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1 Introduction

We study a class of nonlinear dynamical systems to develop efficient algorithms. As an efficient
algorithm, interior point method based on Newton’s method is well known for solving convex
programming (CP) problems which include linear, quadratic, semidefinite, and [,-programming
problems [9] [13]. On the other hand, the geodesic of information geometry [1] [2] is represented by a
continuous Newton’s method for minimizing a convex functional called divergence. Thus, we discuss
a relation between information geometry and CP in a related family of continuous Newton’s method.
In particular, as the optimization of parameter values, we consider the a-projection problem from
a given data onto an information geometric submanifold spanned with power-functions such as a
weighted [,-norm [11]. Originally, information geometry was constructed to introduce a natural
structure for a family of probability distributions over continuous variables in statistical theory
[1]. It has been successfully applied [2] with a convex function and a Legendre transformation in
many areas: system theory, information theory, neural networks, quantum physics, mathematical
programming and integrable systems.

First, as a deeply relation, we present there exists a structural similarity between the a-
projection and semidefinite programming (SDP) problems [14]. Both problems are solvable by
following the path on geodesics. The geometric structure is based on the autoparallelisms [1] [2] or
linear property in the function space over finite discrete variables or the space of positive definite
matrices, respectively. The property is practically applied to derive approximation methods for it-
eratively calculating the geodesic. The maximum step-length is determined by geometric quantities
with respect to the Riemannian metric and the dual-connection. We show the proposed method is
effective in a simulation.

Next, we reconsider the a-projection problem as a [,-programming and the related ones, and
reformulate it into a form of CP. From the reformulated problems, we derive self-concordant barrier
functions [9] [13] according to the real values of a. It means the existence of a polynomial time
interior-point algorithm for our problem.

Furthermore, we present the coincidence with the gradient directions on the geodesic for the
divergence and on the affine-scaling (AS) trajectory for a modified barrier function. In such class
of dynamical systems related to Newton’s method, these results connect part of nonlinear and
algorithmic analyses with the discreteness of variables.

2 Geodesic on the a-affine manifold

Let us consider a m-dimensional manifold M7 % {f(2)] 0 < f(zx) < 0o,z € X} consists of finitely

bounded functions over X' {1,2,...,m}. By the discreteness, integral with respect to x € X
can be more easily treated as summation or vector-matrix operation. Introducing the primal



parameter 6 = (61,60y,...,60,)", we define a n-dimensional submanifold S, = {mq(z; )} called
a-affine manifold [1] [2],

2

l—a

mae; 6) < [1 5 iFi(x)éi] , M)
=1

where we assume mq(z; 0) > 0, Y,cx Malz; ) < 0o, n < m and a € R (a # +1). Although
[Fi(z)] is a mxn matrix because of the discreteness of variable x, we use the notation to emphasis the
meaning of function. Each basis function Fj(z) is linearly independent to let the Fisher information
metric exist as
gij (é) déf 818]¢(é) = Z 81 lnma . (9]' lnma * My (2)
zeX

where we denote 8; & d/00", and ¥ (f) is a convex function

d)(é): l—iZ-a

Z ma(z; 6).

reX

Now, we will discuss a parameter estimation problem called a-projection as shown in Fig. 1.
The problem is defined by minimizing a convex functional called a-divergence Dy (mq]|q),

def 4 11—« 1+, lea 144
Dalmall)) ® 1= |25 + S5 20— ma® 0. )

This is a quasi-distance between the function mq(x; 6) on S, and a given data §(z) in M. In an
applicational point of view, this problem is an estimation on the power-functions corresponded to
fuzzy averaging operators [3] [12] between AND-OR logic according to the values of a.

As the information geometric structure [1] [2] of S, the minimization of D, is solvable by a
straight line in the dual coordinate system [#;], which is one-to-one corresponded to [7] with the
Legendre transformation

n
w(7) =Y 01 — v(0), (4)
i=1
where () is another convex function. Because we have the optimal condition to minimize D,
2 1t Llta ~ ~
9;Dq = 1+a{2ija2 e }:ﬂj_ﬁj(T):Oa (5)
x x
. " - def o _lta
using the definitions 7;(T) = 35 2, Fj¢ 2 and

~ def 2 i =
= 1+a2x:ija2 ’

from (3). We should remark 7j; = 9;4(0) and g;; = 9;0;4(9) = d;7}; by the differentiation of (4).
Thus, the estimated point is given by the following equations at t' — oo and ¢ = 1.

