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Realistic Motion Simulations of Objects in Free Fall

Haoran Xie · Kazunori Miyata

Abstract The free fall motion of a lightweight object

is a familiar and spectacular phenomenon in which the

object can flutter (oscillate from side to side) and tum-

ble (rotate and drift sideways). However, in computer

graphics, we lack the ability to simulate free fall motion

in a still fluid. In this paper, we consider all the physical

characteristics of free fall in a still fluid, and propose a

new procedural motion synthesis method for modeling

free fall motion in interactive environments. Six prim-

itive motions are defined in a phase diagram and an-

alyzed separately using a trajectory search tree and a

precomputed trajectory database. The global paths of

free fall motion are synthesized on the basis of these

primitive motions, using a free fall motion graph whose

edges are connected using the Markov chain model. In

addition, our approach integrates with wind field meth-

ods by using an improved noise-based algorithm under

different wind speeds and object release heights. This

approach provides not only realistic results in both a

still fluid and a wind field but also rapid computation

for realtime applications.

Keywords Natural phenomena · Motion synthesis ·
Free fall motion · Phase diagram · Real-time simulation

1 Introduction

Not all objects fall straight down, for example, a piece of

paper or a leaf wavers and flutters down in a seemingly

unpredictable motion when released from your hand.

To the authors’ knowledge, the common and spectacu-

lar freely falling principle has not been completely re-

solved in physics, although research in this area has a
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rich history beginning with James Maxwell.

The complexity of free fall lies in the coupling of the

forward motion of the object with lateral oscillations in

the surrounding fluid and the production and influence

of vortices around the object. The problem of free fall

motion involves multiple hydrodynamic effects (such

as lift force, drag force, and vortex shedding), which

exhibit both regular and chaotic behaviors. This is a

challenging problem in visual simulations in computer

graphics of many phenomena related to unsteady dy-

namics, such as meteorology, flight aerodynamics, bub-

bles rising and boiling, and seed dispersal.

Simulating free fall motion by using key-frame con-

trol requires the animator to exert much effort and ex-

pert ability. A physically based method can create re-

liable results only for a simple model, because a com-

plicated model would involve inertial forces and vortex

effects. The heavy computational cost is the fatal dis-

advantage of applying a physically based method to re-

altime applications. In this paper, a procedural motion

synthesis method that includes the lift and drag forces

is proposed to simulate realistic free fall motion in a

still fluid. This method also provides proper simulation

results in a wind field. Our major contributions are as

follows:

– A data-driven motion synthesis method that uses

a precomputed trajectory database and a free fall

motion graph.

– A separate synthesis method that uses six primi-

tive motions (Fig. 1) of free fall behavior, which are

defined in a phase diagram of the dimensionless mo-

ment of inertia and the Reynolds number.

– A Markov chain model based on the motion groups

of these primitive motions allows an accurate es-

timation because of the apparent features of each

primitive motion.
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Fig. 1 Experimentally measured trajectories of primitive
motions. Left to right: steady decent, tumbling, chaotic, flut-
tering observed by [1], helix, and spiral observed by [25].

– An improved 1/fβ noise-based wind field implemen-

tation.

– A hypothesis about global free fall paths verified by

experiments.

1.1 Related works

Scientific interest in free fall phenomena dates back to

one and half centuries ago, when James Maxwell no-

ticed the torque caused by gravity and lift when forces

do not act at the same point [9]. After Maxwell’s re-

search, a few achievements have been made, but the

problem remains unsolved.

A phase diagram using the Reynolds number and

the dimensionless moment of inertia can differentiate

free fall motion patterns observed in experiments [4].

Recently, experiments have found an additional three

typical trajectories in a three-dimensional environment:

zigzag, transitional helix, and spiral motions [25]. Tan-

abe et al. [19] built a simple phenomenological model of

falling paper by solving ordinary differential equations

(ODEs) based on the Kutta-Joukowski theorem. In ad-

dition, another study [13] investigated the relationship

among different parameters that can affect the paths

of a freely falling leaf by performing more than 6000

three-dimensional experiments. There are few studies of

numerical simulations of free fall in two dimensions. An-

dersen et al. [1] discussed direct numerical simulations

of the two-dimensional Navier-Stokes equation and pre-

sented a fluid force model based on ODEs derived from

experiments and simulations. No convincing numerical

simulation can successfully explain chaotic motion and

free fall in three-dimensional space.

