Identifying Working Data Set of Particular Loop Iterations
for Dynamic Performance Tuning

Yukinori Satd$, Hiroko Midorikawd$ and Toshio Endt

*Research Center for Advanced Computing Infrastructure, Japan Advanced Institute of Science and Technology (JAIST)
fGraduate School of Science and Technology, Seikei University, Japan.
Global Scientific Information and Computing Center, Tokyo Institute of Technology, Japan
§JST CREST, Japan

Abstract—Improving data locality and cache hit rates are not effective in some cases, especially in scientific code that
key to obtain performance gain in modern computer systems. has large data structures such as 3-dimensional arrays [2].
While loop tiling or blocking is a technique that can enhance Loop tiling, or also known as blocking, has been per-
spatial and temporal locality of data accesses, it is hard for L
compilers to fully automate it. This might be because sometimes formed to the application codes especially in HPC f,'eld In
the number of iterations of a loop is decided at runtime based ~order to compensate the weakness of the data locality man-
on the size of input data or static dependency checking is too agement mechanism of cache memories. Here, loop tiling is
conservative for such loop transformation. Therefore, currently g transformation that tailors an application’s working data
most of them are done by expert HPC programmers instead of get 19 fit it in the memory hierarchy of the target machine.
compilers or advanced tools that guide and support them. In
this paper, we present a mechanism for identifying the working By reorganizing g loop nest structure a,”,d choosing tile size
data set of a particular loop iteration space using a dynamic t0 allow the maximum reuse for a specific level of memory
binary translation system. From preliminary evaluation results ~ hierarchy, it optimizes locality of code for targets. Since
using a benchmark program, we demonstrate how we measure this can be used for different levels of memory hierarchy
the locality of data accesses via our mechanism and how we such as physicallvirtual memory, caches , registers, this is a

guide blocking strategies of data accesses. Also, we discuss the ful techni that denh tial and
applicability of our mechanism to dynamic performance tuning powenul iechnique that can manage and ennance spatial an

mechanism in a dynamic Comp"er framework performed by a temporal |Oca|ity of da.ta. accesses. A|SO, multi'level t|||ng
binary translation system. can be used to achieve locality in multiple levels of the

memory hierarchy simultaneously [3], so it is inevitable for
a memory subsystem realized by different types of devices
such as SRAM, DRAM, NVRAM.

One of the most challenging issues for designing and However, it is hard for compilers to fully automate it
realizing future exascale supercomputer systems includingecause it often needs runtime information that cannot be
the development of application programs for them is toused at compile time. For example, sometimes the number
handle the performance gap between CPU and memorgf iterations of a loop is decided at runtime based on the
This gap is widely called memory wall and caused by thesize of input data. Or, static dependency checking performed
fact that the growth of memory bandwidth, capacity andby compilers might be too conservative for loop transforma-
latency has been slower than that of CPU throughput. Whilgion. As some of memory blocks are allocated at runtime,
emerging new memory technologies such as NVRAM andcthanging the data layout to match the data access pattern
3D integration are expected to moderate the memory wallis difficult. Additionally in current mainstream multicore
these will lead to multi-level caches and deeper memoryCPUs, the last level cache is shared among cores in the CPU,
hierarchies to keep relevant data for a program to the fastego there are some resource conflicts among co-running pro-
but smaller memories close to the processing logic [1]. cesses or threads and these cannot find until these codes run

Managing data locality in the light of demands from together. Due to the factors discussed above, compiler cannot
application programs and the characteristics equipped in thgenerate highly optimized codes desired by the production
each memory device is an essential for making fully useHPC field and currently most of loop transformations are
of such complex memory hierarchies. Traditionally, cachedone by expert HPC programmers instead of compilers or
memories attempt to handle data locality by hard-wiredadvanced tools that guide and support them.
logic based on the locality of memory accesses. How- Therefore, tools or mechanisms that enable automated
ever, conventional cache mechanisms are not an universalapping and tuning of programs toward a particular target
mechanism good for everything. It has been found thatmmachine are strongly requested for system software and
cache-management policies implemented by hardware am@ompiler technologies. The situation that programmers are

