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Abstract—Improving data locality and cache hit rates are
key to obtain performance gain in modern computer systems.
While loop tiling or blocking is a technique that can enhance
spatial and temporal locality of data accesses, it is hard for
compilers to fully automate it. This might be because sometimes
the number of iterations of a loop is decided at runtime based
on the size of input data or static dependency checking is too
conservative for such loop transformation. Therefore, currently
most of them are done by expert HPC programmers instead of
compilers or advanced tools that guide and support them. In
this paper, we present a mechanism for identifying the working
data set of a particular loop iteration space using a dynamic
binary translation system. From preliminary evaluation results
using a benchmark program, we demonstrate how we measure
the locality of data accesses via our mechanism and how we
guide blocking strategies of data accesses. Also, we discuss the
applicability of our mechanism to dynamic performance tuning
mechanism in a dynamic compiler framework performed by a
binary translation system.

I. I NTRODUCTION

One of the most challenging issues for designing and
realizing future exascale supercomputer systems including
the development of application programs for them is to
handle the performance gap between CPU and memory.
This gap is widely called memory wall and caused by the
fact that the growth of memory bandwidth, capacity and
latency has been slower than that of CPU throughput. While
emerging new memory technologies such as NVRAM and
3D integration are expected to moderate the memory wall,
these will lead to multi-level caches and deeper memory
hierarchies to keep relevant data for a program to the faster
but smaller memories close to the processing logic [1].

Managing data locality in the light of demands from
application programs and the characteristics equipped in the
each memory device is an essential for making fully use
of such complex memory hierarchies. Traditionally, cache
memories attempt to handle data locality by hard-wired
logic based on the locality of memory accesses. How-
ever, conventional cache mechanisms are not an universal
mechanism good for everything. It has been found that
cache-management policies implemented by hardware are

not effective in some cases, especially in scientific code that
has large data structures such as 3-dimensional arrays [2].

Loop tiling, or also known as blocking, has been per-
formed to the application codes especially in HPC field in
order to compensate the weakness of the data locality man-
agement mechanism of cache memories. Here, loop tiling is
a transformation that tailors an application’s working data
set to fit it in the memory hierarchy of the target machine.
By reorganizing a loop nest structure and choosing tile size
to allow the maximum reuse for a specific level of memory
hierarchy, it optimizes locality of code for targets. Since
this can be used for different levels of memory hierarchy
such as physical/virtual memory, caches , registers, this is a
powerful technique that can manage and enhance spatial and
temporal locality of data accesses. Also, multi-level tiling
can be used to achieve locality in multiple levels of the
memory hierarchy simultaneously [3], so it is inevitable for
a memory subsystem realized by different types of devices
such as SRAM, DRAM, NVRAM.

However, it is hard for compilers to fully automate it
because it often needs runtime information that cannot be
used at compile time. For example, sometimes the number
of iterations of a loop is decided at runtime based on the
size of input data. Or, static dependency checking performed
by compilers might be too conservative for loop transforma-
tion. As some of memory blocks are allocated at runtime,
changing the data layout to match the data access pattern
is difficult. Additionally in current mainstream multicore
CPUs, the last level cache is shared among cores in the CPU,
so there are some resource conflicts among co-running pro-
cesses or threads and these cannot find until these codes run
together. Due to the factors discussed above, compiler cannot
generate highly optimized codes desired by the production
HPC field and currently most of loop transformations are
done by expert HPC programmers instead of compilers or
advanced tools that guide and support them.

Therefore, tools or mechanisms that enable automated
mapping and tuning of programs toward a particular target
machine are strongly requested for system software and
compiler technologies. The situation that programmers are



explicitly restructuring codes to perform well on particular
memory subsystems leads to machine-specific programs.
However, creating programs that are specific to a particu-
lar machine should be avoided in the view of portability
and productivity. Instead, the programmers should write
machine-independent code, and then low-level mechanisms
should generate a specialized code for the target machine
transparently from programmers. Future exascale machine
designs are certain to have increasingly complex memory
hierarchies, sophisticated memory-management strategies
conducted by low-level mechanisms other than traditional
compilers should be developed.