Research on free fall simulations is absent in com-

puter graphics. However, there are several simulations

of falling motions in a wind field. Wei et al. [22] pro-

vided the LBM method for simulating soap bubbles and

feathers in a wind field, however, this approach can-

not determine the designated motion trajectory, and it

has difficulty simulating multiple objects, because it re-

quires a large computational cost (bubble: CPU 2.8 fps

and GPU 11.5 fps; feather: CPU 0.76 fps and GPU 6.1

fps). Related example-based approaches have been pro-

posed based on the Markov model [14], captured videos

[2], segments from fluid simulations [15], trajectories an-

imated by Maya [21], and sketches made by a designer

[6]. All these simulations ignore the nature of free fall

and consider it a completely complex and unpredictable

dynamics motion, which is modeled by stochastic pro-

cesses or a simple particle representation. Some com-

mercial computer graphics (CG) tools, including Light-

wave and Maya, do not have the function of free fall

animation; instead, they provide particle simulation to

model a falling object by adjusting the drag and lift

parameters in a wind field. In all of these works, the

motion paths are unpredictable, and it is not easy to

achieve realistic motion.

Example-based data-driven motion synthesis com-

bines the controllability of procedural and physically

based animation with the realistic appearance of a recorded

motion stream (like motion capture). The first paper

about automatically organizing example motion clips

into graphs for efficient motion synthesis proposed a

motion graph technique [3]. Later, Kovar et al. built

an extended motion graph using local search with a

branch and bound algorithm [7]. Besides being used in

character animation, motion graphs are also used in

other physical simulations, such as tree animation [5]

[24]. Our method includes the motion graph technique

for synthesizing free fall motion.

To obtain a wind field, a direct and straight method

is to simulate the turbulent flow under a boundary con-

dition by solving differential equations using a Fourier

filter [16] [17]. Another method is to simulate the mo-

tion in a wind field using noise functions (fractional

Brownian motion) [12] [10]. Comparing the flow-based

and noise-based methods, the flow-based method pro-

vides physically accurate and realistic results but re-

quires a high computational cost, whereas, the noise-

based method is much simpler and suitable for real-

time simulations but at the cost of physical accuracy.

To overcome the inaccuracy of the noise-based method,

a physically based analysis of wind characteristics is

necessary.

1.2 The content of the paper

Our simulation method is illustrated in Fig. 2. This

method has two important steps: motion modeling and

motion synthesis of free fall motion. In the motion-

modeling phase, the input parameters are introduced,

including the physical characteristics of the object and

the fluid in which it is released (release height, mass,
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etc.). We transform these parameters into two key non-

dimensional numbers: the Reynolds number (Re) and

the dimensionless moment of inertia (I∗). Next, we use

the free fall phase diagram to obtain the main primi-

tive motion in which the motion of the object is stable.

To synthesize the primitive motions of free fall, we use

a trajectory search tree to represent chaotic, fluttering

and tumbling motions, and we use a precomputed tra-

jectory database to provide featured motion segments.

The global trajectory is achieved in the motion synthe-

sis phase with an assumed hypothesis of motion clas-

sification determined by numerous experiments. In the

motion graph, primitive motion sequences are treated

as nodes, and edges are connected with probabilities

from the discrete-time Markov chain model. In addi-

tion,the wind field interactions with the falling object

are calculated efficiently. In the end, the final free fall

simulation is achieved in real time.

Fig. 2 Flow of our simulation method

The rest of this paper is organized as follows. In the

next section, we describe modeling primitive motions

based on a phase diagram. In Sect. 3, we discuss how
to synthesize the global motion paths of free fall in a

still fluid. The implementation of the wind field in the

noise-based method is discussed in Sect. 4. The simu-

lation results of free fall motion in realtime under both

wind and no wind conditions are presented in Sect. 5.