I. INTRODUCTION

explicitly restructuring codes to perform well on particular table. In order to realize the faster access to lastWrite tables
memory subsystems leads to machine-specific programand implement them with smaller memory size, we prepare
However, creating programs that are specific to a particua fixed sized block for one lastWrite table. This concept
lar machine should be avoided in the view of portability is similar to pages in virtual memory system. In virtual
and productivity. Instead, the programmers should writememory system, physical memory space is relocated as a set
machine-independent code, and then low-level mechanisnaf fixed sized block (also called a page) [5]. This concept
should generate a specialized code for the target machirdlows on-demand allocations of tables required for actual
transparently from programmers. Future exascale machinmemory access patterns. Since a new lastWrite table is
designs are certain to have increasingly complex memorgallocated on-demand when an untouched memory segment
hierarchies, sophisticated memory-management strategiés newly accessed, we can save the total amount of memory
conducted by low-level mechanisms other than traditionatompared with the implementation that allocates tables for
compilers should be developed. all memory address space in advance.

In this paper, we present a mechanism for identifying the In this paper, we apply the concept of the paging of
working data set of a particular loop iteration space usindastWrite memory access tables to monitoring working data
a dynamic binary translation system. We present how wesets of actual executions. Here, the working data set is
measure the locality of data accesses via our mechanisrdefined as the amount of memory for data that the execution
Our primary motivation of this work is to use our analysis to requires in a given time interval. Then, we use the number of
guide performance tuning or optimization. Our mechanismallocated lastWrite tables as an indicator for the working data
could help identify memory access locality amenable toset. Since a unit of a working data set becomes a criterion
tuning or optimization, and guide what kind of strategies tofor measuring locality of memory accesses, we improve the
use. This would also be useful for guiding a manual tuningfixed paging structure for lastWrite memory access tables
done by expert programmers who must re-write their codepresented in [4] by allowing the size of each page to be
for performance optimization. Also, implementing them onparameterizable.
an on-the-fly binary translation mechanism has potential By specifying the appropriate page size for each memory
to be applied as dynamic optimization and parallelizationhierarchy, we measure the locality that can fit in it. If all
techniques. accesses are referenced to the same working data set page

or only few pages, then we can consider that these accesses
Il. MONITORING WORKING DATA SET have locality within these pages. Otherwise, memory is

In order to monitor the working data set at runtime, wediscretely accessed from wide ranges of memory address
extend our work on whole program data dependence profilspace, and their access pattern is considered not to have
ing implemented in a dynamic binary translation system [4].much locality.

Here, we briefly explain how we profile memory dataflow Also, we make use of trip counts and appearance counts of
on our system using the concept of paging. loop regions to monitor the working data set in a particular

We start analysis on dynamic binary translation systeminterval. Here, the appearance count of a loop region repre-
from the static analysis phase. Here, we formulate controsents how many times the loop is activated from outside of
flow graphs and check memory access instructions in théhe loop regions. The trip count of a loop region represents
code. To keep track of dynamic behaviors such as memoriiow many times the loop is iterated from the beginning of
access and control flow transitions, we prepare analysithe loop activation, and the trip count is initialized when the
codes. At this phase, we generate markers that point odbop region activated from the beginning again. By making
where analysis codes are to be instrumented, and thesse of these counts, we realize a mechanism for identifying
are instrumented into the original binary codes. Since wehe working data set of a particular loop iteration space.
instrument analysis code when the binary code image is Figure 1 shows the way how we keep track of the working
loaded, our profiler can accept any executable binary coddata set during a given interval. Here, we monitor the work-
without specific support for profiling. ing data set using a hashTable, allocated lastWrite tables,

After the instrumentation, we run the instrumented binarylinked lists. The working data set is identified as follows:
code and start the dynamic analysis phase. We monitoWhen we encounter an instrumented memory operation, a
memory access and dynamic data dependencies togethesy for the hashTable is generated using its effective address
with the dynamic context of loop and call activations. To (EA) of the memory operation. Accessing the hashTable
realize low overhead data dependence profiling, we focusising the key, we obtain a pointer to the linked list, which
only on read after write dependencies, also called trueecords a pointer to a lastWrite table from an entry of the
dependencies, in whole program executions. hashTable. Also, an element of the linked list contains a

To monitor true dependencies efficiently, we maintainupper) bit field of £ A. By comparingM bit in an element
who writes the most recent value in each accessed addreasad the original one, we resolve the corresponding lastWrite
using a locality-aware structure referred to as a lastWritdable for the memory operation. Finally, th¥ bit field

