
Cooperation of Neighboring PEs in Clustered Architectures

Yukinori Sato, Ken-ichi Suzuki and Tadao Nakamura
Graduate School of Information Sciences, Tohoku University

6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, 981-8579, Japan
{yukinori,suzuki,nakamura}@archi.is.tohoku.ac.jp

Abstract

Clustered architectures which intend to process data
within a localized PE are one of the approaches to in-
crease the performance under the difficulties of the wire de-
lay problems. The performance of clustered architectures
depends on the amount of parallel execution of instructions
and the amount of inter-PE communication to synchronize
dependent instructions. In this paper, we propose an ar-
rangement of PEs cooperating with the adjacent PEs by
means of adding communication structures between the ad-
jacent PEs in order to relax the inter-PE communication
and workload imbalance in an effective manner. We evalu-
ate the proposed configurations and compare them with the
existing one so far considered. The results show that the
proposed adjacent forwarding network configuration with
the instruction steering scheme that concerns both the reg-
ister fanout and available free register can achieve higher
instructions per clock (IPC) with the small number of regis-
ters per PE than the other configurations.

1. Introduction

Considering today’s advanced CMOS technology scal-
ing that allows high transistor density, a novel paradigm of
data processing is required to cover up the large wire de-
lay. Dynamically-scheduled clustered architectures to pro-
cess data locally will be able to fulfill this requirement [1],
[13], [14]. In the clustered architectures, global structures
are partitioned into simple smaller structures and each of
them is arranged in a PE (processing element) called cluster
in some papers. This partitioning makes the hardware sim-
pler and its control and data paths faster because the number
of entries and ports of the partitioned structures can be re-
duced.

The performance of clustered architectures depends on
the amount of parallel execution of instructions and the
amount of inter-PE communication to synchronize depen-
dent instructions. If too many instructions are steered to a

particular PE, then communication among PEs seldom oc-
curs. However, PEs are deprived of working in parallel and
the instructions in the overloaded PE cause resource con-
flicts, which degrade performance. This is referred to as
workload imbalance. On the contrary, if instructions are
steered to PEs evenly, the possibility of parallel process-
ing is increased. However, the amount of inter-PE com-
munication is also increased, which also degrades perfor-
mance. Hence, we must design a clustered architecture that
balances the workload and communication among PEs.

Many proposals for instruction steering schemes tried
balancing the workload and communication across PEs
[1], [14], [16]. However, just using the existing steer-
ing schemes, there are limitations in increasing the perfor-
mance. In order to overcome these limitations of the ex-
isting steering schemes, we must redesign some hardware
components in addition to instruction steering schemes.
The key components that should be reconsidered are com-
munication structures between PEs that affect the delay of
the communication.

In this paper, we make every pair of neighboring PEs
cooperate with each other in the clustered architecture. To
achieve effective cooperation, we add direct communication
structures between neighboring PEs and we propose novel
instruction steering schemes suitable for the structures. The
additional communication structure can reduce the latency
of the communication between neighboring PEs. The load
imbalance is also avoidable since instructions can be steered
with more flexibility without extra inter-PE communication
delay.

The rest of this paper is organized as follows. In sec-
tion 2, we briefly show the overview of a baseline clustered
architecture and a baseline instruction steering scheme.
Then, we discuss the limitation of the existing steering
schemes and consider making every neighboring PE coop-
erate with each other. Section 3 describes the experimen-
tal framework, the evaluation methodology and the results.
Section 4 shows some related work. Section 5 concludes
this paper.

yukinori
To be appeared in 17th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD2005)

steering

Processor Front-End

RegFile

FU
…

PE …0 1 n

… IQ

PE PE

Inter-PE connection network

Forwarding
network

Figure 1. The overview of the clustered archi-
tecture.

2. Clustered architecture

2.1. Baseline microarchitecture

The microarchitecture of a clustered architecture is based
on that of the aggressive out-of-order issue superscalar pro-
cessors. Fig. 1 shows the overview of the baseline clustered
architecture. The processor front-end fetches multiple in-
structions at once and decodes them. The decoded instruc-
tions are delivered to the steering logic. The steering logic
chooses a PE for the execution of each instruction. Next,
the steered instruction is dispatched to the IQ (issue queue)
that observes whether the operand status of each instruction
is ready or not. When required operands are ready, the in-
struction is waked up and the corresponding resources of
the steered PE are checked. If the resources are available,
the instruction is selected and issued to the PE and executed.

