
1

The Triptych Paradigm

• The prerequisite for studying this chapter is that you have at least some
introductory level programming skills, as, for example, obtained through
a year of Java or C# programming.

• The aims are to introduce the basic ideas of domain engineering, require-
ments engineering and software design as they relate to one another, to
introduce the concept of separation of concerns as represented here by the
concepts of phases, stages and steps of development, and thus to introduce
the concept of the triptych software development process model.

• The objective is to make the reader a professional software engineer with
respect to understanding the crucial phases, stages and steps of software
development.

• The treatment is precise but informal.

1.1 Delineations of Software Engineering

We give two sets of characterisations of the field of software engineering. One
set of characterisations is taken from the literature. The other (a singleton)
set is our definition.

1.1.1 “Old” Delineations

The term “software engineering” seems to have many meanings. We shall
bring in some of the characterisations that are given in previous textbooks as
well as from elsewhere.

Friedrich L. Bauer [257], 1968

Software engineering is the establishment and use of sound engineering
principles in order to economically obtain software that is reliable and
works efficiently on real machines.

4 1 The Triptych Paradigm

So we are left to find out what is meant by engineering principles. These
“engineering principles” cannot just be those of conventional engineering as
we think that the engineering of software is radically different from other
engineerings. Conventional engineering builds on the laws of physics. Software
engineering builds on mathematics, notably algebra and logic.

Ian Sommerville [338], 1980–2000

Software engineering is an engineering discipline which is concerned
with all aspects of software production from the early stages of system
specification through to maintaining the system after it has gone into
use.

In this definition, there are two key phrases:

(1) Engineering discipline: Engineers make things work. They apply
theories, methods and tools where these are appropriate but they use
them selectively and always try to discover solutions to problems even
when there are no applicable theories and methods to support them.
Engineers also recognise that they must work to organisational and
financial constraints so they look for solutions within these constraints.

(2) All aspects of software production: Software engineering is not just
concerned with the technical processes of software development but
also with activities such as software project management and with
the development of tools, methods and theories to support software
production.

We are getting some engineering principles unveiled, albeit of the conventional
kind.

IEEE Std. 610.12–1990 [178]

The IEEE’s Standard Glossary of Software Engineering Terminology:

Software engineering is defined as the application of a systematic,
disciplined, quantifiable approach to the development, operation, and
maintenance of software.

Again, a very conventional engineering characterisation.

David Lorge Parnas

Software engineering is defined as the multi-person construction of
multi-version software.

This is, of course, not all that Parnas has to say about software engineering.
As much of his other musings this one is cogent.

1.1 Delineations of Software Engineering 5

Shari Lawrence Pfleeger [275], 2001

Pfleeger [275] (Page 2) has an indirect characterisation:

As software engineers, we use our knowledge of computers and com-
puting to help solve problems . . . identification of problems and of
when a computing solution may be appropriate, further analysis of
such problems, and synthesis of solutions using method principles,
techniques and tools, are ingredients of software engineering.

We are not getting much closer to our claimed difference between conventional
engineerings and software engineering. Pfleeger’s characterisation is OK, but
insufficient.

Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli [121], 2002

Software engineering is the field of computer science that deals with
the building of software systems that are so large or so complex that
they are built by a team or teams of engineers.

This definition hides the real content in its reference to computer (including
computing) science, i.e., the mathematical discipline upon which the software
engineers work. But, as for Parnas’ characterisation, the Ghezzi/Jazayeri/-
Mandrioli characterisation emphasises scale.

Accreditation Board for Engineering and Technology (ABET)

ABET (www.abet.org) gives a definition of ‘engineering’ which some software
engineering authors refer to:

Engineering is the profession in which a knowledge of the mathemat-
ical and natural sciences gained by study, experience and practice is
applied with judgment to develop ways to utilize, economically, the
materials and forces of nature for the benefit of mankind.

We take exception, in parts, to the software engineering use of the ABET
characterisation: First, to us, software engineering (in almost all its activities)
does not rely on laws of the natural sciences (but almost exclusively only on
mathematics). Second, the materials and forces of nature must therefore be
rephrased into mathematics. Third, for the benefit of mankind is just a (as of
the year 2005) politically correct utterance — so we do not include it in our
consideration of what software engineering is.

6 1 The Triptych Paradigm

Hans van Vliet [369], 2000

Pages 6–8 of Hans van Vliet’s delightful work [369] details the following soft-
ware engineering facets:

• Software engineering concerns the construction of large programs.
• The central theme is mastering complexity.
• Software evolves.
• The efficiency with which software is developed is crucial.
• Regular co-operation between people is an integral part of programming-

in-the-large.
• The software has to support its users effectively.
• Software engineering is a field in which members of one culture create

artifacts on behalf of members of another culture.

We quite like van Vliet’s characterisation.