The conclusion and possibilities for future work are de-

scribed in the last section.

2 Motion modeling

2.1 Input parameters

A falling object is characterized by the following quan-

tities:

– h: height of release

– L: length of the object

– a: length of the cross section of the object

– b: width of the cross section of the object

– ρs: density of the object

– ρf : density of the fluid

– ν: kinematic viscosity of the fluid

– g: gravity acceleration

From these parameters, three dimensionless quantities

are derived: the Reynolds number (Re), the aspect ratio

of the object (ε = b
a ), and the dimensionless moment of

inertia (I∗). Re and I∗ are the two key quantities for

building a phase diagram of free fall motion (Fig. 3).

Here,

Re =
UL

ν
(1)

where U is the velocity scale of flow. In addition,

I∗ =

∫
V

ρ(x, y, z)

ρfd5

 y2 + z2 −xy −xz
−xy z2 + x2 −yz
−xz −yz x2 + y2

 dxdydz
(2)

where ρ(x, y, z) is the density function of the object. In

special cases, I∗ = πρsb
64ρfa

(disk) and I∗ = 8ρs(a
2+b2)b

3πρfa3

(rectangle).

Commonly, the velocity scale U is approximated by

the average descent velocity of the falling object.

U ∼
√

(
ρs
ρf
− 1)gb (3)

For a lightweight(thin) object, the aspect ratio ε is

Fig. 3 The Re-I∗ phase diagram of free fall motions, includ-
ing six regimes:(a) steady descent, (b) tumbling, (c) chaotic,
(d) fluttering, (e) helix, and (f) spiral motions. The symbols
in the diagram represent experimental results from previous
works.

so small that we omit its effect (ε� 1).
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The Re-I∗ phase diagram (Fig. 3) was introduced

in previous works ([23], [18], [4], [25]). The regimes in

the diagram represent different primitive motions. The

tumbling, fluttering and spiral motions almost appear

periodic; the chaotic motion appears to be the transi-

tional motion between the tumbling and fluttering mo-

tions, and the helix motion appears to be the transi-

tional motion between the spiral and fluttering motions.

The definitions of the primitive motions are as fol-

lows:

– (a) steady descent (SD): the object drops straight

down in the vertical direction

– (b) periodic tumbling (PT): the object turns con-

tinuously end-over-end and drifts in one direction

– (c) transitional chaotic (TC): the object begins to

oscillate with increasing amplitude, the fluttering

motion finally turns in to a tumbling motion, and

chaotic motion is observed

– (d) periodic fluttering (PF): the object oscillates

from side to side with a well-defined period

– (e) transitional helix (TH): the object moves in a

helical path at a constant speed

– (f) periodic spiral (PS): the object falls downward

circularly in three-dimensional space.

The motion trajectories of these primitive motions are

illustrated in Fig. 1.

2.2 Pre-computed trajectory database

It is not easy to build a trajectory database of free

fall motion, because capturing accurate trajectories of

a falling lightweight object in the real world seems to
be infeasible because of chaotic motions and the short

time interval. Using fluid simulation to track vortex par-

ticles from frame to frame by following velocity vectors

is also not suitable for the following reasons: (1) they

cannot detect all primitive motions, (2) they have dif-

ficulty capturing realistic motion trajectories, and (3)

various parameters adjustments make such simulations

difficult to control.

Another approach is to use the Kutta-Joukowski

theorem [19], accounting for the drag and lift forces,

to solve the following ODEs:

ẍ = −(A⊥sin
2θ +A‖cos

2θ)ẋ+ (A⊥ −A‖)sinθcosθẏ
− kLπρfV 2cosβcosα/m

ÿ = −(A⊥cos
2θ +A‖sin

2θ)ẏ + (A⊥ −A‖)sinθcosθẋ
+ kLπρfV

2cosβsinα/m

θ̈ = −A⊥θ̇ − 3πρfV
2cosβsinβ

(4)

where (x, y) and θ are the position and angle of the

center of mass of the falling object. In addition, (u, v)

and ω are the linear and angular velocities of the ob-

ject. Notice that u = ẋ, v = ẏ, ω = θ̇, and V 2 = ẋ2 + ẏ2.