Most of current instruction set architectures are based
on a single set of registers. However, the clustered archi-
tectures provide the physically partitioned set of registers
in each PE in order to process data within a PE. There-
fore, register mapping mechanism needs to map the archi-
tectural registers into the partitioned physical registers in
an effective manner. One effective organization of the par-
titioned RegFiles is non-consistent RegFiles, where a reg-
ister in each RegFile has its own register instance since a
result is written into only one register [12]. In this configu-
ration, any registers do not duplicate a register instance. On
the other hand, in multiple-coherent RegFiles, register in-
stances are replicated across PEs by writing all the results to
each register of all RegFiles such as Alpha21264 [10]. The
non-consistent RegFiles are composed of a smaller number
of registers, so we assume clustered architectures with non-
consistent RegFiles.

Fig. 2 (a) shows the pipeline stages assumed in this pa-
per, which are based on those of Alpha21264 [10]. In MAP
stage, the renaming logic allocates a destination register to

COMMITEXREGISSUEMAPIDIF

COMMITEXREGISSUE

EXcommISSUE comm

EXreg_commISSUE reg_comm

(b) Pipeline timing of an inter-PE register read.

(c) Pipeline timing of an inter-PE result communication

(a) Assuming instruction pipeline organization

... ...

... ...

... ...REG

inter-PE conncection network

Figure 2. The timing of the pipeline.

an available free register and its mapping is recorded in the
map table. In order to accommodate the renaming mecha-
nism to the non-consistent RegFiles configuration, we pre-
pare a free register list for each PE. The instruction steering
mechanism must select a PE before the register renaming
process because the selection of a free register list deter-
mines a PE where the instruction is executed. The regis-
ter renaming mechanism we adopted is also based on that
of Alpha21264. In the renaming process of Alpha21264,
committed register instances are always stored in dedicated
registers whose identifiable numbers are $0-$31, and those
dedicated registers are also replicated across the partitioned
RegFiles. On the other hand, in the non-consistent Reg-
File configuration, we assume that the committed registers
are partitioned into PEs and each PE has the same number
of committed registers to avoid converging register pressure
on the particular PEs. For example, in 8 PE configuration,
32 committed registers ($0-$31) are partitioned as follows:
PE0 has $0-$3, PE1 has $4-$7, ... , PE7 has $28-$31.

In ISSUE stage, instructions in the IQ are checked
whether their operands are ready and their correspond-
ing functional units are available. If all the operands are
ready and the corresponding functional unit is available, the
operands are read from RegFiles in REG stage. When the
operand is stored in the same PE, it can be read in a sin-
gle cycle. When the operand is stored in a remote PE, we
assume that the operand fetch requires one extra cycle for
communication. Fig. 2 (b) shows the pipeline timing of
an inter-PE communication due to the register read. After
REG stage, the instruction is executed in EX stage in its
given latency.

In the case where the instruction uses at least one un-
ready operand, the instruction must wait until the results of
the preceding instructions are provided. When the preced-
ing dependent instruction is executed in the same PE as the
waiting instruction, the waiting instruction is executed at
the next cycle of the execution of the preceding instruction
using a forwarding network. On the other hand, when the

waiting instruction is allocated in a different PE from the
preceding dependent instruction, we assume that it takes 2
extra cycles for the inter-PE communication as shown in
Fig. 2 (c). This timing model of processing dependent in-
structions using inter-PE communication is the same as the
model in [14] that inserts copy instructions dynamically.

We assume sufficient bandwidth for the interconnection
network to isolate our results from possible communication
bandwidth bottlenecks. Although the fully-connected net-
work assumed here requires the same amount of hardware
cost as that of multiple-coherent RegFiles, the configuration
with non-consistent RegFile can reduce the number of regis-
ters than the multiple-coherent RegFiles. On the other hand,
the The inter-PE communication latency affects the non-
consistent RegFiles configuration more than the multiple-
coherent RegFile configuration. This is because the non-
consistent configuration requires inter-PE communication
using the interconnection networks after a PE is found to
use non-local registers or when a particular PE lacks avail-
able free registers. The effect of the organizations of inter-
connection networks and partitioned RegFiles will be eval-
uated in our future work.