1.1.2 Our View: What Is Software Engineering?

Many of the above characterisations are relevant. Some characterise software
engineering by how it proceeds, others by what it does. We prefer the latter
style of characterisation. In order, however, to emphasise a number of new
aspects of the software engineering approach that we shall be propagating in
these volumes, our delineation combines both the ‘how’ and the ‘what’ styles.

We shall therefore characterise the concept of ‘software engineering’ as
follows:

• Software engineering is the establishment and use of sound methods for
the efficient construction of efficient, correct, timely and pleasing software
that solves the problems such as users identify them.

• Software engineering extends the field of computing science to include also
the concerns of building of software systems that are so large or so complex
that they necessarily are built by a team or teams of engineers.

• Software engineering is the profession in which a knowledge of mathemat-
ics, gained by study, experience and practice, is applied, with judgment
to develop ways of exploiting mathematics to (i) understand the problem
domain, (ii) the problem and (iii) to develop computing systems, espe-
cially software solutions, to such problems as are conveniently solved by
computing.

• Software engineering thus consists of (i) domain engineering (in order to
understand the problem domain), (ii) requirements engineering (in order
to understand the problem and possible frameworks for their solution) and
(iii) software design (in order to actually implement desired solutions).

In the next section we shall examine these three concepts: domain engineering,
requirements engineering and software design.

1.2 The Triptych of Software Engineering 7

1.2 The Triptych of Software Engineering

Before some specific software can be designed and coded, we must understand
the requirements that this software must fulfill.

Characterisation. By design of software we mean the process, and the doc-
uments resulting from the process, of implementing the software. That is,
we mean in the narrow sense of conceiving of and expressing (i.e., specify-
ing) these documents — in stages and steps — eventually in some executable
programming language. Software design thus specifies how executions may
proceed.

Characterisation. By requirements prescription we mean the process, and
the documents resulting from the process, of acquiring, analysing and writing
down, in some language, what the software — to be designed — is expected
to do.

Before requirements can be written down, we must understand the application
domain for which the software is to be developed.

Characterisation. By domain description we mean the process, and the
documents resulting from the process, of acquiring, analysing and writing
down, in some language, a model of the application domain as it is — void
of any reference to requirements to any software for that domain, let alone
references to such software.

So, from descriptions of the application domain we construct prescriptions
of the requirements; and from prescriptions of the requirements we design
the software, i.e., construct specifications of software. Ideally speaking we
would wish to proceed from describing the application domain, via prescribing
the requirements, to implementing the software. Actual life sometimes forces
us, and always permits us, to iterate between these three phases of software
development.

1.2.1 On Universes of Discourse and Domains

Above we have used the term “application domain” without explaining what
we mean by that term. We shall now explain that term as well as the more
general term ‘universe of discourse’ and the simpler term ‘domain’.

Characterisation. By a universe of discourse we shall understand anything
that can be spoken about.

8 1 The Triptych Paradigm

Example 1.1 Universes of Discourse: We shall take the view here that there
are basically three classes of universes of discourse:

(i) The definite, but singleton class of software engineering as an intellec-
tual concept, i.e., software development in general and programming in par-
ticular. So, domain engineering, requirements engineering and software design
could each, or as a whole, be a universe of discourse. These volumes take this
intellectual concept of software engineering as its universe of discourse. As an
intellectual concept the software engineering universe of discourse is not an
application domain.

(ii) The indefinite class of “things” to which computing may be applied,
i.e., application domains (see next).

(iii) The infinite class of anything else that does not satisfy the above
characterisations. Examples are: philosophy, politics, poetry, etc.1

Characterisation. By an application domain we shall understand anything
to which computing may be applied.

Example 1.2 Application Domains: We shall take the view that there are
basically three classes of application domains:

(i) The class of applications which can be characterised as supporting
the teaching or study of a subject field: educational or training software,
respectively experimental software for theorem proving, or the like.

(ii) The class of applications which can be characterised as supporting the
development of computing systems themselves: compilers, operating systems,
database management systems, data communication systems, etc.

(iii) And the class of applications which can be characterised as not sup-
porting the development of computing systems themselves, but that of busi-
ness, or industry software.

It is basically the last class of these application domains that are of inter-
est in this volume. We relegate to specific textbooks the treatment of special
principles, techniques and tools for the development of software for applica-
tion domains (i) and (ii). Classes (i) and (ii), in a sense, overlap. Class (i)
is perhaps better viewed as a knowledge engineering topic, while class (ii) is
conventionally seen as a systems software topic. Viewed these ways, class (iii)
is then normally seen as an “end-user”, i.e., “customer software” topic.

Characterisation. By a domain we mean an application domain.

1 The reader may observe two things: Our inability to make precise that to which
computing cannot be applied, and our belief that philosophy, politics, poetry, etc.,
belong to that class. When we claim that computing does not apply to philosophy,
politics, poetry, etc., we mean that crucial philosophical thoughts, political ideas
and poetic utterings cannot, in our mind, be the result of computations.