Dynamic execution 1 [for(n=0;n<nn; +n)q
tri 2
memOp (addr) region ID gﬁ{ ém 3 fur(i:_l H i<_in_1ax71 H i+j~)
i EA: Effective Add 4 for (j=1 ; j<jmax—1;j++)
64 bit ective ress 5 for (k=1; Kekmax-1 ; k++){
6 sO=apoylijjirkn = pi+yj 1K 1
63 20 7 +anark =« pri ik]
[] 8 +g{21[!1u][tll = pii ,][k+k11 P
“bi : d 9 + Dok « (pri+a-ak 1 — pri+f -1k
Upper M-bit N-bit i 10 o — pi—g+1ik1 + pri —1j -1k 1)
1 + btk « (pri- Jj+ake] — pii 1 —1ke1]
PYey— () 12 . — Pl I +ak—1] + pii 1 —1ik—11)
Mbit b lastWrieTble 13 + ik« (pri+ayy jrke) — pri—1jfj Jrkea)
" 14 . - P JTK—1] + pi —117] JTk—11)
15 +COIfICK = pri—1)ij 1K
Wit lastWrite Table 16 + CAINN K = P 3] -1k
key (N-bit entry) 17 +CRANTIK « pii 1) k-1
gen i 18 +wrk1iigirks:
19
next Fn . s
Linked 20 ss= (S0« aEiiiyjitk — priljik) « bndiljik:
st [& Je—>- 21 , w2tk = Pt + omega ss
M-bit addr ~ Pointer to 23
haShTable lastWrite Table 24 for (i=1; i <imax—1 ; ++)
(W-bit entry) 25 for (J=1 ; j <Jmax—1; ++)
26 for(l_(:l k< kmax—_1_; ++K)
Z prilick = wrk2iijiks:
. 29 } Ix end n loopx/
Figure 1. Our mechanism for identifying the working data set of a

particular loop iteration space.
Figure 2. The outline of the computation kernel of the Himeno Benchmark.

of an EFA are used as an offset to access an entry within I
the lastWrite table. Here, the allocated lastWrite table itself
corresponds to a page for a working data set, in other word€\. Methodology

the number of allcated page tables or all the elements of We implement our dynamic data dependence profiling us-

. EXPERIMENTAL FRAMEWORK

linked lists represents the working data set. ing the Pin tool set [6]. Pin is a well-known dynamic binary
The key for the hashTable is generated by the followingtranslation system that provides the same ISA translation ap-
equation: plicable to dynamic binary optimization and parallelization.

To verify and evaluate our method, we use the Himeno
Benchmark, which is widely known as a program that
requires large memory bandwidth. Later in this Section, we
Here, the hashTable entry size is representeWabit, the br|ef|y exp|ain the overview of this benchmark.
lastWrite table entry size is represented/ésand the)M As compiler tool sets, we use both of the GNU Compiler
bit field is calculated by\/ = FA >> (N +2). Also, all of Collection 4.1.2 for x8664 Redhat linux and the Intel C++
memory accesses are set to be monitored in the granularityomp“er 11.1. Here, we compile the codes with *-O3 -
of 4 bytes. g’ option. We run our system on a single node of Appro

In order to change the page unit of working data set, wggB222X-SM32 cluster servers, which is composed of two
reconfigure the size of a hashTable and that of a lastWriténtel Xeon X5570 CPUs, 24GB memory, Red Hat Enterprise
table. Here, we make the size of each page to be chosdrinux 5.4. The other detail parameters are similar to the ones
from 256 Byte, 4 kByte and 64 kByte, and the size of pagesn [4].
chosen as a parameter is equal to &2, We selected
these sizes assuming to be a page or a cache line size f8r The Himeno benchmark
future memory hierarchies. Also, we set tHéto 16 in this The Himeno benchmark, which originally developed by
work. Dr. Ryutaro Himeno, measures performance in solving the