Exponential time scale (0 <t < 00):

W = (i~ 1y (D))

Linear time scale (0 <t <1):

dnj

T —(7;(I) —n;(T)) def An; = const. (6)



Since they represent a straight line in the coordinate system [7};], it is a (- «v)-geodesic [1] [2] between
any initial and terminal points’ . The solutions

iy = (1) + (i (I) = 7;(T))e™"
ij = (1= )n;(I) + i (T), (7)
are equivalent within the time-scale transformation 1 — ¢ = e *. Both trajectories converge to the
terminal point 7(7") on the same straight line with different speeds in the n-dimensional [7;], while
the linearity is more clear in (7).
On the other hand, the geodesic is also represented by the gradient system [4]:
df’ Y i i
% = - Zg (o)ajDa(maHQ)a (8)
=1

where [¢g"/] denotes the inverse matrix of [g;;].

Since the Hessian 0;0;D, = gi; is derived from (1), (3) and (4), the gradient system (8)
is nothing but continuous Newton’s method for minimizing the a-divergence D,. However, the
iterative calculation of (8) such as Runge-Kutta approximation requires much computations in the
inverse matrix at each iteration. In general, the inverse transformation from 7 to 0 is implicit, we
must solve the gradient system (8).

14+

If S, is +a-autoparallel in M, then the m-dimensional vector mq? is linear, and the value
of " is directly solvable [7] without any iterations of the gradient system (8). Note that the a-
autoparallelism is trivial [1] [2], because an a-geodesic on S, is a straight line in [#'], and also a

l—«

straight line of ms? in M from (1). In this a-autoparallel case, at any points on the geodesic,
lto ~ ~
we can linearly interpolate mq> between the initial mq(z; 6(I)) and the terminal mq(x; 0(T))
~ ~ lta
corresponded to §(I) and 6(T) . Therefore, by substituting the interpolated value of m,? into the
definition (1), we have a system of linear equations in the vector-matrix form

2 l-a
ma? . (9)

Fo =
11—«
Once the QR factorization of F' is numerically obtained (e.g. by using modified Gram-Schmidt

algorithm [5]), as a computational merit, it can be commonly applied to the other initial, terminal,
lta
and the interpolated values of mgq? .

3 Parameter estimation onto the submanifold

When an observed data ¢ in M is outside from the submanifold S, a (—a)-geodesic is applied to the
parameter estimation problem. Based on the minimization of the a-divergence D,,, the orthogonally
projected point onto S, from § is given by the convergent point of the gradient system (8) as the
geodesic from any initial point. The estimated function m,, satisfies the system of linear equations

in the vector-matrix form L L+
Flma® = =2 20(T), (10)

by the optimal condition (5).
Thus, as shown in [7], the estimation problem is formally reduced to double systems of linear
equations (9) and (10). However, in (10), the linear mapping from the n-dimensional 7(T) to the
l4+a

2

~ ~ lta
Sq in M. In other words, 7 and mq? are not one-to-one corresponding, there exists a null space

{f| F"f =0}

T In this notation 7(I) or 7(T), the parenthesis denotes the dependence on the initial or terminal point.

higher m-dimensional variables mq? has many solutions on the a-projection curve from §(z) onto
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Figure 1: Parameter estimation from a given data ¢(z) onto the a-affine manifold S, = {mq(z; 0)}.

3.1 Autoparallel case
~ 4o 1o
If S, is ta-autoparallel, m,* is linear on a (—a)-geodesic (and also mq® is linear on an a-

geodesic). In this case, to numerically solve (10), we may apply a proper line search algorithm [15]
lta
in the m-dimensional space of my? for minimizing D,. The search direction is determined by

several steps of the gradient system (8). Then, we substitute the solution m, for (5) into (9), and
similarly apply the QR factorization of F' to it [7]. This method has been proposed in the case of

em-autoparallel exponential or mixture family [6].
lta ~
The H+a-autoparallelism is based on the linearity of power-function mq? in M, while the case
of SDP [14] is based on the linearity of inverse matrix P~!(2) in the space of the positive definite
matrices PD(m). In spite of the quite different problem formulations, there exists a same structure

as shown in Table 1.