1.2 The Triptych of Software Engineering 9

That is, the two terms “application domain” and “domain” are taken to be
synonymous.

Example 1.3 Domains: We continue our exemplification of (application) do-
mains — of the third class mentioned just above.

(iii.1) The applications of software within the transportation sector: Rail-
ways, airlines, shipping, public and private road transport (buses, taxis,
trucks, automobiles in general), etc., individually define application domains,
and together “define”2 transportation as a domain.

(iii.2) The applications of software within the financial services sector:
banks, insurance companies, securities trading (stock and bond exchanges,
traders, brokers), portfolio and investment management, venture capital com-
panies, etc., individually define application domains, and together “define”
the financial service industry as a domain.

(iii.3) The applications of software within the healthcare sector: hospitals,
family doctors (i.e., private, practicing physician), pharmacies, community
nurses, retraining and convalescent clinics, the public health authorities, etc.,
individually define application domains, and together “define” healthcare as
a domain.

(iii.4) The applications of software within the machining (metal-working)
manufacturing sector: marketing, sales and orders department, design research
and development, production planning department, the production “floor”
with its “input” production parts inventory and its “output” products ware-
house, workers, managers, etc., individually define application domains, and
together “define” machining (metal-working) manufacturing as a domain.

1.2.2 Domain Engineering

We bring in an overview of domain engineering. Part IV, Chaps. 8–16, bring
in details!

General

In this section we shall give a brief characterisation of what we mean by
domain engineering.

Characterisation. (I) By a domain description we shall understand a de-
scription of a domain, that is, something which describes observable phenom-
ena of the domain: entities, functions over these, events and behaviours.

Characterisation. (II) By domain description we shall also mean the pro-
cess of domain capture, analysis and synthesis, and the document which results
from that process.

2 Here our use of “define” indicates that we are not formally defining the subject
term. We are merely giving a rough characterisation.

10 1 The Triptych Paradigm

Characterisation. By domain engineering we mean the engineering of do-
main descriptions, that is, of their development: (i) from domain capture and
analysis (ii) via synthesis, i.e., the domain description document itself, (iii) to
its validation with stakeholders and its possible theory development.

So what does it mean to understand the application domain? To us it means
that we have described it. That the description is consistent, i.e., does not
give rise to contradictions, and that the description is relatively complete,
i.e., does describe “all the things” needed to be described.

What Do We Expect from a Domain Description?

What must we expect from a domain description? We expect that it describes
the application area as it is.

What a Domain Description Does Not Describe

To us “as it is” means that we have described it without any reference to
requirements to any new computing system (i.e., software), let alone to any
(implementation, etc.) of such a new computing system (i.e., software). The
above was expressed in terms of what a domain description does not contain.

What a Domain Description Does Describe

So what does a domain description contain? To us a domain description
contains: descriptions of the phenomena that can be observed, that can be
physically sensed, in the domain, and descriptions of the concepts, i.e., the
abstractions that these phenomena “embody”.

Domain Phenomena and Concepts

What are the phenomena and concepts alluded to just above? To us these
phenomena and concepts are such as: (i) entities, (ii) functions, (iii) events
and (iv) behaviours. We overview these four categories of phenomena and
concepts.

Entities

Entities are “things” that one can point to, things that typically become data
“inside” a computer, things that are to have a type and a value (of that type).

1.2 The Triptych of Software Engineering 11

Example 1.4 Entities: For a domain of harbours some typical entities are:
ships, holding area(s) where ships may wait for a buoy or a quay position,
buoys, quay positions and cargo storage areas. The harbour can be considered
an entity composed from the above.

Informal Presentation: Entities: Types, Values and Observers

We shall later explain the notation now used:

type
Harbour, Ship, HoldArea, Buoy, Quay, CSA, Position

value
obs Ships: Harbour → Ship-set
obs HoldAreas: Harbour → HoldArea-set
obs Buoys: Harbour → Buoy-set
obs Quays: Harbour → Quay-set
obs CSAs: Harbour → CSA-set
obs Position: Ship → Position-set
obs Position: Quay → Position-set
obs Position: Buoy → Position-set
obs Position: HoldArea → Position-set

From a harbour one can observe all the

• ships in the harbour,
• holding areas of the harbour,
• buoys of the harbour,
• quay positions of the harbour and all the
• container storage areas of the harbour.

Positions are associated with

• ships,
• holding areas,
• buoys and
• quays.

One may rightfully argue, as we shall later do, that ships be modelled as
behaviours, not as entities. In fact, all the entities listed above could be so
considered. What are we to make of that? That is, why model, as here, these
phenomena as entities? The answer is, in this case, simple: if and when we
model them, instead, as behaviours, then the entity types and values otherwise
alluded to above will become configuration (context and state) attributes.

Our unfolding story of entities, functions, events and behaviours, will be
treated in far more detail in Chap. 5.

Entities are values and values are of some type. That is, a type stands
for a usually infinite set of values. Some entities may be considered atomic.