Together with the working data set size, we monitor tripPoisson equation using the Jacobi iterative method appeared
counts and appearance counts of loop regions to specify ia incompressible fluid analysis code [7]. Since this bench-
particular interval using them. An element of a lastWrite mark is known to be highly memory intensive and bound by
table is composed of region ID, two counters for recordingmemory bandwidth [8], this has grown in popularity and has
the number of appearances and trip counts of the regiorbeen used by the HPC community to evaluate the worst-case
These counters are represented as apr cnt and trip cnt performance for bandwidth intensive codes [9] [10].
the Figure 1. Using these runtime information, we identity Figure 2 shows the main solver which applies a 19-point
a particular loop iteration space where the working data sestencil computation to the 3D arrgy. This main solver
is monitored. Also, we keep track of dependencies amongs composed of one outermost loop indexed rbyor the
iterations and appearances using LCCT+M representation ascobi iterations, and two triply-nested loops indexed by
discussed in [4]. i, j, k. Here,p is pressure, and it becomes the output of

key = M%(1 << W) Q)

Table |
THE NUMBER OF WORKING DATA SET PAGES DURING GIVEN LOOP ITERATIONS

(a) gce.4.1.2 with ’-O3 option’ (b) icc.11.1 with -O3 option’
- # of working set pages o # of working set pages
loopID Analysis window 64KB AKB 2568 loopID Analysis window 64KB AKB 2568
all 3669 58411 932669 - all 3674 58420 932704
8 apr=1, itr=1 3589 57180 896233 9 apr=1, itr=1 3605 57209 896279
9 apr=1, itr=1 47 522 8134 10 apr=1, itr=1 45 521 8133
10 apr=1, itr=1 17 26 106 11 apr=1, itr=1 16 19 104
11 apr=1, itr=1 17 18 23 13 apr=1, itr=1 16 18 22
Table II
THE NUMBER OF INCREMENTED WORKING DATA SET PAGES FROM THE PREVIOUS ITERATION
(a) gcc.4.1.2 with -O3 option’ (b) icc.11.1 with -O3 option’
- Incremented page counts - Incremented page counts
loopID Analysis window 64kB 4KB 2568 loopID Analysis window 64KB 4KB 2568
8 apr=1, itr [2-1] 0 0 0 9 apr=1, itr [2-1] 0 0 0
9 apr=1, itr [2-1] 28 454 7104 10 apr=1, itr [2-1] 29 454 7104
10 apr=1, itr [2-1] 0 1 63 11 apr=1, itr [2-1] 1 7 64
11 apr=1, itr [2-1] 0 0 0 13 apr=1, itr [2-1] 0 0 7

this computation, and all of data in arrays is representedode, the percentage of the total cycles accumulated over all
in single precision floating point format. The body of this of its successors, and inside the parenthesis the percentage
computational kernel originally involves 34 floating point of the cycles executed in the node itself are represented,
calculations. Based on this, the performance of this benchrespectively. Also, we can find the # of appearances of each
mark is measured in FLOPS (FLoating-point Operations Penode, and the average # of loop iterations is outputted if the
Second), where the total number of floating point operationsiode is a loop.

is divided by the execution time. ~ Table I also shows the number of working data set pages
In this experiment, we use Himeno benchmark versiorfor particular loop iterations. Using the looplD of the loop
3.3 (C, _stat|c allocate) and its medium size data sets for OUfegion and the number of appearances (apr), the number of
evaluation. iterations (itr) within a loop region, we represent regions of
IV. PERFORMANCE EVALUATION interests for monitoring working data set analysis.. Thgse are
. i . . represented at the columns of loopID and Analysis window.
First, we profile the whole program execution of Hi-

meno benchmark executables. Table | shows the number €€ we set the intervals of measurement to the first
of working data set pages obtained in this evaluation. Th ne iteration of the outermost loop and each of triply-nested
row indexed by ‘all' in the column of Analysis window oops in the Himeno benchmark code. Here, the outermost

represents the working data set size of the whole prograrjﬁ)0p nis represented looplD=8 and the triply-nested logps

execution. Here, we measure working data sets for di1‘ferer4!hk are representedhloopIID:9, 10and 11 in thg Igcc.4.:l:2. In
page sizes from 256 Byte to 64 kByte. the icc.11.1 case, these loops are represented loopID=9, 10,

From the results, we find that the working data settl af‘d 13, respectively. .AIS(.)’ We_only focus_ on monitoring
size of the whole program execution is about 229 MBworkmg data set at the first iteration of the first appearance
when assuming 64 kB pages, which can be calculated b9f each loop.
multiplying the number of pages with the page size. This It is observed that there are not so much difference of
is almost equal to the the maximum allocated memory sizénemory access locality between gcc 4.1.2 and icc.11.1 while
provided by operating system, which is the VmHWM size the FLOPS score of the icc code is 2.9 times higher due to its
at /proc/<pid>/status) aggressive optimization. We observe that the loop structure