3.2 General case with KerFT

14+
In general, since ) and m,> are not one-to-one corresponding, we must consider KerF! for the
14+

mapping from my?> to 7 in (10). Although the n-dimensional 7 is linear on the geodesic (7), the
1+

extended m-dimensional m>2

vector-matrix form

has higher terms of time variable ¢. It is represented by the following

1+«
2

14a
ﬁ:FTmaz défFT(fO‘i‘flt)'i_ZFTfktka (11)
k>2

fo, Jr & KerF", katk € KerFT,
k>2

where fo, f1, fo, ... are m-dimensional vectors, and rank FT 4+ dim(Ker FT) =n + (m —n) = m.
lta
If the second term in the right-hand side of (11) is small enough, the curved line of my?* is

approximated by the linear component fy + fit. In the next two sections, as similar to a general
case of nonlinear P~!(z) in SDP [14], we will propose two kinds of approximation algorithms, and
confirm the effectiveness by a simulation.



a-projection: min D,

SDP: min ¢z

whole space
(m-dimension)

constraint

submanifold

(n-dimension, n < m)

parameters

object function

metric g;;

connections

linearity

search
direction

M = {f(2)}

function space over X

So = {ma(z; 0)}

ma(w; 0) = [552 X0, Fi@)8]

{F;(z)}: basis functions
6 and 7 in S,

IIa -
me? in M

a-divergence
Da(mall)
0;0; Do = 0;0;%
D(0) = 175 X, malz; 0)
+a-geodesics
1Fa

linearities of mq>2
+a-autoparallel

(—a)-geodesic
Newton’s method

PD(m)

space of positive definite matrices

L=PD(m)N{P(2)}

PRz)=Ey+Y" Ez'>0
{E;}: space of symmetric matrices
z and y in L
yi = —tr(P(2) ' E;)
& and ¢ in PD(m)

Pl =3 B = (lel QEZ)7

1
self-concordant barrier
@, (2) =t x 'z + ¢(2)

0;0;¢
¢(z) = —logdet P(z)

V-, V*-geodesics

linearities of P*!
V-V* autoparallel

V*-geodesic
AS-trajectory

Table 1: Correspondences between the a-projection and SDP problems in the structural similarity.

4 Approximation methods for the geodesic

4.1 Piece-wise linear approximation

14+

Let us consider piece-wise linear lines of Mme? in the m-dimensional function space M. At the
current point ¢, we have the Taylor expansion

14+ 14«
- o . o 2 1 20 2
(2,0t + 68) 5 = mo(w, 605 + T | 5 L XMl | 5oL oG8y, (12
dt > di?
t t

The first and second derivatives corresponded to f; and f; in (11) are

lta ~. ~.
dmg’ e df  14a o’
dt ;am St 2 " XZ: Yt
Pma’  14a F;F; p | 6t do7
= @ — 2% Nl i
dt? 2 %{m% Xk: g ”} dt dt’



where the (—«)-connection coefficient [1] [2] is
def N
z]h é a X ZF ( ) [ma(a:; 9):| ’ )
Zghk z]h ~ (13)

Remember that, from (6) and ¢/ = g—g, the (—a)-geodesic in the linear time-scale is derived
J
as

o i3 1y "
— =2 g7l =3 A (14)
J J
1+_a

When the amount of the quadratic term in (12) is small the value of mq?* is linearly approx-

imated in the m-dimensional space. In the accuracy |2 dt2 |5t2 < €2, the maximum step-length is
obtained as

0t < min
xr

N Fi(x)Fj(z )i 40
\/‘(1 + a)ma(m; )%, {m”iﬁ’ S Fk(a:)F?j} i

lta
Thus, we iteratively calculate the step-length ¢t by using each updated value of my> on the

piece-wise linear line.

Step 0: Set an initial value § = 6(I) and an observed data, q(z).
and d@’

Calculate the values of my, 7, 7(T), AR, gij, FZ],

Step 1: Calculate the maximum step-length §t.

1+

Step 2: Approximate mq> by the linear component fo + f16t.

dé

Step 3: Update the value of g;;, I’ ”, I

and 7); for the approximated my,.

Step 4: If the current value of 7 is sufficiently near to 7(T"), then stop.
Otherwise, return to Step 1.

For the case of exponential or mixture family (o = 1), the maximum step-length §t is also
derived in Appendix.