Moreover, m is the mass of the object, which is calcu-

lated from the object’s density and aspect parameters.

The parameters A⊥ and A‖ are the drag coefficients in

the directions perpendicular and parallel to the falling

object, respectively. The angles α and β are defined as

α = arctan(u/v), and β = α+θ, parameter k is defined

as follows:

if sign(v)sinβ ≥ 0, k = 1;

if sign(v)sinβ < 0, k = −1.

We apply the standard fourth-order Runge-Kutta

algorithm to solve the second-order ordinary differen-

tial equations presented in Eq. (4), as shown in Fig. 4

(a). Similar to the fluid simulation approach, it is dif-

ficult to control the ODEs model with the parameters

A⊥ and A‖. For example, the calculated motion tra-

jectory in Fig.4 (b) is meaningless, because it is not

natural for an object to fall vertically after a fluttering

motion. Nevertheless, the object orientation results ob-

tained by solving Eq. (4) are more accurate than other

approaches.

(a) (b)

Fig. 4 (a) Fluttering trajectory determined by solving the
ODEs in Eq. (4) with A⊥ = 4.1 and A‖ = 0.9, (b) Mean-
ingless trajectory determined by solving the ODEs in Eq. (4)
with A⊥ = 4.6 and A‖ = 0.15.

There are two essential steps before building a tra-

jectory database: motion segmentation of free fall tra-

jectories and segment clustering. To obtain various mo-

tion segments, we use a harmonic function to describe

general fluttering motions:

xt = x0 −
Ax
Ω
sin(Ωt)

yt = y0 − Ut−
Ay
2Ω

cos(2Ωt)

(5)

where Ax and Ay are the amplitudes of the vertical

and horizontal velocities of the falling object generated
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by oscillations due to the surrounding viscous flow, Ω

describes the angular frequency of falling motion, and

U is calculated from Eq. (3). The segment breakpoints

are chosen as the turning points of the trajectory given

at time steps ti = 2k+1
2Ω π, k ∈ Z ≥ 0.

After the step of segmentation, there are numerous

motion segments obtained by modifying the parameters

in Eq. (5), as shown in Fig. 5. A motion segment set

(Si|i = 1, 2...N), where is the number of segments, is

classified based on the value of the feature vector of

each segment from the start point P 0
i to the end point

P 1
i . Feature vector sets V {Vi = P 1

i − P 0
i , i = 1, 2...N}

are assigned into classes using the K-means algorithm.

Fig. 5 Trajectory segments obtained from Eq. (5).

The orientation of the falling object in each frame

of Si is linearly interpolated by calculating the angles

in Eq. (4), as shown in Fig. 6. Finally, the position and

orientation data of segments are stored in a trajectory

database.

Fig. 6 Comparing synthesized trajectory (red) and mea-
sured data (black) of fluttering motion, for no orientation
(left) and interpolated orientation (right). Arrow lines repre-
sent feature vectors.

2.3 Primitive motion synthesis

2.3.1 Trajectory search tree

We compare the trajectories of periodic fluttering, chaotic

motion and tumbling motion data from experiments.

Because the airflow behind a free falling object reveals

vortex shedding, turbulence and other complex motions,

the object comes to turning points, where the angular

velocity is zero, and the velocity in the oscillation direc-

tion is also zero, but the velocity in the vertical direction

is maximized. The object faces two alternatives of slid-

ing left or sliding right (fluttering or tumbling). Simple

structures of fluttering, chaotic motion, and tumbling

motion are illustrated in Fig. 7.

Fig. 7 The first two levels of a small trajectory search tree
(1) and the tree structures of fluttering (2), chaotic motion(3),
and tumbling motion(4) created by traversal of four levels of
the search tree. (gl: glide left; gr: glide right)

In the tree structure, every child represents a mo-

tion segment derived from the precomputed trajectory

database using the feature vector as the search key.

