I211 Mathematical Logic

横山啓太

November 20, 2017

Q 14. Let $\mathcal{L} = \{c; f(\cdot)\}$. Answer whether the following are provable, disprovable or unprovable but not disprovable, and explain the reason.

- 1. $\forall x \forall y (f(x) = f(y) \rightarrow x = y) \land \forall x (\neg f(x) = c).$
- 2. $\exists x \exists y \exists z (\neg x = y \land f(z) = x \land f(z) = y).$
- 3. $\forall x \forall y \forall z (x = y \lor y = z \lor x = z) \to (\exists x \exists y f(x) \neq f(y) \to \forall x \exists y f(y) = x).$

Q 15. Let \mathcal{L} be a language, Γ be a finite \mathcal{L} -theory and φ be an \mathcal{L} -sentence. Show the following.

 Γ, φ is inconsistent if and only if $\Gamma \vdash \neg \varphi$.

Q 16 (advanced). For the soundness theorem, we need to check the following by induction on the height of LK-proofs.

(*) Assume $FV(\Gamma) \cup FV(\Delta) = \vec{x} = (x_1, \dots, x_k)$. Then, for any \mathcal{L} -structure $\mathcal{M} = (M; \dots)$ and for any $\vec{a} = (a_1, \dots, a_k) \in \overline{M}$

$$\mathcal{M} \models \bigwedge \Gamma[\vec{a}/\vec{x}] \Longrightarrow \mathcal{M} \models \bigvee \Delta[\vec{a}/\vec{x}]$$

In other words, we need to show

- (i) (*) holds for initial sequents, and,
- (ii) for each inference rule, if (*) holds for the upper sequent, then (*) holds for the lower sequent.

Answer the following.

- 1. Initial sequents for equality satisfy the condition (*).
- 2. Check that cut, $\neg R$, $\land R$, $\lor L$ rules satisfy (ii).
- 3. Check that $\exists R$, $\exists L$ rules satisfy (ii).

Q 17 (advanced). Let $\mathcal{L} = \{R(x), S(x); a\}$. Show that the following are provable in LK.

- 1. $\exists x(R(x) \rightarrow \forall yR(y)).$
- 2. $\exists x((R(a) \rightarrow \exists y S(y)) \rightarrow (\forall z(R(z) \rightarrow \neg S(z)) \rightarrow R(x))).$