12 1 The Triptych Paradigm

They have no proper subentities. Other entities may be considered composite.
One may speak of proper subentities. Entities have attributes, that is, are of
types. Atomic entities may have composite types, like Cartesians of several
attributes. An example is a person. A person has a name, a birth-date and a
gender. These are different types, i.e., different attributes and are of constant
value — usually. A person also has a current (i.e., variable) weight and height.
Composite entities naturally have composite types. Some of these types de-
scribe proper subentities. Others describe how the subentities are composed
into the overall, the composite entity. One can observe from an entity the
values of its attributes. Thus one can observe from a composite entity the set
or sequence or Cartesian components, etcetera, of its subentities.

Informal Presentation: Entities: Types, Values and Observers

We sketch and explain the following formal text:

type
A, B, C, ..., P, Q, R, ...

value
a:A,

obs B: A → B
obs C: B → C
...
obs Ps: B → P-set
obs Ql: C → Q∗

Type names A, B, C, . . . , P, Q, R, . . . , are here thought of as abstract
types, i.e., sorts. The value “declaration” values a:A non-deterministically
selects an arbitrary value from type A and names this value (a). Such value
declarations correspond to the informal uttering, or writing, let a be an
entity of type A, The observer function obs B applies to values of type
A and yields a value of type B. The observer function obs C applies to
values of type B and yields a value of type C. The observer function obs Ps
applies to values of type B and yields a set of values of type P. The observer
function obs Ql applies to values of type B and yields a list of values of type
Q. These postulated observer functions correspond to the informal uttering,
or writing, of, for example, from an entity of type B one can observe a set
of (possibly zero) one or more entities of type P, Postulating a few or
several observer functions over values of some sort does not prevent such
values containing, i.e., being composed from other subentities, or having
other attributes.

In Vol. 1, Sect. 5.2 we treat the concepts of phenomenological and conceptual
entities, their atomicity and composition, their types and attributes and their
values in detail. Vol. 1 is concerned with formal techniques for basic abstrac-
tions and models of phenomena and concepts. Vol. 2 is concerned with formal

1.2 The Triptych of Software Engineering 13

techniques for the specification of systems of entities, functions, events and
behaviours, and of languages over these. The coverage of entities, types and
values of the present chapter will be greatly expanded upon in this volume in
Chaps. 5–7, 10, 11, and so on.

Functions

Phenomena or concepts could be functions that apply to entities and (i) either
test for some property, (ii) observe some subentity, i.e., yield a data value that
is “computed” from such entities, or (iii) actually change the entity value —
in which case we call the function an operation, or an action.

Example 1.5 Functions: For a domain of harbours some typical functions
are:

(i) An arriving ship asks the harbour whether it can be allocated either a
holding area, a buoy or a quay position.

value: inquire: Ship×Harbour → Bool

(ii).1 An arriving ship which can be allocated a holding area, a buoy, or a
quay position requests the position.

value: request: Ship×Harbour → Position

(ii).2 For a ship destined for a quay position one needs to know how many
containers to unload to and how many to load from the harbour:

value: unload load quantities: Ship×Harbour → Nat×Nat

(iii) A ship [un]loading some cargo.

value: [un]load: Ship×Quay → Ship×Quay

The functions just listed were, as we shall call it, roughly sketched, but given
a signature. Now we give a more satisfactory narrative. Function (i) takes two
arguments: a ship and a harbour. It yields whether or not the ship can be
received by the harbour. Function (ii).1 takes two arguments: a ship and a
harbour. It yields either a holding area, a buoy or a quay position identifica-
tion. Function (ii).2 takes two arguments: a ship and a harbour. It yields a
pair of natural numbers (u, `) indicating that u containers are to be unloaded
and ` containers are to be loaded. Function (iii) takes two arguments: a ship
and a harbour. It yields the same type doublet, but now the ship is [less] plus
some cargo, and the quay now is [plus] less that cargo.

14 1 The Triptych Paradigm

Informal Presentation: Function Signatures

We define three sorts, i.e., abstract types, and give the signature of four
functions:

type
(0) A, B, C
value
(1) inv A: A → Bool
(2) obs B: A → B
(3) gen C: B → C
(4) chg B: A × B → B

(0) A, B and C are sorts, i.e., further unspecified abstract types. (1) inv A
is a predicate: it is supposed to yield true for well-formed values of A,
false otherwise. (2) obs B is intended as an observer function: from values
a of sort A it observes, i.e., extracts, values of type B that are somehow
“contained” in a. (3) gen C is intended as a generator function: from values
of sort B it computes values of type C. (4) chg B is intended as an operation
(i.e., a generator function): from Cartesian values over A and B it generates
values of type B intended to replace the argument of type B. One might thus
write any of the below:

[5] variable b:B := ...; ... b:=chg B(a,b) ...
[6] let b′=chg B(a,b) in ...; b:=b′; ... end
[7] let b′=chg B(a,b) in ... gen C(b′) ... end

Example 1.6 The A, B, Cs of Ships and Harbours: The reader is asked to
complete this example, that is, to relate the types and functions of Example 1.5
to the sorts and functions of the box above!