2.3.2 Unified trajectory functions

When projecting the motion paths of primitive motions

onto the XY plane, we notice that the curves of six

primitive motions have characteristic shapes: the steady

descent motion trajectory is one point; the fluttering,

tumbling motion and chaotic motion trajectories are in

a straight line; the spiral motion trajectory is a circle;

and the helix motion trajectory is similar to an eight-

petal rose curve, as shown in Fig. 8. These curves are

Fig. 8 Measured curves projected onto the XY plane: (1)
steady descent; (2) fluttering, chaotic motion and tumbling
motion; (3) spiral motion; and (4) helix motion.

all represented in the following equations:

xt = Aecos(Ωt)(1 + εesin(kΩt))

yt = Aesin(Ωt)(1 + εesin(kΩt))

zt = h− Ut
(6)
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where Ae is the amplitude of the elliptical oscillation

generated in the XY plane, εe is the aspect ratio of the

minor axis and the major axis of the oscillation ellipse,

k is the ratio of the period of elliptical oscillation to

the period of rotation of the falling object, and Ω is the

angular frequency of the falling motion. Ad deduced

from Eq. (6), the simple form of the free fall trajectory

is as follows:

– εe → 0, k = 1 7→Spiral motion

– Ae → 0, k → 0 7→Steady descent motion

– εe 6= 0, k = 4 7→Helix motion

Because the nature of chaotic motion is more complex

than that of periodic motion (PF and PT), we synthe-

size chaotic motion with a feature vector V = rV0 and

an amplitude of oscillation Ae = rA0, where r is a ran-

dom number between 1/10 and 10 calculated by the

Box-Muller method, V0 is a feature vector whose orien-

tation is the release angle of the falling object, and A0

is the initial amplitude of object oscillation.

From experimental data [13], we know that the de-

viations of primitive motions Di from the release posi-

tion are distributed in a normal distribution of Gaus-

sian functions Aie
−( r−Bi

Ci
)2

and linearly with the release

height h:

Di =
kBiL

a
(7)

where k is the deviation coefficient. Because the fre-

quency of tumbling motion is given as Ω ∼
√
b/a [8],

the initial amplitude of oscillation is

A0 =
DiU

hΩ
(8)

in which U is the average falling velocity [Eq. (3)].

The final synthesized trajectories of primitive mo-

tions are shown in Fig. 9.

Fig. 9 Six synthesized trajectories determined in this study;
they correspond to the measured trajectories in Fig. 1.

3 Motion synthesis

3.1 Motion classification

The primitive motions {Li|S1, S2, ...Sk} (Sk is the k-th

segment in primitive motion Li) are synthesized from

motion segments Sn from a precomputed trajectory

database. Because primitive motions are the basic free

fall motions observed in various experimental works,

the motion groups {Gi|1 ≤ i ≤ 6} are used to represent

free fall motion.

For a free fall motion M , M{M = m1 ‖ m2 ‖ ...mi}
is annotated by a label Li, where Li is a primitive mo-

tion. We define Li as follows: L1: SD; L2: PF; L3: TC;

L4: PT; L5: TH; and L6: PS, as shown in Fig. 10 (a).

Based on thousands of experiments [13], all free fall tra-

(a) (b)

Fig. 10 (a) Motion classifications (blue: motion classes;
green: motion groups; yellow: motion segments), (b) Motion
classes in experiments.

jectories are classified into seven motion classes [Fig. 10

(b)]. Based on the experimental data, we make the fol-

lowing hypothesis:

Hypothesis If M{M = m1 ‖ m2 ‖ ... ‖ mi} repre-

sents free fall motion in three dimensions, then mi ∈
{Lj |1 ≤ j ≤ 6}, and the subscript sequence {j1, j2, ..ji}
should be an increasing sequence.

We analyze this hypothesis qualitatively. When an

object starts falling from a release point, vortexes are

gradually generated behind the object because of the

vorticity of the surrounding flow. Then, the free fall

motion becomes increasingly sensitive to internal forces,

including the drag and lift forces.

