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1. Introduction
Dynamic configuration of (backbone) networks in an
emergent or self-organized manner

Problems for efficient communication such as in
distributed sensor networks or P2P systems

dissipation of wireless
beam-power or
wired line-cost for
long-range links

interference by crossing
of links (non-planar)

to realize efficient transport of packets
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1-1. Model of Ad-Hoc Nets
We assume that

• a network evolves with a new node
• the position of each node is fixed
• a few nodes have sufficient power to be hubs
• various transmission ranges and the orientation

are controllable (for wireless links)
• It is better that only local information is used

because of the topological change

These are reasonable in the current technology, but we

don’t care about the details in device or application
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1-2. Efficient Routing
Planar triangulation: reasonable math. abstraction of
ad hoc net. Moreover, a memoryless, no defeat, and
competitive online routing algorithm has been
developed for planar networks taking into account the
face.

Source

Destination

Bose and Morin, SIAM J. of Comp. 33(4), 2004
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1-3. Motivation for Shortcuts
Shorten the path length remaining local clusters

SW model, D.J. Watts and S.H. Strogatz, Nature, 393, 1998

Moreover, the robustness can be improved by adding
shortcuts to a one-dim. SW model
C. Moore, and M.E.J. Newman, PRE 61, 2000
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1-4. Objective
To investigate the effect of shortcuts on geographical
networks in the viewpoints:

the tolerance of connectivity to random failures and
targeted attacks on hubs

the backbone for transport measured by the usage
and centrality of links on the shortest paths

in typical planar network models:
• random Apollonian network in complex network

science,
• Delaunay triangulation in computer science,
• our proposed models to bridge them.
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1-5. Scale-Free Nets with Hubs
Existing a surprisingly common structure: SF net.
the degree dist. follows P (k) ∼ k−γ , 2 < γ < 3, in
many social, technological, and biological nets.

Efficiency & Economy with short paths as the
hop-count O(ln N) and the low cost of links as
few as possible in the connectivity (Solé et al.,

Advances in Complex Systems 5, 2002)

Robust connectivity for random failures (Albert et al.,

Nature 406, 2000)

⇒ However, most of SF net models were irrelevant to

a geographical space.
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2. Geographical SF Nets

Many real nets have not only scale-free but also
geographical heterogeneity:

• The Internet, power-grid, and airline-flight
connections, etc. are embedded in a metric space

• Nodes are usually concentrated in a urban city
(there are dense and sparse areas on the earth)

• Especially for wireless communication, planarity
is suitable

• Majority of links are short due to economical
reasons for the construction and maintenance
costs
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2-1. Rare Long-range Links

Histograms of the
lengths of links
Gastner and Newman, Eur.

Phys. J.B 49, 2005

Also, the length dist.
of the links between
routers: P (l) ∼ l−1

Yook et al., PNAS 99, 21, 2002
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2-2. Random Apollonian Net
Configuration: iterative subdivision of a randomly
chosen triangle from an initial triangulation

Add a new node
inside a chosen triangle

Connect to its closest 3 nodesInitial triangulation

⇒ Some long-range links naturally appear in narrow
collapsed triangles near the boundary edges

Zhou, Yan, Wang, Phys. Rev. E 71, 2005
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2-3. Voronoi and Delaunay
Optimal triangulation in some geometric criteria:
maximim angle, minimax circumcircle, short path
length in the same order as the direct Euclidean dist.

Dual Graph

⇒ Consider the combination of RA (by triangulation

on a plane) and DT to avoid the long-range links
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2-4. Delaunay-like SF Net
We propose DLSF:

• Set an initial planar triangulation.
• Select a triangle at random and add a new node at

the barycenter. Then, connect the new node to its
three nodes tentatively. By iteratively applying
diagonal flips, connect it to the nearest node(s)
within a radius as a localization.

1st diagonal flip 2nd diagonal flip

= +
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2-5. Topological Structure
DLSF has the intermediate structure

RA DT DLSF

We should remark that there exists
• mixing of dense and sparse areas as similar to a

population density
• star-like stubs at four corner and the center nodes
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2-6. Degree Distribution
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3. Improvement of Robustness

SF nets are extremely
vulnerable for the inten-
tional attacks on hubs
R. Albert, and A.-L. Barabási,

Nature 406, 378, 2000

⇒ It’s further affected by
geographical constraints,
such as local cycles.
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3-1. Theoretical Prediction
The breaking of connectivity for random failures
becomes more serious by small-order cycles

On the assumpt. of a tree Lc = 0, the percolation
threshold q∗c = 〈k〉/(〈k2〉 − 〈k〉) is well-known.