In this paper, we present a mechanism for identifying the
working data set of a particular loop iteration space using
a dynamic binary translation system. We present how we
measure the locality of data accesses via our mechanism.
Our primary motivation of this work is to use our analysis to
guide performance tuning or optimization. Our mechanism
could help identify memory access locality amenable to
tuning or optimization, and guide what kind of strategies to
use. This would also be useful for guiding a manual tuning
done by expert programmers who must re-write their codes
for performance optimization. Also, implementing them on
an on-the-fly binary translation mechanism has potential
to be applied as dynamic optimization and parallelization
techniques.

II. M ONITORING WORKING DATA SET

In order to monitor the working data set at runtime, we
extend our work on whole program data dependence profil-
ing implemented in a dynamic binary translation system [4].
Here, we briefly explain how we profile memory dataflow
on our system using the concept of paging.

We start analysis on dynamic binary translation system
from the static analysis phase. Here, we formulate control
flow graphs and check memory access instructions in the
code. To keep track of dynamic behaviors such as memory
access and control flow transitions, we prepare analysis
codes. At this phase, we generate markers that point out
where analysis codes are to be instrumented, and these
are instrumented into the original binary codes. Since we
instrument analysis code when the binary code image is
loaded, our profiler can accept any executable binary code
without specific support for profiling.

After the instrumentation, we run the instrumented binary
code and start the dynamic analysis phase. We monitor
memory access and dynamic data dependencies together
with the dynamic context of loop and call activations. To
realize low overhead data dependence profiling, we focus
only on read after write dependencies, also called true
dependencies, in whole program executions.

To monitor true dependencies efficiently, we maintain
who writes the most recent value in each accessed address
using a locality-aware structure referred to as a lastWrite

table. In order to realize the faster access to lastWrite tables
and implement them with smaller memory size, we prepare
a fixed sized block for one lastWrite table. This concept
is similar to pages in virtual memory system. In virtual
memory system, physical memory space is relocated as a set
of fixed sized block (also called a page) [5]. This concept
allows on-demand allocations of tables required for actual
memory access patterns. Since a new lastWrite table is
allocated on-demand when an untouched memory segment
is newly accessed, we can save the total amount of memory
compared with the implementation that allocates tables for
all memory address space in advance.

In this paper, we apply the concept of the paging of
lastWrite memory access tables to monitoring working data
sets of actual executions. Here, the working data set is
defined as the amount of memory for data that the execution
requires in a given time interval. Then, we use the number of
allocated lastWrite tables as an indicator for the working data
set. Since a unit of a working data set becomes a criterion
for measuring locality of memory accesses, we improve the
fixed paging structure for lastWrite memory access tables
presented in [4] by allowing the size of each page to be
parameterizable.

By specifying the appropriate page size for each memory
hierarchy, we measure the locality that can fit in it. If all
accesses are referenced to the same working data set page
or only few pages, then we can consider that these accesses
have locality within these pages. Otherwise, memory is
discretely accessed from wide ranges of memory address
space, and their access pattern is considered not to have
much locality.

Also, we make use of trip counts and appearance counts of
loop regions to monitor the working data set in a particular
interval. Here, the appearance count of a loop region repre-
sents how many times the loop is activated from outside of
the loop regions. The trip count of a loop region represents
how many times the loop is iterated from the beginning of
the loop activation, and the trip count is initialized when the
loop region activated from the beginning again. By making
use of these counts, we realize a mechanism for identifying
the working data set of a particular loop iteration space.

Figure 1 shows the way how we keep track of the working
data set during a given interval. Here, we monitor the work-
ing data set using a hashTable, allocated lastWrite tables,
linked lists. The working data set is identified as follows:
When we encounter an instrumented memory operation, a
key for the hashTable is generated using its effective address
(EA) of the memory operation. Accessing the hashTable
using the key, we obtain a pointer to the linked list, which
records a pointer to a lastWrite table from an entry of the
hashTable. Also, an element of the linked list contains a
upperM bit field of EA. By comparingM bit in an element
and the original one, we resolve the corresponding lastWrite
table for the memory operation. Finally, theN bit field
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Figure 1. Our mechanism for identifying the working data set of a
particular loop iteration space.

of an EA are used as an offset to access an entry within
the lastWrite table. Here, the allocated lastWrite table itself
corresponds to a page for a working data set, in other words,
the number of allcated page tables or all the elements of
linked lists represents the working data set.