In terms of this hypothesis, the number of potential

motion classes of all primitive motions is determined by

N =

i≤k∑
i=1

Cik, k ∈ Z, k ∈ [1, 6] (9)

where k is the level of the main primitive motion deter-

mined by using the calculated Re and I∗ discussed in

Sect. 2.1.
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Fig. 11 Markov chains model states and transition proba-
bilities

3.2 Markov chain model

We focus on how to determine mi for motion M . The

first-order discrete-time Markov chain model is pro-

posed for solving this issue.

Let us consider a discrete-time stochastic process

{Xn} with N0 ∈ Z ≡ i ∈ [1, 6] as the state space, which

corresponds to motion groups {Gi|1 ≤ i ≤ 6} (Fig. 10).

The Markov property asserts that the distribution of

the random variable Xn+1 in the process {Xn} depends

only on the current state Xn = in, instead of depending

on the whole history:

P [Xn+1 = j|Xn = in] = P [Xn+1|X0 = i0...Xn = in]

where j, i0, ..., in ∈ N0. The stochastic process {Xn} is

a Markov chain.

Let the state space N0 be the motion group G, and

let process {Xn} on {Xt} be a discrete time set, then

the transition probability pij = P [Xt+1 = Lj |Xt = Li]

is the conditional probability to transition from primi-

tive motion Li to primitive motion Lj . The transition

matrix is given as P = (pij) (Figure 11).

Next, we discuss the realization of Markov chain

{Xt} and the transition matrix P . To obtain the pro-

cess {Xt}, the model starts with an initial state at time

t0 = 0. Then an iteration step is executed from state Li
at time t to state Lj at time t+ 1, and the calculation

depends on the probabilities at the i-th row of the tran-

sition matrix P [i.e., Pi = (pij |j = 1, 2..., 6)]. The state

transition probabilities for the transition matrix P are

found by counting the state transitions that occurred

in experimental data. Let set Ni be the number of all

transitions from state Li in the experimental data, Nij
be the number of transitions from state Li to state Lj ,

then the probability is given as pij =
Nij

Ni
.

The advantages of using the first-order discrete-time

Markov chain model are as follows: the next motion is

only related to the current state in the case of primitive

motions; to create a realistic simulation of free fall mo-

tion, the features of each primitive motion can be used

to obtain a valid transition matrix from experimental

data; and the computational cost of the model is low.

3.3 Graph construction

A special free fall motion graph (Fig. 12) is based on

the motion graph described in ref. [7]. This graph is

a complete directed graph: each node of the graph is

connected to other nodes in the same graph. We use

G = (V,E) to represent the motion graph, where V

is the node set, and E is the edge set. Every frame

in a motion sequence of primitive motions appears as

a node in the motion graph; a transition splice in a

motion sequence appears as an edge between nodes. We

only search the graph in one direction (from the top to

down) in the order of mi in the hypothesis presented

in Sect. 3.1. Therefore, for example, it is impossible

for free fall motion to become tumbling motion after

spiral motion. The transition probability is attached to

Fig. 12 Free fall motion graph. A motion path represents
a collection of splices between sequences. Here, two example
motions are shown.

the edge between nodes using the discrete-time Markov

chain model presented in Sect. 3.2.

4 Falling in wind

4.1 Wind field

Let the velocity of wind be V = (Vu, Vv, Vw), where

Vu, Vv, and Vw describe the wind velocity components

along the x-, y- and z- axes of the coordinate system

in the free fall simulation. In addition, let U(h) be the

mean wind velocity at height h. According to the loga-

rithmic wind law [20], U(h) is given by

U(h) =
u∗
k

ln(
h

z0
) (10)

where u∗ is the friction velocity (m/s), k is von Kar-

man’s constant (k = 0.40), and z0 is the roughness

parameter (conceptually it is the height where V goes

to zero). The value of z0 depends on the type of ground

terrain (we choose z0 = 0.3).

