I211 数理論理学

横山啓太

その4 (2020年11月12日)

- **Q 14.** 1. 順序関係 < 、等号 = と定数 0 を用いて、以下の言明を表現する(述語論理の)論理式を書け。
 - (例) <は(狭義)全順序である。
 - (a) 0 が最小元である。
 - (b) 極小元が存在しない。
 - 2. 1項関係記号 $S(\cdot)$ 、等号 = を用いて、以下の言明を表現する(述語論理の)論理式を書け。
 - (例) S を満たす元は高々2個しか存在しない。
 - (a) Sを満たす元は高々4個の元しか存在しない。
 - (b) S を満たす元はちょうど 4 個存在する。
- **Q 15.** $\mathcal{L} = (c; f(x); R(x))$ とする。論理式 ψ を次で与える。

$$\psi \equiv \forall x (f(c) = x \to ((x = y \to f(c) = y) \land (\forall z (y = c \lor y = f(x))))).$$

- 1. ψ の部分論理式を列挙し、それぞれの自由変数および束縛変数を指摘せよ。
- 2. 論理式 $\psi[f(f(c))/y]$ を具体的に書き下せ。
- 3. 論理式 $\psi[f(z)/y]$ を考えたい。そのまま代入を実行して良いか?

- **Q 16.** $\mathcal{L}=(\times;\leq)$ とする。($\mathbb{N};\times;\leq$)、($\mathbb{Z};\times;\leq$) 若しくは($\mathbb{Q};\times;\leq$) での、以下の論理式の真理(真か偽)を答えよ。(ここでは \times は二項関数の記号、 \leq は二項関係の記号であり、通常の積および「 \sim より大きくない」を表す順序として解釈される。)
 - 1. $\forall x \forall y (x \leq y \lor y \leq x)$.
 - 2. $\exists z \forall x (z \leq x)$.
 - 3. $\forall x \forall y ((x \leq y \land \neg x = y) \rightarrow \exists z (x \leq z \land z \leq y \land \neg x = z \land \neg y = z)).$
 - 4. $\forall x \forall y \forall z (x \leq y \rightarrow x \times z \leq y \times z)$.
- **Q 17.** $\mathcal{L}=(c;f(\cdot);S(\cdot))$ とする。以下の \mathcal{L} -論理式が充足可能であるかを答え、その理由を説明せよ。
- (例) $\forall x(S(x) \leftrightarrow \neg S(f(x))) \land S(c)$.
- (例) $\exists x S(x) \land \exists x \forall z (S(z) \to z = x) \land \forall x (S(x) \to S(f(x))) \land \forall x (\neg (x = f(x))).$
 - 1. $\forall x(f(x) = x) \land S(c) \land \neg S(f(c))$.
 - 2. $\exists y \forall x f(x) = y \land \forall x (S(x) \to x = c) \land \neg S(f(c))$.
 - 3. $\forall x \forall y (f(x) = f(y) \rightarrow x = y) \land \forall x ((x = c) \leftrightarrow \neg S(x)) \land \forall x (S(x) \rightarrow \exists y (x = f(y))).$
- **Q 18.** \mathcal{L} を言語、 φ, ψ を $FV(\varphi) = FV(\psi) = \{x\}$ であるような \mathcal{L} -論理式とする。 (真理の定義により) 以下の \mathcal{L} -文が恒真であることを示せ。
- (例) $\exists x(\varphi \lor \psi) \leftrightarrow \exists x\varphi \lor \exists x\psi$.
 - 1. $\forall x(\varphi \wedge \psi) \leftrightarrow \forall x\varphi \wedge \exists x\psi$.
 - 2. $\forall x(\neg \varphi) \leftrightarrow \neg(\exists x \varphi)$.

Q 19. $\mathcal{L} = \{e; \cdot\}$ とし、G を群の理論とする。すなわち、G は以下の論理式の全称 閉包から成る。

(i)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

(ii)
$$x \cdot e = x \wedge e \cdot x = x$$

(iii)
$$\exists y(y \cdot x = e \land x \cdot y = e)$$

以下を示せ。

- 1. \mathbb{Q} を有理数の集合、 $\times_{\mathbb{Q}}$ を \mathbb{Q} 上の乗法とする。このとき ($\mathbb{Q}\setminus\{0\}$; 1; $\times_{\mathbb{Q}}$) $\models G$.
- 2. $G \models \exists y \forall x (x \cdot y = x)$.
- 3. $G \not\models \forall x \forall y (x \cdot y = y \cdot x)$.

Q 20. $\mathcal{L} = \{<\}$ とし、T を順序の理論とする。すなわち、T は以下の論理式(の全 称閉包)から成る。

- (i) $\neg (x < x)$ (非反射律)
- (ii) $x < y \land y < z \rightarrow x < z$ (推移律)

以下を示せ。

- 1. $T \models \forall x \forall y (x < y \rightarrow \neg (y = x \lor y < x)).$
- 2. $T \not\models \forall x \forall y (x < y \lor x = y \lor y < x)$.
- 3. $T \cup \{ \forall x \forall y (x < y \lor x = y \lor y < x) \}$ $\models \forall x_1 ... \forall x_{100} \bigvee_{1 \le i < j \le 100} (x_i = x_j) \rightarrow \exists y \forall x (x < y \lor x = y).$