

Proof. We first show the correctness. Let u and u′ be nonprobes with {u, u′} ∈ E+. Then there are two
independent probes v and v′ such that Iv ∩ Iu 6= ∅, Iv′ ∩ Iu 6= ∅, Iv ∩ Iu′ 6= ∅, and Iv′ ∩ Iu′ 6= ∅. Then, in
any fixed interval representations of G, v and v′ are independent. Without loss of generality, we assume that
R(v) < L(v′) in the interval representation. Then, when i = R(v) in step C1.1, the algorithm stores {u, u′} as
a candidate, and when i = L(v′), the algorithm adds {u, u′} into E+. It is easy to see that the edges added
into E+ are all enhanced edges, which completes the proof of the correctness of the algorithm.

Next we analyze complexity. In the implementation, in step C1.1, each vertex u in N(v) keeps “u is
marked by v as candidates”. In step C1.2, the algorithm first collects all vertices u in N(v), and check the
set of vertices marked by a common vertex v′ for each v′ in N(u). It is easy to check the algorithm requires
O(|P | + |N | + |E| + |E+|) space. For each i, step C1.1 runs in O(deg(v)) time, and step C1.2 runs in
O(
∑
u∈N(v) deg(u)). Thus the total running time of the algorithm is

∑
v∈P (O(deg(v)) +O(

∑
u∈N(v) deg(u))) =

O(|P | + |N | + ∆ |E|) time.

17

