## Geographical Scale-free Triangulation

-Related to the communication structure based on population-
Yukio Hayashi, and Jun Matsukubo
yhayashi@jaist.ac.jp

Japan Advanced Institute of Science and Technology

## 1. Background

Existing a surprisingly common structure: SF net. the degree dist. exhibits $P(k) \sim k^{-\gamma}, 2<\gamma<3$.

Social: acquaintance, world trading, actor-collabo., citation, language
Technological: Internet, WWW, email, power grid Biological: neural net, genome, metabolic pathway, foodweb

## One of the fundamental generation mechanism has been proposed: Growth \& Preferential Attachment

Barabási and Albert, Physica A, 272, 1999

## 2. Scale-Free Nets with Hubs

- Optimal: the efficiency as short path lengths and the cost as few links (Solé et al., Advances in Complex Systems 5, 2002), Robust for failures (Albert et al., Nature 406, 2000)


## 2. Scale-Free Nets with Hubs

- Optimal: the efficiency as short path lengths and the cost as few links (Solé et al., Advances in Complex Systems 5, 2002), Robust for failures (Albert et al., Nature 406, 2000)
- However, most of SF net models were irrelevant to a geographical space.


## 2. Scale-Free Nets with Hubs

- Optimal: the efficiency as short path lengths and the cost as few links (Solé et al., Advances in Complex Systems 5, 2002), Robust for failures (Albert et al., Nature 406, 2000)
- However, most of SF net models were irrelevant to a geographical space.
$\Downarrow$
- Therefore, we consider geographical SF nets, especially as planner graphs without crossing links to avoide interference of wireless beams.


## 2-1. BA model

- A network grows from an initial $N_{0}$ nodes with $m<N_{0}$ links among them.
- At every time step $t$, a new node is introduced, and is randomly connected to $m$ previous nodes $i$ with an attachment probability $\Pi_{i}^{B A}(t) \sim k_{i}(t)$.



## 2-2. Restriction of Links



## 2-3. Geographical SF Nets

| model | generation rule |
| :---: | :---: |
| Modulated BA <br> Manna'02, <br> Xulvi-Brunet'02 | competition between pref. attach. and dist. $l$ <br> $\Pi_{i}(t) \sim k_{i}(t) l^{\alpha}, \alpha<0$ |
| SF on lattices <br> ben-Avraham'03, | confi guration from randomly assigned degree $k_{j}$ <br> restricted links in the radius $r\left(k_{j}\right)=A k_{j}^{1 / d}$ |
| Warren'02 | Apollonian nets. |
| Doye'05, Zhou'04 | iterative triangulation on a planner space <br> geo. attach. pref. but $\exists$ long-range links |

## 1 st \& 2nd: crossing links causes interference.

3rd: long-range links causes dissipation of the power.

## 3. Random Apollonian Net

Two models based on geo. attach. pref.
At each time step, a new node is added in an uniform-randomly chosen interval (or surfaces), and conneted to its $m$ nearest neighbors w.r.t distance.

modification of the SW

$\Rightarrow$ We can derive the $P(k)$ for each case.

## 3-1. Evolution Eq. (Circle)

Subdivision of interval:
By randomly chosen interval with equal prob. $m / N$, we have the evolution equation
$n(k, N+1)=\left(1-\frac{m}{N}\right) n(k, N)+\frac{m}{N} n(k-1, N)+\delta_{k, m}$
From an approximation $n(k, N) \approx N P(k)$ for sufficient large $N$, we obtain the exp. degree dist.

$$
P(k)=\frac{1}{m+1}\left(\frac{m}{m+1}\right)^{k-m}
$$

for $k \gg m(P(k)=0$ for $k<m)$.
Ozik et al., PRE 69, 026108, 2004

## 3-2. Evolution Eq. (Sphere)

Subdivision of surface (Triangulation):

$$
n(k+1, N+1)=\frac{k}{N_{\triangle}} n(k, N)+\left(1-\frac{k+1}{N_{\triangle}}\right) n(k+1, N),
$$

where $N_{\triangle}$ denotes the number of triangles.
In the $P(k) \approx n(k, N) / N$, it can be rewritten as

$$
\begin{aligned}
(N+1) P(k+1)= & N k P(k) / N_{\triangle}+N P(k+1) \\
& -N(k+1) P(k+1) / N_{\triangle}
\end{aligned}
$$

By the continuous approx., we obtain $P(k) \sim k^{-\gamma_{R A}}$ with $\gamma_{R A}=\left(N_{\triangle}+N\right) / N \approx 3$ for large $N$.