Next, we monitor Working data sets of particu|ar |00p generated by icc 11.1 is converted to achieve SIMDization
iterations based on the visualized LCCT+M graphs as showAnd the innermost loop is divided into a few loops. Here, we
in Figure 3 and Figure 4. Here, the circles represent loopgnonitor the largest one (looplD=13) in the innermost loops.
the boxes represent procedure calls. Dynamic control flows It is also observed that there are not so much differences
of L-CCT are represented in solid (black) lines. So, an outeof necessary pages among all page sizes when we execute
loop become a parent node and an inner loop become @ne iteration of the innermost loop (looplD=11 of gcc 4.1.2
child node of this graph. Here, we represent loop region®r looplD=13 of icc 11.1). These imply that there are little
with their own ID number called loopID. In addition to call spatial locality inside an innermost loop iteration. In the
and loop context flows, dynamic data dependencies betwedoops that are next level of the innermost toward outer, the
nodes are represented in arrows with dashed lines. In eactumber of pages is increased only in 256 B case, so these

level_0

loop 15

loop 18

. jacobi .
level _1 himenoBMTxps.c:141 Jaco himenoBMTxps.c:141
3.4% (0.0%) 93.3% (00%) |- 3.3% (0.0%)
#appear: 1 #appear: 2 #appear: 1
Avg. itr: 129.00 appear Avg. itr: 128.00
Ditr=1.0
loop 16 loop 8 =~ loop 19
level 2 himenoBMTxps.c:141 himenoBMTxps.c:198 J himenoBMTxps.c:141
3.4% (0.0%) 93.3% (0.0%) Happeai: 2 3.3% (0.0%)
#appear: 129 Avg. itr: 3.50 #appear: 128
Avg. itr: 129.00 Avg. itr: 128.00
loop 17 loop 9 loop 12 loop 20
level 3 himenoBMTxps.c:154 himenoBMTxps.c:198 himenoBMTxps.c:224 himenoBMTxps.c:172
3.4% (3.4%) 86.1% (0.0%) oppear: 7 7.2% (0.0%) 3.3% (3.3%)
Fappear: 16641 Adg, itr: 126.00 #appear: 7 #appear: 16384
Avg. itr: 257.00 Avg. itr: 126:00 Avg. itr: 256.00
loop 13 loop 10
level_4 himenoBMTxps.c:225 himenoBMTxps.c:200
7.2% (0.1%) 86.1% (0.3%)
#appear: 882 #appear: 882
Avg. itr: 126.00 Avg. itr: 126.00
loop 14 loop 11

level_5 himenoBMTxps.c:226 himenoBMTxps.c:191

7.1% (7.1%)

85.9% (85.9%)

#appear: 111132 #appear: 111132

Avg. itr: 254.00 Avg. itr: 254.00
bmt_0503.11738.dot

Figure 3. The LCCT+M generated by gcc4.1.2.

level 0

loop 3 loop 2
level _1 himenoBMTxps.c:104 himenoBMTxps.c:104
1.5% (0.0%) 1.2% (1.2%)
#appear: 1 #appear: 1 #appeat: 2
Avg: itr: 128.00 Avg. itr: 267296.00
loop 4 loop 9
level_2 himenoBMTxps.c:104 himenoBMTxps.c:198
1.5% (0.1%) 97.3% (0.0%)
1128 #appear: 2
128.00 E Avg. itr: 8.50
loop 6 loop 10 loop 16
level _3 himenoBMTxps.c:104 himenoBMTxps.c:199 himenoBMTxps.c:224
1.4% (1.4%) % 92.6% (0.0%) 4.7% (0.0%)
#appear: 16384 #appear: 17 #appear: 17
Avg.itr: 31,12 Avg.itr: 126.00 Avg. itr: 126.00
loop 11 loop 17
level_4 himenoBMTxps.c:200 himenoBMTxps.c:225
92.6% (0.6%) 4.7% (0.6%)
Fappear: 2142 #appear: 2142
Ayg. itr: 126.00 - Avg. itr: 126.00
loop 12 loop 13 loop 15 - Fast_meme,
level_S himenoBMTxps.c:215 himenoBMTxps.c:201 himenoBMTxps.c:215 % (0. W)W
3.1% (3.1%) 85.7% (85.7%) 3.1% (3.1%) ° 2
ppear: 236130 ppear: 269892 ppear: 236164 #appear: 269892
‘Avg. itr: 4.00 Avg. itr: 30.87 Avg. itr: 4.00
R _intel_fast_memcpy.J
level_6 % (0.0%)
#appear: 1
W_memcpy
level _7 % (1.3%)
#appear: 269892
level_8 loop 30