4.2 Predictor-corrector algorithm

Although it is expected that the above predictor method is efficient rather than the standard
calculation method such as Runge-Kutta approximation for (8) or (14), the piece-wise linear line
may slightly leave from the submanifold S,. The iterative process increases the accumulated error.
In other words, the step-length needs to be set as considerably small.

For this problem, we consider the corrector process in which the value of m, returns onto the
submanifold. After Step 2, the approximated value of 8* is obtained through the QR-factorization
of F for (9) by the minimization of the 2-norm

1—a |2

Me?

HF&—

11—«

The value of 6* is applied into (1) as the corrected value my(x; é*) on Sy, then the update
process in Step 3 is performed. We should remark that the obtained trajectory by the predictor-
corrector algorithm is connected with the (—a)-geodesics from different initial points, as shown in
Fig. 2.
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(- a)—-geodesics
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Figure 2: The piece-wise linear lines (dashed lines) and the corrector process (bold arrows) of the
projection onto the submanifold S,,.

5 Simulation result

By a simulation, we investigate the iteration times and the estimation error for the proposed
methods. We set as, n =9, m = 125, ¢2 = 10, where the basis functions F;(x) and the observed
data G(x) consist of step-values from 1 to 5. In the piece-wise linear and predictor-corrector methods,
the value of 6 is iteratively updated from an initial random value 6 (I), until the sum of step-lengths
> 0t =1 corresponded as the terminal time ¢ = 1 for (7) or (14).

First, we show the iteration times for these methods in Fig. 3. The reciprocal of the iteration
time is the average step-length 0t at each value of a. There are much more iterations for the
piece-wise linear method, especially, the corrector method is effective in « > 1. However, in both
methods, many iterations are required as large a or a = 1. We should note the case of a = 1
known as exponential family in statistics is the best.

Second, we show the mean square error (MSE) in Fig. 4, where we omit the case of a = 1
because only it has different normalized scale. There are numerical overflows with very large values
of my and 6 in the cases of o ~ 1 for all of the three data. The phenomena is slightly similar to
the non-robustness for a few data as outliers (p — oo: corresponding to 1770‘ — 00) on the Ly-norm

llell def > led |p]% based on the p-th power of error elements {e;} in the linear inverse problem
[11]. Here, both proposed methods are in the same error level at each value of a. The estimated
values are continuously changed according to the value of a except in the case of & = 1. These
results suggest that the overflow is caused by the intrinsic estimation property in the families of
the power-functions rather than by the numerical error. The reason will be discussed later. As
shown in Table 2, the normalized MSE is also discontinuous and numerical instable in the cases of

def  mq(z; 0) def _ g(x)

a = 1, where po(z; ) = S e (0 0) and py(z) = T i@

The results for « < —1 and o« = 1 are
the minimum.

Moreover, we have confirmed the same values of m, and 6 are estimated for the conventional
gradient system (8) by 4th-order Runge-Kutta approximation with A¢ = 10~*, though it has more
than 30,000 iterations until the convergence within the same error level as shown in Table 2.

Now, we will discuss the reason why the value of m,, is extremely increased (it causes numerical
overflow of MSE), as the value of « approaches to 1 £ 0.
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Figure 3: Tteration times for the different data 1, 2, 3 (Solid line: predictor-corrector method,
Dashed line: piecewise-linear method).

e 31-2|-15|-1-08|-05|01(05(08} 1|13 |15]| 2] 3
datal |13 |13 | 13 | 13| 14 | 14 |17 | 30 | 107 || 13 || 81 | 39 | 20 | 15
data2 | 7 | 7 7 8 8 9 | 11| 25 | 96 6 || 74| 30 |12 | 8
data3 | 6 | 6 6 6 6 7 9 | 18 | 76 6 || 80 | 34 |14 | 8

Table 2: Normalized MSE % >u(Pa(z; 0) — pg(x))? x 1076,

Form (1), we consider the function value

2

ma(z; 0) = (jzl ; a) T

-« 1

T ZéiFi(w)] = 457 x [o,]57 (15)

where we denote o, def T, 0 Fi(z) >0 (z = 1,2,...,m) and v def :l:l_Ta > 0, the sign + are
corresponded to o < 1 and « > 1, respectively.