Zhou et al., arXiv:cond-mat/0409414, 2004

## 3-3. Voronoi and Delaunay

Consider the combination of RA (by triangulation on a plane) and DT to avoid long-range links

$\Rightarrow$ optimal triangulation in some criteria: maximim angle, minimax circumscribed circle, short path length close to the direct Euclidean dist., etc.

## 4. Delaunay-like SF Net

We propose $\mathrm{RA}+\mathrm{NN}$ :

- Set an initial planar triangulation.
- Select a triangle at random and add a new node at the barycenter. Then, connect the new node to the three nodes of its triangle. By iteratively applying diagonal flips, connect it to the nearest node(s) within a radius.


1st diagonal flip


2nd diagonal flip

## 5. Simulation

We compare the topological properties for the models: RA, DT, and our proposed RA + NN in the averaging of 100 realization at size $N=10,000$.


RA


DT

$\mathrm{RA}+\mathrm{NN}$ (one)
$\Rightarrow \mathrm{RA}+\mathrm{NN}$ has the intermediate structure.

## 5-1. Degree Dist. \& Correlation



$\Rightarrow \mathrm{RA}+\mathrm{NN}$ has a power law dist. with exp. cutoff, and weak negative correlation.

## 5-2. Distance on the Shortest


$\Rightarrow$ The distances in $\mathrm{RA}+\mathrm{NN}$ are smaller than that in
DT and many of broad dist. in RA.

## 5-3. The Number of Min. Hops


$\Rightarrow$ The numbers in $\mathrm{RA}+\mathrm{NN}$ are improved to less than the half in DT, but slightly larger that in RA.

## 6. Summary

- We've briefly reviewed recent studies of geographical SF net models, and proposed a modified one to reduce long-range links.
- The Delaunay-like SF net without crossing links is generated by the iterative triangulation and diagonal flipping based on local rules.
- Simulation results have shown that our proposed model has short path lengths and small num. of hops, which are suitable topological properties for efficient communications.
We'll further investigate the dynamical traffic properties (e.g. delivery time) and the fault-tolerance (e.g. in cascaded failures)


## Appendix 1.

Average degree $k(s)$ of the node inserted at time $s$, and the betweeness $B(k)$ of the nodes with degree $k$


$\Rightarrow$ Old nodes of RA and RA +NN tend to be hubs, and the traffic load of $\mathrm{RA}+\mathrm{NN}$ is the intermediate

## Appendix 2.

Estimated function for the data of degree distribution

| model | estimated function | parameters |
| :---: | :---: | :---: |
| RA | $P(k) \sim k^{-\gamma_{R A}}$ | $\gamma_{R A} \approx 3$ |
| DT | $P(k) \sim \exp \left(-\frac{(\ln k-\mu)^{2}}{2 \sigma^{2}}\right)$ | $\mu=1.7755, \sigma=0.2383$ |
| $\mathrm{RA}+\mathrm{NN}($ one $)$ | $P(k) \sim k^{-\gamma} \exp (-a k+b)$ | $\gamma=2.26$, |
|  |  | $a=0.0647, b=2.045$ |
| $\mathrm{RA}+\mathrm{NN}($ all $)$ | $P(k) \sim k^{-\gamma} \exp (-a k+b)$ | $\gamma=1.7248$, |
|  |  | $a=0.0979, b=1.2286$ |

## Appendix 3.

Assortative and Disassortative correlations observed in social and technological/biological networks


Ass: tend to have connections between similar peers


Dis: between hub and peripheral nodes with low degrees

## Appendix 4.

planar triangulation: reasonable math. abstraction of ad hoc net. (each triangle forms a service region) Moreover, a memoryless, never defeat, and competitive online routing algorithm has been developed for networks on triangulation.