In this paper, we assume all PEs share a single IQ as
shown in Fig. 1 in order to concentrate on the effects of co-
operation of neighboring PEs. If we partition the IQ across
the PEs, we have to take into account the utilization of each
queue. The effect of the partitioned IQ will be evaluated in
our future work.

2.2. Baseline instruction steering scheme

We use a steering scheme based on the status of operands
which is named !ready (not ready) as a baseline steering
scheme in this work since this scheme is reported to show
a good IPC [16]. This scheme gives priority to the instruc-
tions with at least one unready operand in order to prevent
the undesirable inter-PE communications. The instructions
with unready source operands are steered to the same PE
as the preceding dependent instruction. The instructions
with only ready source operands are steered to the minimum
loaded PE in order to even up the loads of PEs. The heuris-
tics to measure the loads of PEs is DCOUNT, which is the
product of the number of PEs and the difference between
the total number of instructions dispatched to the PE and
the average number of instructions dispatched per PE [14].

Table 1 (a) shows the relationship between the status of
source operands of an instruction and its steered PE on the
!ready scheme. The first column and first row of each table
denote the status of the two source operands of a consumer
instruction, in1 and in2. The status of a source operand is
classified as follows: dependent operand is nothing (null),
operand is not ready (!ready), or operand is ready (ready).
The rest of the table indicates which PE the instruction is

s
e
q
u
e
n
c
ia

lit
y

rFO=1

rFO=3

Instruction Level
Parallelism

: instruction

: data dependency

Figure 3. A snapshot of dynamic code.

steered to for each operand status. For example, if source
operand in1 is ready and in2 is !ready, then the scheme
steers the instruction to the PE having operand in2 in its
RegFile.

2.3. Limitation of the existing steering schemes

The performance of clustered architectures depends on
the amount of parallel execution of instructions and the
amount of inter-PE communication to synchronize depen-
dent instructions. In order to achieve both higher parallel
execution and lower inter-PE communication, we focus on
the metric called register fanout (rFO) [15]. The register
fanout is represented by the number of times a particular
register instance is used by subsequent instructions. Butts
and Sohi showed that the portion of rFO=1 in dynamic code
is 65%, rFO=2 is 14% and the average number of rFO is 1.7
in SPEC2000int benchmark suite [4]. This fact shows that
most instructions are rFO≤2 and sequentiality of codes are
general characteristics of programs.

Fig. 3 shows parallelism and sequentiality of codes.
Data-dependent instructions with rFO=1 must be processed
in serial. Grouping instructions according to dependency
leads to localized data processing within each PE. On the
other hand, in a group of dependent instructions, instruc-
tions following the instruction whose register fanout ex-
ceeds one can be processed in parallel. In Fig. 3, the register
fanout of the first instruction in the right dependent group is
three. Therefore, the three instructions following the first
one can be processed in parallel if they are assigned to indi-
vidual PEs and the dependent data is given properly.

However, just using the existing steering schemes, the
instructions waiting for the same result tend to be steered
into the same PE and cause resource conflicts in the PE,
which prevent the parallel execution. Therefore, a novel in-
struction steering scheme and a data handling mechanism
are required to assign parallel-executable instructions to in-
dividual PEs and forward the data properly.

In order to overcome this limitation of the existing steer-
ing schemes, we must redesign some hardware components
in addition to instruction steering schemes. The key compo-
nents that should be reconsidered are communication struc-

steering & IQ
Adjacent
RegFile

Read Port

…

PE …
0 1 nPE PE

Inter-PE connection network

from
PE n

to
PE 0

Figure 4. The adjacent read RegFile configu-
ration.

steering & IQ

…

PE …
0 1 nPE PE

Inter-PE connection network

Adjacent PE
forwarding

network

from
PE n

to
PE 0

Figure 5. The adjacent PE forwarding config-
uration.

tures between multiple RegFiles, the number of registers
and instruction steering scheme suited to these structures.
Communication structures between multiple RegFiles af-
fect the delay of the communication. The number of reg-
isters in a PE decides hardware cost in a RegFile design and
the number of available free registers for register renaming.