The key for the hashTable is generated by the following
equation:

key = M%(1 << W ) (1)

Here, the hashTable entry size is represented asW bit, the
lastWrite table entry size is represented asN , and theM
bit field is calculated byM = EA >> (N +2). Also, all of
memory accesses are set to be monitored in the granularity
of 4 bytes.

In order to change the page unit of working data set, we
reconfigure the size of a hashTable and that of a lastWrite
table. Here, we make the size of each page to be chosen
from 256 Byte, 4 kByte and 64 kByte, and the size of pages
chosen as a parameter is equal to the2N+2. We selected
these sizes assuming to be a page or a cache line size for
future memory hierarchies. Also, we set theW to 16 in this
work.

Together with the working data set size, we monitor trip
counts and appearance counts of loop regions to specify a
particular interval using them. An element of a lastWrite
table is composed of region ID, two counters for recording
the number of appearances and trip counts of the region.
These counters are represented as apr cnt and trip cnt in
the Figure 1. Using these runtime information, we identity
a particular loop iteration space where the working data set
is monitored. Also, we keep track of dependencies among
iterations and appearances using LCCT+M representation as
discussed in [4].

¨
1 for (n=0 ; n<nn ; ++n){
2
3 for (i=1 ; i<imax−1 ; i++)
4 for (j=1 ; j<jmax−1 ; j++)
5 for (k=1 ; k<kmax−1 ; k++){
6 s0= a[0][ i ][ j ][ k] ∗ p[i+1][j ][ k ]
7 + a[1][ i ][ j ][ k] ∗ p[i ][ j+1][k ]
8 + a[2][ i ][ j ][ k] ∗ p[i ][ j ][ k+1]
9 + b[0][ i ][ j ][ k] ∗ ( p[i+1][j+1][k ] − p[i+1][j−1][k ]

10 − p[i−1][j+1][k ] + p[i−1][j−1][k ] )
11 + b[1][ i ][ j ][ k] ∗ ( p[i ][ j+1][k+1] − p[i ][ j−1][k+1]
12 − p[i ][ j+1][k−1] + p[i ][ j−1][k−1] )
13 + b[2][ i ][ j ][ k] ∗ ( p[i+1][j ][ k+1] − p[i−1][j ][k+1]
14 − p[i+1][j ][ k−1] + p[i−1][j ][k−1] )
15 + c[0][ i ][ j ][ k] ∗ p[i−1][j ][ k ]
16 + c[1][ i ][ j ][ k] ∗ p[i ][ j−1][k ]
17 + c[2][ i ][ j ][ k] ∗ p[i ][ j ][ k−1]
18 + wrk1[i][ j][k];
19
20 ss= ( s0∗ a[3][ i][ j ][ k] − p[i][ j][k] ) ∗ bnd[i][ j][k];
21 wrk2[i][ j][k] = p[i][ j ][ k] + omega∗ ss;
22 }
23
24 for (i=1 ; i<imax−1 ; ++i)
25 for (j=1 ; j<jmax−1 ; ++j)
26 for (k=1 ; k<kmax−1 ; ++k)
27 p[i ][ j ][ k] = wrk2[i][ j][k];
28
29 } /∗ end n loop∗/

Figure 2. The outline of the computation kernel of the Himeno Benchmark.

III. E XPERIMENTAL FRAMEWORK

A. Methodology

We implement our dynamic data dependence profiling us-
ing the Pin tool set [6]. Pin is a well-known dynamic binary
translation system that provides the same ISA translation ap-
plicable to dynamic binary optimization and parallelization.