2.7% (2.7%)

#appear: 269892
Avg. itr: 7.00

bmt_0503.11739.dot

Figure 4. The LCCT+M generated by icc11.1.

imply there are spatial locality that fits in larger pages.
In order to investigate temporal locality, we measure the
increments of pages from the previous iterations. Table Il

shows the number of incremented working data set pagesy

Here, the itr[2-1] in Analysis window column represents
that we measure the increments from the first iteration to
the second iteration. From the results, we find that the
all increments are smaller than the case that the number
of pages required for executing an iteration is doubled. 5
Therefore, we can find there are reuse of data within the
already assigned pages.

Based on the obtained spatial and temporal locality infor-
mation, we can make strategies of loop tiling or blocking.
For example, if the number of pages or the size of working
data set is greater than these that can be available in the

memory hierarchy, we should perform loop tiling to fit these [7]

data into the space. In the case of cache, we should focus

on the 256 B page size and care about the interval when]

the number of pages dramatically increased. Based on these
information and the size of each cache from L1 to L3,

we can make use of locality of references by deciding the [9]

blocking factors or each tile size fitting to them.
We believe these information can be applied to perfor-
mance tuning of real application codes. Combined with a

mechanism of a dynamic compilation framework performed[10]

by a binary translation system, we would like to enhance the
potential of automated performance tuning and optimization
of code.

V. CONCLUSIONS

In this paper, we have discussed that loop tiling or
blocking is a technigue that can enhance spatial and temporal
locality of data accesses and the working data set of the
actual execution could help these transformation. Then, we
have presented a mechanism for identifying the working data
set size of a particular loop iteration space using a dynamic
binary translation system. Using the Himeno benchmark, we
have demonstrate how we measure the temporal and spatial
locality of data accesses via our mechanism.

Current and future work includes applying the working
data set analysis toward loop tiling on the actual code,
exploring methods for automating the application of such
transformation on a binary translator, and studying how our
approach can be improved to apply real problems in the HPC
field.

REFERENCES

[1] P. Kogge et al, “Exascale computing study: Technology
challenges in achieving exascale systems,” DARPA, Tech.
Rep., 2008.

[2] A.V. Aho, M. S. Lam, R. Sethi, and J. D. Ullma@pompilers:
Principles, Techniques, and Tools (2nd Edition)Addison
Wesley, 2006.

(6]

[3] M. S. Lam and M. E. Wolf, “A data locality optimizing

algorithm,” SIGPLAN Not.vol. 39, no. 4, pp. 442—-459, Apr.
2004.

Y. Sato, Y. Inoguchi, and T. Nakamura, “Whole program
data dependence profiling to unveil parallel regions in the
dynamic execution,” i012 IEEE International Symposium
on Workload Characterization (IISWC2012yov. 2012, pp.
69-80.

D. A. Patterson and J. L. Hennes§pmputer Oganization
and Design , 2nd ed. Sun Francisco: Morgan Kaufmann
Publishers, 1997.

C.-K. Luk et al,, “Pin: building customized program analysis
tools with dynamic instrumentation,” iRLDI2005 pp. 190—
200.

http://accc.riken.jp/2444 .htm.

E. Phillips and M. Fatica, “Implementing the himeno bench-
mark with CUDA on GPU clusters,” itEEE Int'| Symp. on
Parallel Distributed Processing2010, pp. 1-10.

S. Matsuoka, T. Aoki, T. Endo, A. Nukada, T. Kato, and
A. Hasegawa, “GPU accelerated computingfrom hype to
mainstream, the rebirth of vector computing,” 8ciDAC
2009, Journal of Physics: Conference Series,13009.

Y. Sato, Y. Inoguchi, W. Luk, and T. Nakamura, “Evaluating

reconfigurable dataflow computing using the himeno bench-
mark,” in 2012 International Conference on Reconfigurable
Computing and FPGAs (ReConFd)ec. 2012, pp. 1 —7.