⇓
It is generalized to any cycle length e.g. Lc = 3,

qc =
〈k〉

〈k(k − 1)〉 −
(

1 − qc
〈k(k−2)〉

〈k〉

)

〈C(k)k(k − 1)2〉
,

1 − fc = qc > q∗c predicts decreasing of robustness.

Huang et al., Europhy. Lett. 72, 2005 & PRE 75, 2007
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3-2. Damages by Attacks

RA

DT

targeted attacks on
16 hubs

Initial N=200

Vulnerable RA broken to many isolated clusters
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3-3. Overhead Bridge
The effect of adding shortcuts on the robustness

⇒ To bridge the isolated areas on the plain
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3-4. Giant Component
Relative size S/N of the GC vs. fraction f of attacks
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Hayashi et. al., Physica A 380, 2007

⇒ The robustness is improved remaining with a bigger

GC from © 0 % to 5 30 % of the shortcuts rate
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3-5. Hetero. Communication
Spatially heterogeneous communication

Assumed that both source and terminal are chosen in
uniformly random from all nodes at every time step.

However the spatial distribution of packet generation
and receiving is remarkably heterogeneous
• Dense area ↔ much more communication
• Sparse area ↔ few frequent one

according to the geographical configuration of
nodes.
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3-6. Superhighways
Consider the distribution P (u) of frequency of
superhighways u

def
= lsuper/lshort

where lsuper is the number of shortcuts in a given
shortest path of length lshort
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⇒ High frequency in spite of only 3 or 10 % of the

total
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3-7. P (Bl) of Link Centrality
Normalized betweenness centrality of link l on the
shortest distant path between nodes j and k
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⇒ The peak is righter for the shortcuts with higher Bl
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4. Summary: shortcut effects
Based on the realistic SF properties,

• we’ve proposed a modified model from RA in
complex net. science and DT in computer science
to reduce long-range links on a planar space for
ad hoc networks.

• For the vulnerability to attacks caused by
geographical constraints, it has been shown that
adding shortcuts of only about 10 % of the total
improve it.

• They also construct a necessary backbone such as
superhighways to bridge isolated clusters
(more contribute in the measures of frequency
and centrality of links used on the shortest distant
paths.)
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Thanks

Thank you for your kind attention !

Related papers: (see Ref. in the Proc.)
• Geographical effects on the path length and the

robustness in complex networks,
Physical Review E 73, 066113, (2006).

• Improvement of the robustness on geographical
networks by adding shortcuts,
Physica A 380, 552-562, (2007).
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A1. Damages by Failures

RA

DT

randomly removed
32 nodes

Initial N=200

Similarly remained connectivity in the GC
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A2. Breaking of GC at the Peak
Average size 〈s〉 of isolated clusters except of the GC
vs. fraction f of attacks
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Inset shows the peaks enlarged by other scale of the

vertical axis. The robustness is more improved by

larger shortcut rate (from © 0 % to 5 30 %).
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A3. Randomly Rewired Nets
We compare the tolerance to random failures of nodes
and targeted attacks on hubs in the geographical and

non-geographical randomly rewired networks, when
a fraction f of nodes is removed.

:
:: :

::

:

:

:

:

:
:

:
:

:
:

Rewiring a pair of links with the same degree at each node

Maslov et al., Physica A 333, 2004
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A4. Tolerance to Failures
Relative size S/N of the giant component
Inset: the average size 〈s〉 of isolated clusters
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(b) rewired nets

⇒ Similar robustness in RA: ©, DT: 4, DLSF: +
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A5. Tolerance to Attacks
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⇒ Improvement from the extremely vulnerable RA

Hayashi et. al., PRE 73, 2006
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A6. Classes of Geo. SF Nets

• Modulated BA:
Πi ∼ ki × lα,
rand. position
of node

• SF on lattices:
connect within
r = A × k

1/d
i

• Space-filling:
subdivision
of a region
(heterogeneous
dist. of nodes)

Step 0 Step 1 Step 2

initial N0 nodes with m links

pref. attach.

new m links

:

assign a degree k

saturated node

select a node

initial trianglulation add new node

add new node

connect to its 3 nodes
into a chosen triangle

connect to the neighborhoods
in the radius r = A k

(a) BA

(b) SFL

(c) RAN

1/2
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A7. Planarity and Shortness
class planarity of net shortness of links

Modulated BA × ©

Manna’02, ∃ crossing links with disadvantaged

Xulvi-Brunet’02 (not prohibited) long-range links

SF on lattices × 4

ben-Avraham’03, cross of regular ∃ long shortcuts

Warren’02 links and shortcuts from hubs

Space-filling © 4

Apollonian nets. by subdivision ∃ long-range links

Doye’05, Zhou’04 of a selected region in narrow triangles
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