To verify and evaluate our method, we use the Himeno
Benchmark, which is widely known as a program that
requires large memory bandwidth. Later in this Section, we
briefly explain the overview of this benchmark.

As compiler tool sets, we use both of the GNU Compiler
Collection 4.1.2 for x8664 Redhat linux and the Intel C++
Compiler 11.1. Here, we compile the codes with ’-O3 -
g’ option. We run our system on a single node of Appro
gB222X-SM32 cluster servers, which is composed of two
Intel Xeon X5570 CPUs, 24GB memory, Red Hat Enterprise
Linux 5.4. The other detail parameters are similar to the ones
in [4].

B. The Himeno benchmark

The Himeno benchmark, which originally developed by
Dr. Ryutaro Himeno, measures performance in solving the
Poisson equation using the Jacobi iterative method appeared
in incompressible fluid analysis code [7]. Since this bench-
mark is known to be highly memory intensive and bound by
memory bandwidth [8], this has grown in popularity and has
been used by the HPC community to evaluate the worst-case
performance for bandwidth intensive codes [9] [10].

Figure 2 shows the main solver which applies a 19-point
stencil computation to the 3D arrayp. This main solver
is composed of one outermost loop indexed byn for the
Jacobi iterations, and two triply-nested loops indexed by
i, j, k. Here, p is pressure, and it becomes the output of



Table I
THE NUMBER OF WORKING DATA SET PAGES DURING GIVEN LOOP ITERATIONS.

(a) gcc.4.1.2 with ’-O3 option’

loopID Analysis window
# of working set pages

64kB 4kB 256B

- all 3669 58411 932669
8 apr=1, itr=1 3589 57180 896233
9 apr=1, itr=1 47 522 8134
10 apr=1, itr=1 17 26 106
11 apr=1, itr=1 17 18 23

(b) icc.11.1 with ’-O3 option’

loopID Analysis window
# of working set pages

64kB 4kB 256B

- all 3674 58420 932704
9 apr=1, itr=1 3605 57209 896279
10 apr=1, itr=1 45 521 8133
11 apr=1, itr=1 16 19 104
13 apr=1, itr=1 16 18 22

Table II
THE NUMBER OF INCREMENTED WORKING DATA SET PAGES FROM THE PREVIOUS ITERATION.

(a) gcc.4.1.2 with ’-O3 option’

loopID Analysis window
Incremented page counts
64kB 4kB 256B

8 apr=1, itr [2-1] 0 0 0
9 apr=1, itr [2-1] 28 454 7104
10 apr=1, itr [2-1] 0 1 63
11 apr=1, itr [2-1] 0 0 0

(b) icc.11.1 with ’-O3 option’

loopID Analysis window
Incremented page counts
64kB 4kB 256B

9 apr=1, itr [2-1] 0 0 0
10 apr=1, itr [2-1] 29 454 7104
11 apr=1, itr [2-1] 1 7 64
13 apr=1, itr [2-1] 0 0 7

this computation, and all of data in arrays is represented
in single precision floating point format. The body of this
computational kernel originally involves 34 floating point
calculations. Based on this, the performance of this bench-
mark is measured in FLOPS (FLoating-point Operations Per
Second), where the total number of floating point operations
is divided by the execution time.

In this experiment, we use Himeno benchmark version
3.3 (C, static allocate) and its medium size data sets for our
evaluation.

IV. PERFORMANCE EVALUATION

First, we profile the whole program execution of Hi-
meno benchmark executables. Table I shows the number
of working data set pages obtained in this evaluation. The
row indexed by ’all’ in the column of Analysis window
represents the working data set size of the whole program
execution. Here, we measure working data sets for different
page sizes from 256 Byte to 64 kByte.

From the results, we find that the working data set
size of the whole program execution is about 229 MB
when assuming 64 kB pages, which can be calculated by
multiplying the number of pages with the page size. This
is almost equal to the the maximum allocated memory size
provided by operating system, which is the VmHWM size
at /proc/<pid>/status .