As @ — 1 £ 0 (equivalently v — 0), the first term in the right-hand side of (15) quickly
approaches to 0 (a < 1) or oo (o > 1). However, it should be canceled out in keeping finite
range for the updated value of m, to minimize the divergence D,. If the first term is dominant,
Mg (5 é) — 0 or oo is obtained for all of x € X', obviously, it is not the desirable estimation value
for a finite non-zero data G(x). Therefore, the second term needs to be extremely large (o < 1)

or small (o > 1). By the asymptotic characteristic of the graph y = [ox]i%, oz — oo is deduced
in both cases of @ < 1 and a > 1. Consequently, the estimated value +6' is extremely large at
least one element, and it causes the numerical overflow. This is a common estimation property
independent of data, in the families of the power-functions.
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Figure 4: MSE L 3" (mq(2; 0) — G(z))? for the different data 1, 2, 3.

6 As a subclass of convex programming problems

Let us reconsider the a-projection problem as a CP problem. For the SDP problem [14], we can
directly consider the self-concordant barrier function ¢(z). However, the corresponded a-divergence
in Table 1 is generally not a barrier function. Thus, we reformulate the a-projection problem to a /-
programming and the related ones, and derive self-concordant barrier functions [8]. Furthermore, we
discuss a relation between the (—«)-geodesic and the AS-trajectory for a modified barrier function
[8]. Although the existence of a self-concordant barrier function for any convex region has been
proved, it is generally difficult to explicitly construct it [13].

6.1 Fundamental property of self-concordance

Before beginning of the discussion, we explain the fundamental property of self-concordant bar-
rier function. It belongs to a special subclass of barrier functions with the following smoothness
condition [9]:

Let F° be an open convex subset of R”. A function ¢(z): F° — R is called x-self-
concordant on FO, k > 0, if ¢(z) is three times continuously differentiable in F° and if
for all z € F° and v € R" the following inequality holds:

V23(2)[o,v,0] < 260" V2 9(2)0) 2,
where V3¢(z)[v,v,v] denotes the third differential of ¢(z) at z and v* .

Self-concordance is considered as a natural extension of logarithmic barrier functions for polyhedral
or quadratic constraints, to guarantee a nice performance of Newton’s method for CP problems.
The most important point is that the gap between the current object function value and the optimal
is reduced by a factor in a number of iterations, which is bounded by a polynomial in the problem-
size and the self-concordant parameter «. By using this property, many efficient interior point
methods have been developed [9] [10] [13] [16]. They have polynomial rate of convergence for the
trajectory through near the central path.

¥ There is a slightly different definition, however the existence of polynomial time algorithms is the same [10] [16].



6.2 Reformulation of the parameter estimation problem

First, we reduce the minimization of the a-divergence for a given data g(z) in the ambient manifold
M to an equivalent problem on the submanifold S,.
By the extended Pythagorean theorem [1] [2],

Da(ma(; 0)1q(z)) = Da(ma(; 8)llma(z; 6(T))) + Dalma(z; 6(T))]ld(2))),

holds. Since the 2nd-term in the right-hand side is constant, the minimization of Dy (mq (z; 0)]1G(x))

is equivalent to the minimization of D,(f) denoted by the lst-term in the right-hand side. The
quantity D, (#) on S, is represented as

Da(8) = 4(6) — w(8(T)) + Z(éi(T) —6")ii(T). (16)

We should remark 6(T') and (#(T)) are not variables but constant values (which depend on only
a given data ¢(x)); however, they are unknown in advance before solving the problem. Since the
relations 9;Dg(ma(z; 0)||4(x)) = 9;Da(0) and 8;0; Dy (ma(z; 0)||(z)) = 8;0;Dy(0) hold from
0;¢ = 1; and 0;D, = 7); — 7j(T), they are not distinguished hereafter. Thus, the difference
between Dy (0) and Dg(mq(z; 0)]|G(x)) measured by G(x) and the current @ is buffered in the
following variable 6"+ including the quantities with respect to the unknown 6(T).