The fBm method can suitably represent the wind
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[11]. The spectral density function of the wind field is

given as follows based on Kolmogoroff’s law:

Su(n) = u2∗(
U(h)φ

h
)2/3

C

n5/3
(11)

where φ = εkh/u3∗, ε is the dissipation rate accord-

ing to Kolmogoroff’s law, and C is a constant equal

to α(2πk)−2/3, where α is determined experimentally

to be 0.5. Therefore, C=0.3 for the u wind direction,

and C=0.4 for the v and w wind directions. To obtain

the representation of fBm in S(f) = A/fβ [where A

is the amplitude in wind direction (u, v, w) ], we adopt

the approximations of Au, Av, and Aw from ref. [10] as

follows:

Au = u∗(
U(h)

h
)2/3, β = 5/3

Av = 0.88Au

Aw = 0.55Au

(12)

where u∗ is calculated from Eq. (10). To obtain the

wind velocities, we apply the inverse Fourier transform

to the following equation:

Sp(f1, ..., fn) =
Ap

(
√∑n

i=1 f
2
i )β+n−1

(13)

where n is the dimension number, and p is the wind

direction (u, v, w).

Considering the computational costs of two-dimensional

(2D) and three dimensional (3D) wind field (a 2D grid

size of 100× 100 requires 8ms; a 3D grid size of 100×
100 × 100 requires 1363ms), we use a 2D wind field to

approximate a 3D wind field by using the height of the

falling object. The wind field u(p, t) is represented as:

u(p, t) ≡ u(p′, h, t) =
ln(h)− ln(z0)

ln(h0)− ln(z0)
u(p′, h0, t) (14)

where p′ is the 2D position, and h0 is the release height

of the falling object.

A 2D wind field for two different heights is illus-

trated in Fig. 13 (mean wind velocity: U = 4.0m/s;

grid size: 100× 100).

4.2 Wind-object interaction

Let u(p, h, t) be a 2D wind field at position p and height

h, and let the wind velocity at point p0 = (x0, y0, z0)

be u(p0, z0, t0) = (ux, uy, uz) [ux, uy, and uz are corre-

sponding to the u,v, and w components in Eq. (12)].

To represent the computed trajectory of a falling ob-

ject in a still fluid, we set the trajectory to be a function

f(t), where f(t) is a set of points per frame in the time

domain. At time t0, f(t0) is a quaternion (p0, θ0), which

Fig. 13 Two-dimensional wind field. HEIGHT represents
the distance(m) above the ground. The color represents the
velocity V compared to the mean wind velocity U(red: V >
2U ; pink: U < V ≤ 2U ; blue: U/2 < V ≤ U ; black: V ≤ U/2).
The wind direction is along the x-axis.

Fig. 14 Trajectory of freely falling behaviour in wind field

includes the position and orientation. After time step

δt, f(t0 + δt) comes to point p′. The next point after p0

is set to be p1, p̂0p1 = ̂u(p0, z0, t0)+ p̂0p′ (Fig. 14). If p1
does not coincide with any grid node of the wind field,

assuming the neighboring 2D grid nodes around p1 are

Pi(0 ≤ i ≤ 3), the wind velocity at p1 is calculated from

the linear interpolation of ui at Pi. After the iterations,

the new trajectory f ′(t) of the falling object in a wind

field is synthesized using a Bezier curve to produce a

smooth path with control points pi(i = 0, 1, ...).

Next, we consider the rotation of an object under

the influence of wind. Note that a falling object such

as a leaf or piece of paper, can change its angle in a

wind field. To achieve a realistic effect, we apply a noise

function into the orientation calculation of the falling

object:

θ(t) = WN(t) (15)

where N(t) =
√
u2x + u2y + u2z is obtained from the fBm

noise function in Sect. 4.1, and W is the maximum mo-

tion angle, which is designated by the designer.

5 Results

From the input parameters in Sect. 2.1, the main prim-

itive motion Li is determined by using a calculated
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Re and I∗ phase diagram. According to the hypoth-

esis in Sect. 3.1 and the Markov chain model, global

path synthesis starts from a random primitive motion

Lj(i < j), and the next primitive motion is estimated

from the transition matrix. The primitive motion seg-

ments are determined from a precomputed trajectory

database. To efficiently evaluate our simulations, we

compare them with experimental videos of free falling

objects.