Events

Events happen, i.e., occur. And when events occur they do so instantaneously.
Events may convey information, i.e., have significance other than just occur-
ring. We can speak of external events and of internal events. External events
occur in an outside environment, “around” the part of the domain being con-
sidered — i.e., interfacing with it — and are being communicated to that
part. Or external events occur within the domain being considered, and are
being communicated to “somewhere” outside the part of the domain being
considered. Internal events occur in one part of the domain being considered
and are destined for, i.e., communicated to, another part of the domain being
considered — in which case we consider those parts as belonging to different
behaviours.

1.2 The Triptych of Software Engineering 15

Example 1.7 Events: For a domain of harbours some typical events are: a
ship arrives at a harbour; a ship declares itself ready to unload or to load; a
ship and a quay engage in the events of unloading and loading; a ship declares
itself ready to depart a holding area, or a buoy or a quay position.

Informal Presentation: Events

In RSL we may model events in terms of RSL/CSP inputs/outputs:

type
ShipId, ShChar, HAPos, BuoyPos, QuayPos
MSG == mkArrive(shid:ShipId,shchar:ShChar)

| mkHoldArea(p:Pos)
| mkBuoy(b:BuoyPos)
| mkQuay(q:QuayPos) | ...

ArrDep == ready | depart
Cargo

channel
sh,hs:MSG
sqr:ArrDep
sq,qs:Cargo

value
ship(...) ≡

... sh!mkArrive(si,sc) ... let pos = hs? ... end ...

... sqr!ready ... sq!c ... let c′ = qs? ... end ...
harbour(...) ≡

... let mkArrive(s,c) = sh? ... hs!mkQuay(q) ... end
quay(...) ≡

... if sqr?=ready then let c = sq? ... qs!c′ ... end else ... end

Here we have just sketched some events: the arrival of a ship, the harbour
message of (as here, quay) position, the ship signalling readiness, the ship
unloading some cargo (c), the ship taking aboard some cargo (c′), and the
corresponding events in the harbour and quay behaviours.

Behaviours

Some phenomena (or concepts) are thought of as behaviours. They proceed,
typically in time, by performing functions (actions), generating or responding

16 1 The Triptych Paradigm

to events and otherwise interacting (i.e., synchronising and communicating)
with other behaviours.

Formal Presentation: Behaviour

We sketch and explain the following specification text:

type M
channel tp,tq : Bool, k : M

value
P() ≡
p:while tp? do

action p1;
k ! v
action p3

end

Q() ≡
variable w:M;
q:while tq? do

action q1;
v := k ? in
action q3

end

R() ≡ P() ‖ Q()

variable v : M

action_p3;

loop to p

k ! e

variable w : M

q: action_q1;

v := k ?

action_q3;

loop to q

channel k:M

p: action_p1;

behaviour R = P || Q

behaviour P behaviour Q P Q

act_p1

act_p3

act_q1

act_q3

(p,e,q)

loop loop

Message Sequence ChartRSL/CSP Specification Program

Fig. 1.1. Informal process diagrams

Formal Presentation: Behaviour

We explain the specification text to the left in Fig. 1.1: type M is the type
of the messages to be sent from behaviour P to behaviour Q. Channels
tp, tq are oracles. They determine cyclic behaviour of processes P and Q.
Channel k is the medium by means of which messages are to be conveyed
between behaviours. Behaviours P and Q — in this simple example —
take no arguments, hence (). And they are both cyclic: after having hon-
oured their only three actions they loop back to their first action. The

1.2 The Triptych of Software Engineering 17

only really interesting pair is the pair of input/output actions. Output
k ! e prescribes that the value of expression e be communicated on chan-
nel k before the computation proceeds to the next action. Input v := k ?
prescribes that a computation inspects channel k to see whether there is
an available message. Once a message has been received it is assigned to
the variable v. Two possibilities now exist: either the process named by P
awaits that the message it has put on channel k is consumed by something
— here the process named by Q. Or the process named by P does not wait
for the message it has put on channel k to be consumed. In the former case
we say that the channel is a 0-capacity buffer; messages are not persistent.
In the latter case we say that the channel provides for an infinite-capacity
buffer, then messages are persistent. When sketching, i.e., presenting pro-
grams, like the above, the programmer cum specifier must state whether
the channel provides for nonpersistence or persistence. In RSL/CSP channels
are nonpersistent. If channels are nonpersistent, i.e., are 0-capacity buffers,
then we say that the fact that the computation based on behaviour P does
not proceed to its next action before the computation based on behaviour
Q has consumed the message (sent by Q) constitutes a synchronisation. In
either case, the message being transferred constitutes a communication. We
shall usually use the term behaviour in favour of process. However, when
a behaviour (or rather, a set of behaviours) is implemented by (i.e., exists
inside) the computer, we shall also call it a process.