Next, by introducing a slack variable 711, the minimization of Da(é) is converted to an equiv-
alent CP problem:

min én"'l,
o (17)
s.t.  Dy(0) — 0"t <.
With additional variables 7, (z = 1,2,...,m), we reformulate the problem (17) to
min cTé,
st. Y, 7. —bTo—d<0, (18)
p(ze) < 7oy (19)
where we denote b = (by, ..., by, buy1)7, b; def 7i(T), bpy1 ey et 0,...,0,1)T d def »(O(T)) —
——
n
def 1 def 1 — ¢
p(2z) = +(22)%, B = 5 (20)

B " ~
() lﬁZZ;Fi(x)@Z] , 2

the corresponded sign + depends on that of Hia to be positive in the parenthesis. Note that (21)

is an affine transformation from 6 to a variable z,. In the above reformulation, we have applied
(16) and

B 92 m B m

V(0) Z mq (z; 0) = Z p(2z),
=1 =1
to the constraint D (f) — 67" < 0. Here, at the optimal § — 6(T), Dy (#) — 0 holds form (16),
then 01 — 0.

Let us consider self-concordant barrier functions for the reformulated problem. For the con-
straint (18), we have a self-concordant barrier function (as a logarithmic barrier function)

—In(d -7 +b"0),

:1+oz

10



case self-concordant barrier
-l<ax<l 0<pB<l,p>1) —In(rf —2;) —In7,
>3 (B< -1, -1<p<0) —1In(7, — 22) —Inz,
l<a<3 (-1<f8<0,p<-1) —In(z; — %) —In7,
a<—1 (B>1,0<p<] —In(2 +71,) —Inz,
a=-—1 (mixture family) —In(7; — 2p(Inzy — 1)) —In z,

Table 3: Self-concordant barrier functions for the the constraint (19).

because of the linear inequality [10] [13] for the m + n 4 1 variables of 7 and #. This function is
common for any values of a.

In addition, for the constraint (19), independently considering each epigraph of a power-function
for the two dimensional set (2, 7;), we have derived 2-self-concordant barrier functions [9] according
to the values of « as shown in Table. 3. For the constraints (18) and (19), we have the following

(1 + 5Tm)—self—conc0rdant barrier function [8]
—1In(d — ZTw—i-bTé) —Z{ln(Tf — Zy) +ln7'm}, (22)
x T
where the 2nd term is replaced by them in Table 3 according to the values of «.

6.3 Relation between geodesic and affine scaling trajectory

Let us consider a barrier function

h@) ¥ —n(5(0)), 60)% 6" — D,(0). (23)

If h(0) is self-concordant, the problem (17) is solvable in polynomial time without the refor-
mulation of (20) and (21). However, this case requires the special conditions [13] as shown in
subsection 6.1 for the 2nd and 3rd derivatives of D,,.

Otherwise, in the following discussion, it may approximate the AS-trajectory for the self-
concordant barrier function (22) near the boundary 7, = p(zy).

By the components of partial derivatives
Oh  0;D, oh 1

R i i
0%h . aiajDa X 0+ 6iDa6jDa

06907 62 ’
?h 9D,
ofigon+1 92
0%h 1
920n+1 82

i, € {1,2,...,n}, the Hessian of h is obtained as
1 [ [0:0;Da] % 6 + (8iDo)(0;Da)”  (—8iDy) l def 1 [ A B ]

52 (—=0;Do)T 1

11



where A is a n X n matrix, B is a n-vector.
From the inverse matrix formula, we obtain

l A B ]_1: l -1 _IT'B )

BT 1 -B'11I-! 1+B"'II"'B |’

MY A —BB” =6 x [0,0;Da],

L1
5

Note that the Newton’s direction —[V2h]~!Vh for the barrier function is given from (24) as

follows: .
de/dt’ _sx|A B (B _ [0
domt/ar ) B” 1 1) \é )

By § > 0 in (23), the analytic center [9] is defined as 0"+ — o for any values of (9,...,0"). We
should set only the initial value of 71! as large as possible.
On the other hand, the direction of AS-trajectory —[V2h] lc is also given from (24) as follows:

11 [0:0;Dy) "

do

W = 62 X H_IB = —(52 [8iajDa]_1 6jDa, (25)

J

dén—l—l
dt’

where |[AD %, = |AG)2 = Yij 0iDa[0;0;Do] 195Dy is obtained from the difference (discrete)
version of (8). Remember that [¢"/] = [g;;]7! = [0;0;Da] ™"
Therefore, the direction vector (25) is the same to the gradient (8) for the (—«)-geodesic, and

the magnitude is multiplied by §(f) as the difference between D,(¢) and an upper-bound value
6™ +1. These results hold on more general V*-geodesic for minimizing a V-divergence [1] [2]. From

the relation (23) between h(#) and D, (), the AS-trajectory (25) for h(f) and the gradient system
(8) as continuous Newton’s method for D,(f) have been connected. They move on the same

V*-geodesic with different speeds by §(0).

