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1. Introduction
Dynamic configuration of (backbone) networks

Problems for ad hoc communication such as in sensor
networks or P2P systems

dissipation of wire-
less beam-power
or line-cost for
long-range links

interference by cross-
ing links

a few nodes have sufficient power to be hubs
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2. Efficient Routing
Planar triangulation: reasonable math. abstraction of
ad hoc net. (each triangle forms a service region)
Moreover, a memoryless, no defeat, and competitive
online routing algorithm has been developed for
networks on triangulation.

Source
Destination
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3-1. Scale-free Nets with Hubs
Existing a surprisingly common structure: SF net.
the degree dist. exhibits P (k) ∼ k−γ , 2 < γ < 3.

Social: acquaintance, world trading, actor-collabo.,
citation, language

Technological: Internet, WWW, email, power grid

Biological: neural net, genom, metabolic pathway,
foodweb

One of the fundamental generation mechanism has
been proposed: Growth & Preferential Attachment

Barabási and Albert, Physica A, 272, 1999
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3-2. BA model: P (k) ∼ k−3

• A network grows from initial N0 nodes with
m < N0 links among them.

• At every time step t, a new node is introduced,
and is randomly connected to m previous nodes i
with an attachment probability ΠBA

i (t) ∼ ki(t).
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3-3. Properties of the SF Nets

• Efficient & Economy with short paths as the
hop-count O(ln N) and the low cost of links as
few as possible in the connectivity (Solé et al.,

Advances in Complex Systems 5, 2002),
Robust connectivity for random failures (Albert et

al., Nature 406, 2000)

• However, most of SF net models were irrelevant
to a geographical space.

⇓

• Therefore, we consider geographical SF nets,
especially as planner graphs without crossing
links to avoid interference of wireless beams.
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4-1. Rare Long-range Links

Histograms of the
lengths of links
Gastner and Newman,

arXiv:cond-mat/0407680, 2004

Also, the length dist.
of the links connecting
routers: P (l) ∼ l−1

Yook et al., PNAS 99, 21, 2002
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4-2. Geographical SF Nets

• Modulated BA:
Πi ∼ ki × lα,
rand. position
of node

• SF on lattices:
connect within
r = A × k

1/d
i

• Space-filling:
subdivision
of a region
(heterogeneous
dist. of nodes)

Step 0 Step 1 Step 2

initial N0 nodes with m links

pref. attach.

new m links

:

assign a degree k

saturated node

select a node

initial trianglulation add new node

add new node

connect to its 3 nodes
into a chosen triangle

connect to the neighborhoods
in the radius r = A k

(a) BA

(b) SFL

(c) RAN

1/2
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4-3. Planarity and Shortness
class planarity of net shortness of links

Modulated BA × ©

Manna’02, ∃ crossing links with disadvantaged

Xulvi-Brunet’02 (not prohibited) long-range links

SF on lattices × 4

ben-Avraham’03, cross of regular ∃ long shortcuts

Warren’02 links and shortcuts from hubs

Space-filling © 4

Apollonian nets. by subdivision ∃ long-range links

Doye’05, Zhou’04 of a selected region in narrow triangles
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4-4. Space-filling Packing

The dual by connecting the centers of touched circles
is nothing but the (deterministic) Apollonian network.

When a triangle is randomly selected for subdivision,

it’s called RAN.
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4-5. Analysis of P (k) in RAN
Evolution eq. by iterative triangulation:

n(k+1, N +1) =
k

N4
n(k,N)+

(

1 −
k + 1

N4

)

n(k+1, N),

where N4 denotes the number of triangles.
In the P (k) ≈ n(k,N)/N , it can be rewritten as

(N + 1)P (k + 1) = NkP (k)/N4 + NP (k + 1)

−N(k + 1)P (k + 1)/N4.

By the continuous approx., we obtain P (k) ∼ k−γRA

with γRA = (N4 + N)/N ≈ 3 for large N .

Zhou et al., arXiv:cond-mat/0409414, 2004
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5-1. Voronoi and Delaunay
Consider the combination of RA (by triangulation on
a plane) and DT to avoid the long-range links

Dual Graph

⇒ optimal triangulation in some criteria: maximim an-

gle, minimax circumscribed circle, short path length

close to the direct Euclidean dist., etc.
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5-2. Delaunay-like SF Net
We propose RA+NN:

• Set an initial planar triangulation.
• Select a triangle at random and add a new node at

the barycenter. Then, connect the new node to the
three nodes of its triangle. By iteratively applying
diagonal flips, connect it to the nearest node(s)
within a radius.

1st diagonal flip 2nd diagonal flip

= +
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6-1. Simulation
We compare the topological properties of the models:
RA, DT, and our proposed RA+NN in the averaging
of 100 realizations at size N = 10, 000.

RA DT RA+NN(one)

⇒ RA+NN has the intermediate structure.
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6-2. Degree Dist. & Correlation
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⇒ RA+NN has a power law dist. with an exp. cutoff,

and a weak negative deg.-deg. correlation.
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6-3. Movement and Transfer

shortest path
closest to the direct distance

distinct path
of the min. hops

〈D〉: average distance on
the shortest paths

〈D′〉: average distance
on the paths of the
min. hops

〈L〉: average number of
hops on them

〈L′〉: average number of
hops on the shortest
paths
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6-4. Distance for Movement
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〈D〉 ∼ (ln N)βd, Inset: 〈D′〉 ∼ (ln N)βd′
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6-5. Min. Hops for Transfer
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〈L〉 ∼ Nαl, Inset: 〈L′〉 ∼ Nαl′ , stronger than the SW
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7. Summary
• We’ve briefly reviewed recent studies of

geographical SF net models, and proposed a
modified one to reduce long-range links.

• The Delaunay-like SF net without crossing links
is dynamically constructed by the triangulation
and diagonal flips based on local rules.

• Simulation results have shown that our proposed
model has short path lengths and small num. of
hops (DT is not opt. in minimizing them), which
are suitable topological properties for efficient
communications.

We’ll further investigate the traffic properties and the

fault-tolerance.
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Appendix 1.
Average degree k(s) of the node inserted at time s,
and the betweenness B(k) of the nodes with degree k
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⇒ Old nodes of RA and RA+NNs tend to be hubs,

and the traffic load of RA+NNs is the intermediate
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Appendix 2.

Estimated parameters for the degree distribution in
each model by a NMSE method

model estimated function parameters

RA P (k) ∼ k−γRA γRA ≈ 3

DT P (k) ∼ exp
(

− (ln k−µ)2

2σ2

)

µ = 1.7755, σ = 0.2383

RA+NN(one) P (k) ∼ k−γ exp(−ak) γ = 2.26,

a = 0.0647

RA+NN(all) P (k) ∼ k−γ exp(−ak) γ = 1.7248,

a = 0.0979
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Appendix 3.
Assortative and Disassortative correlations observed
in social and technological/biological networks

Ass: tend to have connec-
tions between similar
peers

Dis: between hub and
peripheral nodes with
low degrees
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