To the right in Fig. 1.1 we have shown an MSC (message sequence chart).
The loop annotation is strictly speaking outside the proper MSC syntax.

We refer to Vol. 1, Chap. 21 for a thorough coverage of CSP [168,301,311]
and RSL/CSP. And we refer to Vol. 2, Chap. 13 for a thorough coverage of
MSC [182–184].

Example 1.8 Railway Entities, Functions, Events and Behaviours: Our ex-
ample derives from railways. Example railway entities are: (i) the railway net
(N), (ii) its lines (L), (iii) its stations (S), (iv) the units (U) of the net into
which it can be decomposed (linear, switches, crossovers, etc.), etc.

Formal Presentation: Railway Entities

type
N, L, S, U

value
is Linear, is Switch, is Crossover: U → Bool

An example railway function is: (v) the issuance of a ticket in return for the
monies it costs. The function issue takes monies (Mo), from-station (Sn), to-
station (Sn), date (Da), train number (Tn) and the state of all train reservations

18 1 The Triptych Paradigm

(TnRes) as arguments and delivers a ticket (Ticket) and an updated state of
all train reservations as results.

Formal Presentation: Railway Functions

type
Mo, Sn, Da, Tn, TnRes, Ticket

value
issue: Mo × Sn × Sn × Da × Tn → TnRes → TnRes × Ticket

(vi) An example railway behaviour is: passengers getting on a train, at a
station platform; followed by the departure of the train from the station plat-
form; the ride of the train down the line towards the next station, including
the acceleration and deceleration of the train along the line; the arrival of the
train at the next station, and subsequently its stopping at a platform; and
the alighting of passengers at that platform.

Formal Presentation: Railway Behaviours

type
Sn, Train

value
train ride: Sn∗ → N → Train → N × Train
train ride(snl)(net)(trn) ≡

if len snl ≤ 1
then

(net,trn)
else

let (net′,trn′) = get on train(hd snl)(net)(trn);
let (net′′,trn′′) = train dept(hd snl,hd tl snl)(net′)(trn′);
let (net′′′,trn′′′) = ride(hd snl,hd tl snl)(net′′)(trn′′);
let (net′′′′,trn′′′′) = arriv and stop(hd tl snl)(net′′′)(trn′′′);
let (net′′′′′,trn′′′′′) = get off train(hd tl snl)(net′′′′)(trn′′′′);
train ride(tl snl)(net′′′′′)(train′′′′′)

end end end end end end

We explain the formula above: Sn∗ denotes lists of station names. We assume
that the net also registers passengers at stations. train ride is based on a list
of two or more station names, a railway net (with lines and stations) and a
train. If the list of station names is of length less than two, the train ride
is finished. getting on the train is assumed to accept passengers from the
first station of the station list, whereby both the net and the train states
change. departure of train models the train ride inside the station named
first in the station name list. Again, the departure, from the platform to the

1.2 The Triptych of Software Engineering 19

beginning of the line going to the next station, changes both the net and the
train states. ride models the line part of the journey between neighbouring
stations, including acceleration, etc. arrival and stop models the train ride
inside the station named second in the station name list. Again, the arrival,
from the end of the line into this next station to its platform, changes both
the net and the train states. getting off the train is assumed to model the
alightening of passengers at the second station of the station list, whereby
both the net and the train states change. Finally, the train ride resumes as
from this station onwards.

Formal Presentation: Some Comments

The above behaviour was expressed purely functionally, with references
only to simple mathematical functions. That is, these functions are all to
be thought of as executing instantaneously. So what is their temporal be-
haviour, one may very well ask? It is the set of sequences of actions and
events denoted by the function definitions. In Vol. 1, Chap. 21, Sect. 21.2.3
we explain what we mean by a trace semantics of behavioural specifications.
Temporality is exhibited by orderings of these actions and events. One may,
however, read the above formula as if each function took some not-further-
specified time to execute, i.e., to be applied. Thus you may trick yourself
into believing that the formulas prescribe a timed behaviour.

Example 1.9 Railway Functions: We continue Example 1.8.

Formal Presentation: Railway Functions and Behaviours

Next we give a set of definitions of functions. These evolve around chan-
nels and function definitions with synchronisation and communication be-
tween functions. We may then claim that this formalisation more properly
describes a behaviour. We have tried to make the two formalisations, the
above and the below, as similar as possible.