2.4. Proposed microarchitecture

In order to realize effective parallel execution by mul-
tiple PEs after the instructions of rFO>1, we make every
neighboring PE cooperate with each other by means of ad-
ditional structures that support direct communication be-
tween neighboring PEs. Here, we assume that the PEs are
aligned to form a loop and the additional hardware is put
between every two PEs to support communication of them,
as shown in Figs. 4 and 5. The additional hardware can
reduce the latency of the communication between adjacent
PEs because physical distance between adjacent PEs might
be short enough to cover up the wire delay. The load imbal-
ance is also relaxed since instructions can be steered with
more flexibility without extra communication delay.

In the cooperation of PEs, one way communication is
enough to support rFO≤2 instructions that occupy most of
dynamic instructions. We compare the following two com-
munication structures to shorten the latency between adja-
cent PEs. The first structure enables a RegFile to be read

COMMITEXREGISSUE

EXREGISSUE

RegFile

(b) Pipeline timing of an adjacent forwarding from adjacent PE

(a) Pipeline timing of a register read from adjacent read RegFile

...

... ...REG

COMMITEXREGISSUE

EXISSUE

Adjacent forwarding network

...

... REG COMMIT

PE
m

PE
m+1

PE
m

PE
m+1

PE
m

Adjacent
RegFile

read port

Figure 6. Executions of dependent instruc-
tions in the proposed architecture.

from its right adjacent PE. This configuration can be im-
plemented by adding one extra read port to the RegFile, as
shown in Fig. 4. The second one is forwarding networks
that can directly forward a result to the right adjacent PE.
This configuration can be implemented by adding a direct
forwarding network between adjacent PEs shown in Fig. 5.
Both structures can be realized with less hardware cost than
the conventional monolithic RegFile.

The RegFile structure which can be read by the adjacent
PE has an effect in reducing the inter-PE communication
latency in the operand fetch from the left adjacent RegFile.
This enables a single cycle read from the left adjacent Reg-
File. In the conventional clustered architecture, it takes two
cycles when the operand is stored in a remote PE, whether
the PE is adjacent or not. Fig. 6 (a) shows the pipeline
timing of executions of dependent instructions using this
RegFile. When an instruction has waited the result from the
adjacent PE, the instruction can be processed after one cycle
delay, which comes from the latency of the register read.

The adjacent forwarding network structure allows con-
tiguous executions of dependent instructions. Fig. 6 (b)
shows the pipeline timing of executions of dependent in-
structions using the adjacent PE forwarding network. When
an instruction has waited the result from the left adjacent
PE, the instruction can be processed in the next cycle with-
out transfer delay using the direct forwarding network.

2.5. Proposed instruction steering scheme

We present instruction steering heuristics based on the
number of register fanouts in order to make full use of
the proposed communication structures for the cooperation.
The instruction steering scheme based on the heuristics that
enables parallel execution of instructions after an rFO>1
instruction is named adjacent rFO scheme.

Table 1(b) depicts the adjacent rFO scheme. This
scheme gives priority to instructions with unready operands

Table 1. The status of operands and its
steered PE.

Min_dcount

in1

Min_dcount

null

in2

in1 / in2

in2

!ready

in1!ready

ready

Min_dcountready

Min_dcountnull

Min_dcount

in1

Min_dcount

null

in2

in1

in2

!ready

in1!ready

ready

Min_dcountready

Min_dcountnull

in1
in2

(a) !ready scheme

The Min_dcount indicates that the instruction is steered to the PE

 with minimum DCOUNT.

The in1 and in2 indicate that the instruction is steered to the producer

 PE of source operand in1 and in2, respectively.

The rFO(x) indicates that the instruction is steered based on the

 number of register fanouts of the source operand X.

