Pattern-Guided Simulations of Immersed Rigid Bodies

Haoran Xie¹ Kazunori Miyata²

1. The University of Tokyo, JAPAN

2. Japan Advanced Institute of Science and Technology, JAPAN

"Immersed body dynamics"

Natural, Efficient, Turbulent, Coupling simulations in CG

Where we stand?

Unsolved problem

Phenomenal models

Simulation models

(Physics)

Challenges

- Coupling (fluid) simulations
 - Not efficient!
- Aerodynamic simulations
 - Not complex!
- Direct motion capture simulation
 - Not easy!
- Physics model simulat.
 - Not real!

Heavy markers

Motion blur

J. Fluid Mech 2013

-13 -14

-15 -16

-17 d.s.8.s

-0.5 0 0.51 H.XIE@MIG

Pattern-guided Framework -a macro intro

- Principles
 - p1. <u>Avoiding</u> the computations of fluid motions
 - p2. Accounting for the surrounding <u>flow effects</u>
 - p3. <u>Hybrid approach of numerical and data-based methods</u>

What is **Patterns?** Real environments

Experimental Test

rigid body: elliptical paper major axis: 4.0 cm minor axis: 2.0 cm thickness: 0.04 cm release angle: 30° release height: 120 cm camera: SONY SLT-A77V Environment: Indoor

7

What is **Patterns?**

Ideal environments

[Zhong, J. Fluid Mechanics 2013]

Pattern-guided Framework —a micro intro

- Methodology
 - m1. Ideal motions are simple, but primitive patterns
 - m2. Motion transitions among <u>patterns</u> at turning points
 - m3. Motion capture of motion patterns, better than trajectories
 - m4. Parameter subspaces of models corresponding to <u>patterns</u>

m4

10

Flow Effects

F1. Inertial effect,F2. Viscous effect,F3. Turbulent effect

...the force on a body may be divided into (i) a potential-flow force that depends linearly on the body velocity, and can be accurately calculated; and

(ii) a vortex-flow force that varies nonlinearly and is related in a definite way to vortex shedding and to the convection of shed vorticity.

--Sir James Lighthill

H.XIE@MIG

Analytic Added Tensors

- A simple and efficient approach for Laplace Equations
 - Bounding ellipsoid
 - Approximated solution

 $\begin{array}{ll} \text{Kinetic} & E_a = \frac{1}{2} m_f \frac{a_0 u^2}{2 - a_0} & \text{(a,b,c: axes of ellipsoid)} \\ & a_0 \equiv a b c \int_0^\infty \frac{d\lambda}{(a^2 + \lambda)\sigma} \\ & \sigma = \sqrt{(a^2 + \lambda)(b^2 + \lambda)(c^2 + \lambda)} \\ \text{Kinetic} & E_a^r = \frac{1}{2} m_f \frac{(b^2 - c^2)^2 (c_0 - b_0) \omega^2}{10(b^2 - c^2) - 5(b^2 + c^2)^2 (c_0 - b_0)} \\ \end{array}$

F2. Viscous Effect

Force Coefficients

• Instantaneous coefficients

$$C = C(\alpha, Re)$$

(angle of attack, Reynolds number)

Generalized Parameter Model

$$(C_d, C_{l1}, C_{l2}) = (C_D \sin^2 \alpha, C_{L1} \sin(2\alpha), C_{L2} \cos(2\alpha))$$
$$\alpha = \tan^{-1}(\|u_n\| / \|u_t\|)$$

Generalized Kirchhoff Equation

Dynamical Model

 $\mathbf{M}_a \dot{\boldsymbol{u}} = (\mathbf{M}_a \boldsymbol{u}) \times \boldsymbol{\omega} + F_v$

$$\mathbf{I}_a \dot{\boldsymbol{\omega}} = (\mathbf{I}_a \boldsymbol{\omega}) \times \boldsymbol{\omega} + (\mathbf{M} \boldsymbol{u}) \times \boldsymbol{u} + \Gamma_M$$

Force decomposition:
$$F_v(X) = \begin{pmatrix} F_D + F_{L1} + F_{L2} + F_G \\ \Gamma_M + \Gamma_G \end{pmatrix}$$
 gravity
 $= \begin{pmatrix} F_D + F_{L1} + F_{L2} \\ \Gamma_M \end{pmatrix} (X) + m_f \begin{pmatrix} (\bar{\rho}/\rho_f - 1)R^Tg \\ \vec{r} \times R^Tg \end{pmatrix}$
 $\Gamma_M = \vec{p} \times (F_D + F_{L1} + F_{L2})$
 $\|\vec{p}\| = (1 - \sin^3 \alpha)a/4$

Flow Effects

F1. Inertial effect,F2. Viscous effect,F3. Turbulent effect

 $C = C(\alpha, Re)$ $(C_d, C_{l1}, C_{l2}) = (C_D \sin^2 \alpha, C_{L1} \sin(2\alpha), C_{L2} \cos(2\alpha))$ H.XIE@MIG 17