I211 Mathematical Logic

横山啓太

November 13， 2017

Q 9．Let $\mathcal{L}=(c ; f(\cdot) ; S(\cdot))$ ．Answer whether the following \mathcal{L}－formulas are satisfiable or not，and explain the reason．

1．$\forall x(S(x) \leftrightarrow \neg S(f(x))) \wedge S(c)$ ．
2．$\forall x \forall y(f(x)=f(y) \rightarrow x=y) \wedge \forall x((x=c) \leftrightarrow \neg S(x)) \wedge \forall x(S(x) \rightarrow \exists y(x=$ $f(y))$ ）．

3．$\exists x S(x) \wedge \exists x \forall z(S(z) \rightarrow z=x) \wedge \forall x(S(x) \rightarrow S(f(x))) \wedge \forall x(\neg x=f(x))$ ．
Q 10．Let \mathcal{L} be a language， \mathcal{M} be an \mathcal{L}－structure，and φ be an \mathcal{L}－formula with $F V(\varphi)=\{x\}$ ．Show（by the definition of the truth）that the following 1 and 2 have the same truth value in \mathcal{M} ．

1．$\forall x(\neg \varphi)$ ．
2．$\neg(\exists x \varphi)$ ．
Q 11．Let $\mathcal{L}=\{e ; \cdot\}$ ，and let G be the theory of groups，i．e．，G consists of the （universal closure of the）following sentences．

1．$(x \cdot y) \cdot z=x \cdot(y \cdot z)$
2．$x \cdot e=x \wedge e \cdot x=x$
3．$\exists y(y \cdot x=e \wedge x \cdot y=e)$
Show the following．
1．$G \models \exists y \forall x(x \cdot y=x)$ ．
2. $G \not \vDash \forall x \forall y(x \cdot y=y \cdot x)$.

Q 12. Let $\mathcal{L}=\{e ; \cdot\}$, and let G be the theory of groups. Show the following.

1. $G \vdash \forall x \forall y \forall z((y \cdot x=e \wedge z \cdot x=e) \rightarrow y=z)$
2. $G \vdash \forall x \forall y(y \cdot x=e \rightarrow x \cdot y=e)$

Q 13 (advanced). Let $\mathcal{L}=(0,1 ;+, \times)$. Robinson arithmetic Q consists of the following:

1. $\neg(x+1=0)$
2. $(x+1=y+1) \rightarrow(x=y)$
3. $(y=0) \vee \exists x(x+1=y)$
4. $x+0=x$
5. $x+(y+1)=(x+y)+1$
6. $x \times 0=0$
7. $x \times(y+1)=(x \times y)+x$

Peano arithmetic PA is defined as

$$
\mathrm{PA}=\mathrm{Q} \cup\{(\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1))) \rightarrow \forall x \varphi(x): \varphi \text { is an } \mathcal{L} \text {-formula }\}
$$

We use n for the the abbreviation of the term $((\ldots(\overbrace{1+1)+1) \cdots+1}^{n})$. Prove the following.

1. $\mathrm{Q} \vdash 2+3=5$
2. $\mathrm{Q} \vdash x \times 2=x+x$
3. $\mathrm{PA} \vdash \forall x \forall y(x+y=y+x)$