Min_dcount

in1

Min_dcount

null

in2

in1 / in2

in2

!ready

in1!ready

ready

Min_dcountready

Min_dcountnull

Min_dcount

rFO(in1)

Min_dcount

null

rFO(in2)

rFO(in1)

rFO(in2)

!ready

rFO(in1)!ready

ready

Min_dcountready

Min_dcountnull

in1
in2

(b) Adjacent_rFO scheme

similar to the !ready scheme. Instructions with unready
operands are steered according to the number of rFO. The
number of rFO is dynamically observed for each register.
Instructions of rFO=2 or rFO=4 are steered to the right ad-
jacent PE from the producer PE of a source operand, and
the other instructions are steered to the producer PE of a
source operand. The rFO(X) in the table indicates this steer-
ing for source operand X. This steering is useful for re-
ducing the inter-PE communication or load imbalance after
rFO>1 instructions. On the other hand, instructions with
ready operands are steered to the minimum loaded PE for
balancing workload as the !ready scheme does.

For example, let’s assume that three successive instruc-
tions B, C, D are dependent only on an instruction A and
the result of A has not been ready. B is assigned to the same
PE as A, because it is the first successor of A (rFO=1). C
is assigned to the right PE of A, because it is the second
(rFO=2). Lastly, D is assigned to the A’s PE again because
it is the third (rFO=3).

2.6. The number of free registers in each PE

If the number of registers per PE is reduced, then the
clustered architecture with small RegFiles can be realized.
However, it may suffer from lack of available free regis-
ters. In the non-consistent RegFiles configuration, the lack
of available free registers may cause changes of the deci-
sions of instruction steering schemes. This is because the
number of available free registers in a PE is different from
the others since the number of in-flight instructions in a PE
is different from the others. When the PE selected by the in-
struction steering scheme lacks available free registers, the

If the selected PE lacks
available free register

!ready

T F
Reallocatation to
the right side PE

start

The steered PE

If the selected PE lacks
available free register

rFO

T F
Reallocatation to
the right side PE

start

The steered PE

(a) Adjacent_freereg scheme (b) Adjacent_rFO_freereg scheme

Figure 7. The steering schemes based on the
number of free register heuristics.

instruction must be reallocated to one of the other PEs.

This reallocation causes extra inter-PE communication
delay, which causes performance degradation. This behav-
ior cannot be handled well in the existing steering schemes.
In !ready and adjacent rFO steering schemes, if the instruc-
tion must be reallocated due to the lack of available free
registers, the instruction is reallocated to the PE with the
largest number of available free registers regardless of the
communication delay.

Then, we propose the heuristics for instruction steering
based on communication delays and and the number of free
registers in each PE. This can reduce the inter-PE communi-
cation delay due to the undesirable allocation by the cooper-
ation of adjacent PEs. When a candidate PE selected by the
steering scheme lacks free rename registers, we reallocate
the instruction into its adjacent right PE.

The instruction steering schemes based on this heuris-
tics are named adjacent freereg and adjacent rFO freereg.
Fig. 7 depicts these two schemes. These schemes work as
follows: first, an instruction is tried to be steered in the
same way as the !ready or adjacent rFO scheme, respec-
tively. Next, the schemes check whether the selected PE has
available registers. If the instruction needs reallocation due
to the lack of available registers, the instruction is steered to
the right side PE of the PE originally selected. Therefore, if
the instruction does not need to be reallocated, the steering
scheme is the same as !ready or adjacent rFO scheme.

The number of available free registers in a PE is affected
by the number of registers in it. To realize an effective clus-
tered architecture, we should try to process data with a rea-
sonable amount of hardware. Therefore, we also focus on
the number of registers per PE as an indicator of effective-
ness in order to evaluate clustered architectures in terms of
not only the performance but also the hardware cost.

Table 2. Main architectural parameters.

256ROB size

64IQ, FQ, LQ, SQ size

128kB, 2wayDcache

128kB, 2wayIcache

8 int + 1 fpThe number of PEs

1 inst per PEIssue width

1 ALU + 1 MUL per int. PEFunctional Units

Tournament branch predictorBranch predictor

8 instructions per cycleFetch and decode

3. Experiments

3.1. Methodology

We developed a cycle-accurate execution-driven simula-
tor to evaluate the proposed communication structures and
instruction steering schemes. Baseline simulator is sim-
alpha [6], which is one of the extention version of Sim-
pleScalar tool set [3]. Sim-alpha models the detailed mi-
croarchitecture of Alpha21264, which is one of the clus-
tered architectures composed of dual integer PEs (clusters).