type
P, SIdx, Tn, Σ, Train
mTn == mkTn(t n:Tn)
mPs == mkPs(p s:P-set)

channel
{ c[s]:(mTn|mPs) | s:SIdx }

value
obs Tn: Train → Tn

passengers: Tn → Σ → Σ × P-set
passengers: Train → SIdx → P-set

20 1 The Triptych Paradigm

passengers: Train → P-set

station(s)(σ) ≡
let tn or ps = c[s] ? in
case tn or ps of

mkTn(tn) →
let (σ′,ps′) = passengers(tn)(σ) in
c[s] ! mkPs(ps′);
station(s)(σ′) end,

mkPs(ps) →
station(s)(merge(ps)(σ))

end end

merge: P-set → Σ → Σ

train(sl)(τ) ≡
if len snl ≤ 1

then
skip /∗ assert: passengers(τ) = {} ∗/

else
let s = hd sl in
c[s] ! mkTn(obs Tn(τ));
let mkPs(ps) = c[s] ? in
let τ ′ = seat(τ)(ps) in
let τ ′′ = leave(τ ′)(s) in
let τ ′′′ = ride(τ ′′)(s,hd tl sl) in
let τ ′′′′ = arrive(τ ′′′)(hd tl sl) in
let (τ ′′′′′,ps′) = passengers(τ ′′′′)(s);
c[s] ! mkPs(ps′);
train(τ ′′′′′)(tl sl)

end end end end end end end end
assert: tn = obs Tn(τ) = ... = obs Tn(τ ′′′′′)

seat: Simple function
leave: Behaviour − communicates with station rail net
ride: Behaviour − communicates with line rail net
arrive: Behaviour − communicates with station rail net

We shall treat the concepts of phenomena and concepts in Chapter 5. Suffice it
for now to justify the above remarks as follows. Entities typically are manifest;

1.2 The Triptych of Software Engineering 21

that is, they exist in time and space. Functions can be conceived through their
effects, but cannot, in and by themselves, be observed. Nobody3 has ever seen
the number which we may represent by any of the numerals 7, vii, seven,
IIIIIII, III, etc. Even more so for behaviours: we may observe a progression of
changing entities, effects of function applications and events; but we cannot
“see” the behaviour, only conceive of it! The same is true for events.

Further Expectations from Domain Descriptions

What else must we expect from a domain description? Although we shall
review domain engineering in Section 1.3.3, and treat domain engineering in
detail in Chaps. 8–16, we shall just mention a few things.

(i) We expect a domain description to be readable and understandable by
all stakeholders of the domain, i.e., by all those people who “populate” the
domain.

(ii) We expect a domain description to be the basis for learning about the
domain, that is, for education about and training in the domain — say, for
such people as are being hired into a job in the domain, or for such people
that need services offered by the domain.

(iii) We expect a domain description to be the basis for constructing a
major part of the requirements, namely that part which we shall call the
domain requirements.

(iv) And we expect a domain description to be a basis for what — in other
contexts than software engineering — is known as business process reengi-
neering. We shall cover issues of business process reengineering in Chap. 11’s
Sect. 11.2.1.

Domain Descriptions as Bases for Domain Theories

Physicists have spent the last 400 years studying nature. Traditional engi-
neering disciplines, such as civil engineering, mechanical engineering, chem-
ical engineering, electrical engineering, and electronics engineering, all build
on various theories of physics and chemistry. The engineering artifacts, that
such engineers build, embody, so-to-speak, fragments of these theories.

For the class of application domains that was characterised as being end-
user, public administration and institution oriented, as well as business and
industry oriented, for that class of human-made universes of discourse we
cannot refer to any such similar theories!

Isn’t it about time that we develop theories, such as physicists have done,
for respective application domains? This author thinks so.

With the principles and techniques of domain engineering the reader will
be well prepared to help contribute research and development on such a theory.

3 Although the analogy should, more properly, be to a function, it is here to another
mathematical thing, namely a number.

22 1 The Triptych Paradigm

But to do it properly, the reader needs to learn additional principles, formal
techniques and related tools.

More on Domain Engineering

We have briefly previewed some domain concepts, there are many more. For
domain engineers to know how to proceed, what to do, and how to do it,
and do it professionally, with assurance, it is important that they know what
domain engineering entails. In particular they must know what should be, and
not be, in a domain description document, that is, its parts and structure.
We shall cover these and other domain engineering concepts a little more in
Section 1.3.3, and in detail in Chaps. 8–16.

1.2.3 Requirements Engineering

In this section we shall give a brief characterisation of what we mean by
requirements engineering.

The Machine

We introduce the term machine.

Characterisation. By machine we shall understand a combination of hard-
ware and software that is the target for, or result of, computing systems
development.

Discussion. Although the title of these volumes is Software Engineering we
cannot avoid also dealing with the engineering of the hardware aspects of the
computing system for which a domain description is first established, for which
requirements are then developed, and for which subsequent software design
is finally sought — or completed. That is, although the main development
actions may have to do with software, there will necessarily be a hardware
design component in that development. The software “resides” on, or “in”
some hardware (computer); the software thus relies on that computer and
its peripherals having certain minimal properties, etc. So the requirements
shall stipulate properties, not only of the software, but possibly also of the
hardware.

The objective of writing down requirements is to prescribe desired properties
of a machine: the software and the hardware on which the software resides.

