I211 Mathematical Logic

横山啓太

November 2， 2017

Q 1．Using the order relation $<$ ，equality $=$ ，the function + and the constants 0,1 ， write sentences（of predicate logic）to describe the following statements ．

1． 0 is the minimal element．
2．There is no maximal element．
3．If $x<x+y$ ，then y is not 0 ．
4．If there is no x such that $x+x=y$ ，then there is z such that $(z+z)+1=y$ ．
Q 2．Let $\mathcal{L}=(\times ; \leq)$ ．Answer the truth（true or false）of the following formulas in $(\mathbb{N} ; \times ; \leq),(\mathbb{Z} ; \times ; \leq)$ or $(\mathbb{Q} ; \times ; \leq)$ ．（Here，\times is a binary function symbol，\leq is a binary relation symbol and they are understood as the usual product and the order ＂not greater than＂．）

1．$\forall x \forall y(x \leq y \vee y \leq x)$ ．
2．$\exists z \forall x(z \leq x)$ ．
3．$\forall x \forall y((x \leq y \wedge \neg x=y) \rightarrow \exists z(x \leq z \wedge z \leq y \wedge \neg x=z \wedge \neg y=z))$ ．
4．$\forall x \forall y \forall z(x \leq y \rightarrow x \times z \leq y \times z)$ ．
Q 3．Let $\mathcal{L}=(R(x) ; f(x) ; c)$ ．Enumerate all subformulas of the following，and find free variables（FV）and bounded variables（BV）of each of them．

$$
\forall x(f(c)=x \rightarrow((x=y \rightarrow f(c)=y) \wedge(\forall z(y=c \vee y=f(x))))) .
$$

Q 4 (review). Show that the following are provable in LK.

1. $(A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A)$.
2. $(A \rightarrow B) \vee(B \rightarrow A)$.
3. $((A \rightarrow B) \wedge(B \rightarrow C)) \rightarrow(A \rightarrow C)$.
4. $(\neg A \wedge A) \rightarrow B$.

Q 5. Show that the following are provable in LK.

1. $\forall x(\varphi \wedge \psi) \rightarrow \forall x \psi$
2. $\exists x \psi \rightarrow \exists x(\varphi \vee \psi)$
3. $(\exists x \varphi \rightarrow \forall x \psi) \rightarrow \forall x(\varphi \rightarrow \psi)$
4. $\neg \exists x \neg \varphi \rightarrow \forall x \varphi$

Q 6. Let $\mathcal{L}=(c ; f(\cdot), g(\cdot) ; R(\cdot), S(\cdot))$. Show that the following are provable in LK.

1. $\forall x(R(x) \rightarrow S(x)) \rightarrow(\exists y R(y) \rightarrow \exists y S(y))$
2. $\neg(f(c)=c) \rightarrow \exists x \exists y \neg(x=y)$
3. $\forall x(g(f(x))=x) \rightarrow \forall x \forall y(f(x)=f(y) \rightarrow x=y)$
4. $\forall x(f(g(x))=x) \rightarrow \forall x \exists y(x=f(y))$
(advanced): Check the meaning of the above 3 and 4, and consider the reason why they are always true.

Q 7. Show that the following are valid.

1. $\forall x((A \wedge \neg A) \rightarrow B)$
2. $(\exists x A) \vee(\forall x \neg A)$
3. $\neg(\exists x(A \vee B)) \rightarrow \neg(\exists x A \vee \exists x B)$
4. $(\forall x A \rightarrow \exists y B) \rightarrow(\forall y \neg B \rightarrow \exists x \neg A)$

Q 8. Let $\mathcal{L}=(c ; f(\cdot), g(\cdot) ; R(\cdot), S(\cdot))$. Show that the following are valid.

1. $\forall x(x=c \rightarrow R(f(x))) \rightarrow R(f(c))$
2. $\forall x(R(x) \rightarrow S(f(x))) \rightarrow(\exists x R(x) \rightarrow \exists y S(y))$
3. $\forall x \forall y(f(x)=g(y)) \rightarrow \forall x(f(x)=g(c))$
4. $(\exists x S(x) \wedge \neg S(c)) \rightarrow \exists x \exists y(\neg x=y)$