We modified sim-alpha to model the clustered architec-
ture with all the architectural features described in the pre-
vious section. In this paper, we assume an 8-way processor,
which has 8 homogeneous integer PEs. The integer PE is-
sues 1 instruction per cycle. The rest of the configuration
such as out-of-order issue policy, latency of the caches and
that of functional units are following that of Alpha21264.
The main architectural parameters for the assuming archi-
tecture are shown in Table 2.

We have selected a subset of 4 benchmarks (djpeg, cjpeg,
rawdaudio, rawcaudio) from the MediaBench benchmark
suite [11]. This benchmark suite captures the main fea-
tures of commercial multimedia applications. Benchmarks
which tend to achieve high instruction-level parallelism
have been selected. We have also selected a subset of 7
benchmarks (gzip, vpr, gcc, mcf, perlbmk, bzip, twolf) from
the SPEC2000CPU int benchmark suite [9]. The rest of
SPEC2000 benchmarks could not be adapted to the simu-
lation environment used. All the benchmarks were com-
piled for the Alpha binary using Compaq’s C compiler v6.5
on Tru64 UNIX V5.1B with -O4 -fast -non shared options.
Each program of the MediaBench was executed until the
completion and 100 million instructions of each program of
the SPEC2000int were executed after forwarding 1 billion
instructions.

3.2. Results

Fig. 8 shows instructions per clock (IPC) for the four
communication structures. The ’conventional’ represents
the configuration without any additional communication

0

0.5

1

1.5

2

2.5

3

3.5

dj
pe

g

cj
pe

g

ra
w
da

ud
io

ra
w
ca

ud
io

gz
ip vp

r
gc

c
m

cf

pe
rlb

m
k

bz
ip

tw
ol
f

M
ed

ia
Ben

ch
 a

v.

S
PE

C
20

00
 a

v.

IP
C

conventional adjacent_forwarding (AF)
adjacent_RegFile (ARF) AF+ARF

Figure 8. The IPC with 40 registers per PE
configuration.

structures. The ’AF’ represents the adjacent forwarding net-
works and the ’ARF’ represents the adjacent read RegFiles.
The ’AF+ARF’ represents the configuration with both the
adjacent forwarding networks and adjacent read RegFiles.
The number of registers per PE is 40. The instruction steer-
ing schemes utilized are the !ready scheme for the conven-
tional configuration and the adjacent rFO freereg scheme
for the others.

The results show that IPC of the configuration with AF
is always larger than that of ARF configuration. The av-
erage IPC of the AF configuration is improved by 14% in
MediaBench and 11% in SPEC2000int compared with the
conventional configuration, respectively. On the other hand,
the average IPC of the ARF configuration is not improved
very much compared with the conventional configuration.

The reason why the ARF configuration cannot improve
its IPC is because of dependencies with unready source
operands. Our previous work showed that the communi-
cation delay between dependencies with unready source
operands tend to be more responsible for the execution
time than that with ready source operands stored in Reg-
Files [16]. This means that the dependencies with unready
source operands should be processed as soon as the result
is produced. However, in the ARF configuration, it takes
one extra clock to process the dependencies with unready
source operands from the adjacent PE due to the inter-PE
register read compared with immediate executions of them.

In contrast, the AF configuration can process the depen-
dencies with unready operands more effective way. The AF
configuration can process an instruction with an unready
operand from the adjacent PE in the next clock cycle of
the execution of preceding dependent instruction. This can
reduce the communication delay that seriously affects the
performance. Moreover, workload balancing is improved
since instructions can be steered with more flexibility avoid-
ing extra inter-PE communication delay. Therefore, the AF
configuration is superior to the ARF configuration.

1.6

1.8

2

2.2

2.4

2.6

16 20 24 28 32 40 80

The number of registers per PE

IP
C

conventional adjacent_forwarding (AF)

adjacent_RegFile (ARF) AF+ARF

Figure 9. The effects of the number of regis-
ters.

It is also observed that the difference of IPCs between
the AF and AF+ARF are very small. Throughout the bench-
marks, the IPC using AF+ARF is subtly superior to the IPC
just using the AF. However, in terms of the effective de-
sign, the advantage of the configuration with the ARF is
very small since we must add the extra ports to the adjacent
RegFile in adjacent PE.