— —2(1+B"I'B) = —3(6 + [ ADu3-1) < 0,

7 Conclusion

To develop efficient algorithms such as interior-point methods for CP problems [9] [13], we have
studied a common structure in a class of dynamical system related to Newton’s method. On
the information geometric structure [1] [2], we have proposed efficient calculation methods [7] for
the estimation problem onto a space of power-functions. For the a-projection to minimize the
a-divergence as a convex functional, the maximum step-length is derived in the piece-wise linear
approximation and predictor-corrector methods. They are similar to the approximations of an
AS-trajectory for SDP problems [14] based on the autoparallelism, in spite of the quite different
formulations. By simulation results, it has been shown that the proposed methods have more less
iterations compared to the conventional Runge-Kutta approximation. We have also discussed the
estimation property according to the value of a. Furthermore, the a-projection problem has been
reconsidered [8] as a form of CP problem. From the reformulated [,-like problem, we have derived
self-concordant barrier functions, and pointed out the coincidence with the gradient directions on
the geodesic for the divergence and on the AS-trajectory for a modified barrier function. These
results give new geometric and algorithmic insights into nonlinear analysis of dynamical systems
by Newton’s methods for functional estimation.
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A Appendix: Maximum step-length in the cases of o = +1

As similar to the case of a-affine manifold, we derive the maximum step-length 0t for the exponential
and mixture families. In these cases, the estimation problems are based on the minimization of
Kullback-Leibler divergence and the dual one [1] [2].

Let us consider the following functions pg and pjs instead of m,,

Exponential family:

exp [Zi Fl(x)Ol]
>z exp [ Fi(z)6]

pe(z;0) < exp lz Fi(z)0" — 1#(9)] —

Mixture family:

pum (s 0~) def Z Fz(ﬂc)éZ

Here, (2) and (13) hold in both cases. Note that the exponential family is an exception’ in the
families of Sy, in the sense it has the condition of normalization.

A.1 Exponential family (o =1)

Since the m-geodesic is represented as a straight line of the dual parameter n; = >, F;(z)pg(; ),
the linearity of pg is considered in the Talyor expansion by the time-variable ¢. The first and second
derivatives are as follows:

dpE apE de’ do?
PE e 47 F—n) 2o

Pp .\ doi doi

where the Fisher information metric and the m-connection coefficient are

g9ij = Y_(Fi(z) — m) (Fj () — nj)pe(x;0),

x

in = (Fn(@) —mn) {(Fi(x) — n:)(Fj(x) — n;) — 9ij} pE(2;0).
1d%pp

From the condition ‘5 T (5t‘ < €2, we obtain

3

0t < min —.
VRS { (B0 = ) (B3 @) = my) = gy + SilFi(o) = )Tl } 2

T

A.2 Mixture family (o= —1)

Since the e-geodesic is represented as a straight line of the dual parameter 7j; = >, F;(x) log pas(x; 9~),
the linearity of logpas is considered in the Talyor expansion by the time-variable ¢. The first and
second derivatives are as follows:

dlog py o1 do'
—— = =Y logpyu—r = — Y Fi—,
dt Xi:a OEPM I = o 2 Fig

§ As a distinction, the parameters # and 5 are denoted without tilde.
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d?1 1 F,F; dot doi
4 ospPm — SNSRI ST
dt? Pm i Pm & J dt dt
where the Fisher information metric and the e-connection coefficient are

gy = 5~ FOE)

= pu(z;0)

. __ x Fi)Fj(x)Fy(2)
ah %: pMJ(I;é)2 .

2 .
d—ld(;gf—M&‘ < €2, we obtain

71 =
2par (x30)

Moreover, the corrector process results in systems of linear equations derived form the definitions
of pr and pys, respectively. They are also solvable by using QR-factorization [6] as similar to the
cases of o # +£1.

From the condition ‘%

3

F;(z)F;(z 9 dfI
Ei,j {7( ) ]é)) -2k Fk(x)rfj} djt %

(s

0t < min
xr
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