Next, we monitor working data sets of particular loop
iterations based on the visualized LCCT+M graphs as shown
in Figure 3 and Figure 4. Here, the circles represent loops,
the boxes represent procedure calls. Dynamic control flows
of L-CCT are represented in solid (black) lines. So, an outer
loop become a parent node and an inner loop become a
child node of this graph. Here, we represent loop regions
with their own ID number called loopID. In addition to call
and loop context flows, dynamic data dependencies between
nodes are represented in arrows with dashed lines. In each

node, the percentage of the total cycles accumulated over all
of its successors, and inside the parenthesis the percentage
of the cycles executed in the node itself are represented,
respectively. Also, we can find the # of appearances of each
node, and the average # of loop iterations is outputted if the
node is a loop.

Table I also shows the number of working data set pages
for particular loop iterations. Using the loopID of the loop
region and the number of appearances (apr), the number of
iterations (itr) within a loop region, we represent regions of
interests for monitoring working data set analysis. These are
represented at the columns of loopID and Analysis window.

Here, we set the intervals of measurement to the first
one iteration of the outermost loop and each of triply-nested
loops in the Himeno benchmark code. Here, the outermost
loop n is represented loopID=8 and the triply-nested loopsi,
j, k are represented loopID=9, 10 and 11 in the gcc.4.1.2. In
the icc.11.1 case, these loops are represented loopID=9, 10,
11 and 13, respectively. Also, we only focus on monitoring
working data set at the first iteration of the first appearance
of each loop.

It is observed that there are not so much difference of
memory access locality between gcc 4.1.2 and icc.11.1 while
the FLOPS score of the icc code is 2.9 times higher due to its
aggressive optimization. We observe that the loop structure
generated by icc 11.1 is converted to achieve SIMDization
and the innermost loop is divided into a few loops. Here, we
monitor the largest one (loopID=13) in the innermost loops.

It is also observed that there are not so much differences
of necessary pages among all page sizes when we execute
one iteration of the innermost loop (loopID=11 of gcc 4.1.2
or loopID=13 of icc 11.1). These imply that there are little
spatial locality inside an innermost loop iteration. In the
loops that are next level of the innermost toward outer, the
number of pages is increased only in 256 B case, so these
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Figure 3. The LCCT+M generated by gcc4.1.2.
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Figure 4. The LCCT+M generated by icc11.1.



imply there are spatial locality that fits in larger pages.
In order to investigate temporal locality, we measure the

increments of pages from the previous iterations. Table II
shows the number of incremented working data set pages.
Here, the itr[2-1] in Analysis window column represents
that we measure the increments from the first iteration to
the second iteration. From the results, we find that the
all increments are smaller than the case that the number
of pages required for executing an iteration is doubled.
Therefore, we can find there are reuse of data within the
already assigned pages.

Based on the obtained spatial and temporal locality infor-
mation, we can make strategies of loop tiling or blocking.
For example, if the number of pages or the size of working
data set is greater than these that can be available in the
memory hierarchy, we should perform loop tiling to fit these
data into the space. In the case of cache, we should focus
on the 256 B page size and care about the interval when
the number of pages dramatically increased. Based on these
information and the size of each cache from L1 to L3,
we can make use of locality of references by deciding the
blocking factors or each tile size fitting to them.

We believe these information can be applied to perfor-
mance tuning of real application codes. Combined with a
mechanism of a dynamic compilation framework performed
by a binary translation system, we would like to enhance the
potential of automated performance tuning and optimization
of code.

V. CONCLUSIONS

In this paper, we have discussed that loop tiling or
blocking is a technique that can enhance spatial and temporal
locality of data accesses and the working data set of the
actual execution could help these transformation. Then, we
have presented a mechanism for identifying the working data
set size of a particular loop iteration space using a dynamic
binary translation system. Using the Himeno benchmark, we
have demonstrate how we measure the temporal and spatial
locality of data accesses via our mechanism.

Current and future work includes applying the working
data set analysis toward loop tiling on the actual code,
exploring methods for automating the application of such
transformation on a binary translator, and studying how our
approach can be improved to apply real problems in the HPC
field.
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