In order to discuss the effectiveness of the communica-
tion structures, we also vary the number of registers. Fig.
9 shows the IPC for each configuration. The IPC repre-
sented in the figure is the average number of MediaBench
suite. The differences of the IPCs among the number of
registers per PE are caused by the unbalanced register pres-
sure among PEs. The lack of available free registers causes
the reallocation of the PE and this causes the extra inter-PE
communication compared to the case where the PE has a
large enough number of registers.

It is also observed that the IPC is increased if the number
of registers is increased. However, the increase of the IPC is
saturated near the configuration with 28 registers per PE (in
total 224 registers). This implies that the register pressure
of the clustered architectures with non-consistent RegFiles
is larger than that of conventional 8-way 64-entry IQ super-
scalars, which saturates the performance in 128 registers in
total [7]. We note that the minimum number of registers per
PE (16 registers per PE and in total 128 registers) comes
from the saturation point of superscalars.

We can also understand that the minimum IPC of the
configuration of AF is higher than the maximum IPC of
conventional schemes. This means that even if we prepare
a large number of registers, we cannot obtain much return
in the conventional configuration. Instead of increasing the
number of registers, we should prepare the adjacent PE for-
warding networks.

For the sake of examining the effects of instruction steer-
ing schemes in the adjacent forwarding configuration, we
compare the instruction steering schemes discussed in the
previous section. Fig. 10 shows the differences among the

1.6

1.8

2

2.2

2.4

2.6

16 20 24 28 32 40 80

The number of registers per PE

IP
C

adjacent_freereg
adjacent_rFO
adjacent_rFO_freereg

Figure 10. The differences among instruction
steering schemes.

instruction steering schemes. All the IPCs are obtained us-
ing the AF configuration. The IPC represented in the figure
is the average number of MediaBench suite.

The effect of the adjacent freereg steering scheme is sig-
nificant in the configuration with small number of registers.
However, if the number of registers is increased, the return
of this scheme is decreased since each PE has enough num-
ber of registers and the lack of available free registers sel-
dom happens. The adjacent rFO steering scheme cannot
achieve the distinguished IPC with small number of regis-
ters due to the lack of available free registers.

The adjacent rFO freereg scheme can compensate these
two disadvantages. The combined scheme can realize the
aim of the adjacent PE forwarding network configuration,
which is to process the instructions following the instruc-
tion whose rFO exceeds one in parallel and to reduce the
communication delay due to the lack of available regis-
ters. Therefore, we can understand the clustered architec-
ture with the adjacent PE forwarding network and adja-
cent rFO freereg steering scheme is an effective design.

4. Related Work

Dynamically-scheduled clustered architectures can uti-
lize information such as dependency and instruction sta-
tus in order to distribute instructions into the suitable PEs.
There are many proposals for instruction steering schemes
and their comparisons in literature [1], [14]. The most ba-
sic instruction steering scheme for clustered architecture is
dependence-based scheme [13]. This scheme assigns de-
pendent instructions to the same PE. Therefore, this can
minimize inter-PE communication penalties. However this
suffers from load imbalance among the PEs.

Parcerisa and Gonzalez proposed a steering scheme of
data dependence-based steering with load balancing named
Advanced RMBS [5], [14] (In the papers, the dependence-
based scheme is called RMBS, Register Mapping Based

Scheme). This scheme can improve the workload bal-
ance while this might increase undesirable communications
among dependent instructions, which degrade the perfor-
mance. To avoid both the undesirable inter-PE communi-
cations and load imbalance, a steering scheme based on the
status of operands, which is named !ready (not ready), has
been proposed [16]. This scheme can reduce the undesir-
able inter-PE communication with superior workload bal-
ance than the Advanced RMBS scheme.

To achieve higher performance on a clustered architec-
ture, Aggarwal and Franklin proposed instruction replica-
tion [2]. Its basic idea is to selectively replicate instructions
in those PEs where their results are required. The aim of the
instruction replication is very similar to our work. However,
our approach can realize the aim in much simpler way since
it forwards only required results to the adjacent PE after
the productions, in contrast with the replication approach,
where required results are calculated in required PEs from
the beginning of the result calculation process.