The simulation results presented in Fig. 15 suggest

that our simulations are realistic and that the meth-

ods used in our simulation are applicable in various flu-

ids, such as water and air. Figure 15 (a) shows an alu-

minum circular disk (radius: 1.0cm; thickness: 0.15cm)

free falling in still water from a height of 50cm. We

use the Re − I∗ phase diagram to determine that the

main primitive motion is fluttering for I∗ = 10−2 and

Re = 3.55 × 103. Note that both the simulation and

the video show fluttering motion as the global free fall

path.

(a)

(b) (c)

Fig. 15 Comparison of our simulations(right) with the
ground truths (left). (a): A Japanese yen coin freely falls in
water. (b) A paper freely falls in air. (c) A leaf freely falls in
air.

Figure 15 (b) shows an elliptical piece of paper (ma-

jor axis: 8.0 cm; minor axis: 2.0 cm; thickness: 0.01 cm)

freely falling in still air from a height of 3.1 m. Be-

cause I∗ = 2.2 × 10−3 and Re = 6.8 × 103, the phase

diagram indicates that the main primitive motion is a

spiral motion. Note that the falling motion consists of

both tumbling and spiral motions, which is consistent

with the hypothesis in Sect. 3.1.

Figure 15 (c) shows a leaf (major axis: 7.3cm; minor

axis: 4.2cm; thickness: 0.03cm) freely falling in still air

from a height of 2.0 m. Because I∗ = 6.3 × 10−3 and

Re = 1.2 × 104, the phase diagram indicates that the

main primitive motion is a transitional helix motion.

Note that the falling motion consists of steady descent,

tumbling and helix motions.

In Fig. 16, free fall motion paths are coupled with

different wind fields. The black dots represent the con-

trol points of Bezier curves. Figure 16(a) has a low wind

field, therefore, the motion path is similar to that in Fig.

15 (c). Figure 16(b) and (c) have higher wind fields, and

the influences of the wind are apparent.

Figure 17 shows the final simulated free fall motion

in no wind [Fig. 17(a)] and in two strong wind fields

[Fig. 17(b) and (c)] that correspond to the conditions

in Fig. 16(b) and (c), respectively. We found that under

a strong wind field, tumbling motion disappears and the

object travels far.

All simulations were implemented in C++ on an

Intel Core i7 CPU 3.20 GHz with 12.0 GB RAM in

real time (around 50fps). Because most of our method

was executed offline, the online motion synthesis and

optimization process were rarely memory consuming;

therefore, our simulation is not only realistic but also

feasible for interactive applications.

Fig. 16 Free fall motion paths for different values of the
mean wind velocity U .(a) U = 1.0m/s, (b) U = 3.0m/s, and
(c) U = 5.0m/s). The wind direction is from right to left.

6 Conclusion

This paper presents a framework for simulating realis-

tic free fall motion in both still fluids and wind fields.

In addition, it presents the first research on the physi-

cal details of free fall motion. Furthermore, it proposes

an efficient motion synthesis method to achieve realistic

free fall simulations in real time.

This work is limited to the study of objects with

regular geometries (such as rectangular, circular, and
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Fig. 17 Final synthesized free fall motion in different wind
fields. (a) No wind as reference, (b) Mean wind velocity U =
3.0m/s, and (c) U = 5.0m/s. The wind direction is from right
to left.

elliptical) and constant densities. For objects with ir-

regular geometries and uneven density distributions, it

is difficult to determine the influences of the geometry

and density distribution modifications on the free fall

motion. When a paper or plastic object falls freely, the

object can change its shape, we omit the effect of this

shape deformation in this work.

In the future, we could use the pattern-based method

to apply the current simulations as patterns in fluid

simulation. Because free fall is a common phenomenon

for lightweight objects, it is promising to couple our

simulation method with simulations used in the game

industry and other areas of computer graphics.

Simulating oscillations is an intriguing topic. For ex-

ample, oscillations could occur in different directions if

an object has a high number of degree-of-freedom. The

quantitative analysis of oscillations of an object in free

fall is another feasible method for the motion synthesis

of free fall motion.
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