Farkas and Vranesic proposed Multicluster architecture
[8] that makes use of the non-consistent RegFiles. However,
Multicluster architecture must distribute instructions with-
out run-time PE workload balance information, since allo-
cations of PEs are determined by the compiler statically. In
contrast, dynamic instruction steering can steer instructions
more flexibly with keeping binary compatibility.

5. Conclusions

In this paper, we have made PEs cooperate with their
neighboring PEs by means of adding communication struc-
tures between adjacent PEs in order to relax the losses due
to inter-PE communication and workload imbalance in clus-
tered architectures with non-consistent register files. The
aim of this design is to process the instructions that use the
same register instances in parallel and to reduce the inter-PE
communication delay due to the lack of available registers.
We have evaluated the performance of proposed configu-
rations. We have found out that the forwarding networks
which can forward the result to the right adjacent PE is ef-
fective in achieving higher IPC (instructions per clock) than
the other structures. The reason why the adjacent forward-
ing network structure is effective is that it gives priority to
the processing of dependencies that seriously affect the per-
formance. We have also found that the instruction steering
scheme that concerns both the register fanout and available
free register could enhance the performance of the proposed
architecture.

References

[1] A. Aggarwal and M. Franklin. An empirical study of the
scalability aspects of instruction distribution algorithms for

clustered processors. In Proceedings of IEEE International
Symposium on Performance Analysis of Systems and Soft-
ware, pages 172–179, 2001.

[2] A. Aggarwal and M. Franklin. Instruction replication: Re-
ducing delays due to inter-pe communication latency. In
Proceedings of International Symposium on Parallel Archi-
tecture and Compiler Techniques, pages 46–55, 2003.

[3] D. Burger and T. M. Austin. The simplescalar tool set, ver-
sion 2.0. Compututer Architecture News, 25(3):13–25, 1997.

[4] J. A. Butts and G. S. Sohi. Characterizing and predicting
value degree of use. In Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture,
pages 15–26, 2002.

[5] R. Canal, J.-M. Parcerisa, and A. González. A cost-effective
clustered architecture. In Proceedings of the 1999 Interna-
tional Conference on Parallel Architectures and Compila-
tion Techniques, pages 160–168, 1999.

[6] R. Desikan, D. Burger, and S. W. Keckler. Measuring exper-
imental error in microprocessor simulation. In Proceedings
of the 28th annual international symposium on Computer
architecture, pages 266–277, 2001.

[7] K. Farkas, N. Jouppi, and P. Chow. Register file design con-
siderations in dynamically scheduled processors. In High-
Performance Computer Architecture, pages 40–51, 1995.

[8] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The
multicluster architecture: reducing cycle time through parti-
tioning. In Proceedings of the 30th annual ACM/IEEE inter-
national symposium on Microarchitecture, pages 149–159,
1997.

[9] J. L. Henning. SPEC CPU2000: Measuring CPU Perfor-
mance in the new millennium. IEEE Computer, 33(7):28–
35, 2000.

[10] R. E. Kessler. The alpha 21264 microprocessor. IEEE Mi-
cro, 19(2):24–36, 1999.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
aBench: a tool for evaluating and synthesizing multimedia
and communicatons systems. In Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchi-
tecture, pages 330–335, 1997.

[12] J. Llosa, M. Valero, and E. Ayguade. Non-consistent dual
register files to reduce register pressure. In Proceedings of
the 1st IEEE Symposium on High-Performance Computer
Architecture, pages 22–31, 1995.

[13] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proceedings of the 24th
annual international symposium on Computer architecture,
pages 206–218, 1997.

[14] J.-M. Parcerisa and A. González. Reducing wire delay
penalty through value prediction. In Proceedings of the
33rd annual international symposium on Microarchitecture,
pages 317–326, 2000.

[15] K. Sankaralingam, R. Nagarajan, S. Keckler, and D. Burger.
A technology-scalable architecture for fast clocks and high
ILP. In 5th Workshop on the Interaction Between Compilers
and Computer Architectures (INTERACT-5), 2001.

[16] Y. Sato, K. Suzuki, and T. Nakamura. An operand sta-
tus based instruction steering scheme for clustered architec-
tures. In Proceedings of the 2005 International Conference
on Computer Design (CDES’05), pages 168–174, 2005.