1.2 The Triptych of Software Engineering 23

The Machine Environment

We introduce the concept of the environment of a machine.

Characterisation. By machine environment we shall understand the rest of
the world. More specifically, we mean those parts of the world which interface
to the machine: its users, whether humans or technology.

Discussion. The concept of machine environment is a fuzzy one. Ideally the
machine environment includes all the stakeholders of the machine, that is, of
the new services (functions and facilities) offered by the machine, as well as
all the nonhuman interfaces to the machine: monitored and controlled phe-
nomena of the world “surrounding” the machine. But, to predict, in advance
of establishing the requirements to the software to be designed, and in ad-
vance of the actual installation of that software, which are to be “all” these
stakeholders and “all” those affected phenomena, is an art; it is not easy.

So the objective of writing down requirements is also to delineate, to decide
upon and distinguish between what is to “belong” to the machine, and what
is to “belong” to the environment.

General

Characterisation. By requirements we mean a document which prescribes
desired properties of a machine: what the machine shall (must, not should)
offer of functions and behaviours, and what entities it shall maintain.

Characterisation. By a requirements prescription we mean the process —
and the document which results from the process — of requirements capture,
analysis and synthesis.

Characterisation. By requirements engineering we understand the engi-
neering, that is, we understand the development of requirements prescriptions:
from requirements prescription via the analysis of the requirements document
itself, its validation with stakeholders and its possible theory development.

Different Kinds of Requirements

We see four different kinds of requirements: (i) business process reengineer-
ing, (ii) domain requirements, (iii) interface requirements, and (iv) machine
requirements.

Conventionally the following terms are in circulation: systems require-
ments, which approximately covers our overall requirements, user require-
ments, which approximately covers our domain and interface requirements,
functional requirements, which approximately covers our domain and inter-
face requirements and non-functional requirements: approximately covers our
machine requirements.

24 1 The Triptych Paradigm

More on Requirements Engineering

We have briefly previewed some requirements concepts. There are many more.
For the requirements engineer to know how to proceed, what to do, and how
to do it, and do it professionally, with assurance, it is important that that
engineer knows what requirements engineering entails, in particular: what
should be, and not be, in a requirements prescription document: its parts and
structure.

We shall cover these and other requirements engineering concepts a little
more in Section 1.3.4, and in detail in Chaps. 17–24.

1.2.4 Software

Characterisation. By software we understand (i) not only code that may
be the basis for executions by a computer, (ii) but also its full development
documentation: (ii.1) the stages and steps of application domain description,
(ii.2) the stages and steps of requirements prescription, (ii.3) and the stages
and steps of software design prior to code, with all of the above including all
validation and verification (including test) documents. In addition, as part of
our wider concept of software, we also include (iii) a comprehensive collection
of supporting documents: (iii.1) training manuals, (iii.2) installation manuals,
(iii.3) user manuals, (iii.4) maintenance manuals, and (iii.5, iii.6) development
and maintenance logbooks. So, software, as documentation, comprises many
parts.

1.2.5 Software Design

From an understanding of what software syntactically, i.e., as documents,
“is”, we can go on to characterise pragmatic and semantic aspects related to
software.

Characterisation. By software design we understand the process, as well
as all the documents resulting from the process, of turning requirements into
executable code (and appropriate hardware).

We make a distinction between two kinds of abstract software specifications,
and hence their designs: the software architecture, and the component struc-
ture. After a brief presentation of these we shall comment on their nature.

Software Architecture and Software Architecture Design

Characterisation. By a software architecture we mean a first specification
of software, after requirements, that indicates how the software is to handle
the given requirements in terms of components and their interconnection —
though without detailing, i.e., designing these components.

1.2 The Triptych of Software Engineering 25

Characterisation. By a software architecture design we mean the develop-
ment process of going from existing requirements and possibly some already
designed components to the software architecture — producing all appropriate
architecture documentation.

The term component design is used here in a perhaps confusing sense: In
architecture design we may certainly identify components, delineating their
“boundaries”4, but leaving their “internals” undefined.5

Component Structure and Component Design

Characterisation. By a component structure we mean a second kind of
specification of software — after requirements and software architecture —
one which indicates how the software is to implement individual components
and modules.

Characterisation. By component design (I) we mean the development pro-
cess of going from existing requirements and a software architecture design to
the detailed component modularisation — producing all appropriate compo-
nent and module documentation.

Software Architecture Versus Component + Module Structure

We are not saying that one must first design the software architecture, and
thereafter the component plus module structure. We are presently leaving
their order of development — and one of the two, or even a “mix” of them —
unexplained!

Modules, Components and Systems

The principle of grouping programming text into modules and collections of
modules into components is both old (for modules since the late 1960s, e.g.,
Simula 67 [30]), and new (for components since the early 1990s).

Characterisation. By a module specification we shall understand a syntac-
tic construct, i.e., a structure of program text, which, as a unit of program
text, defines what we shall otherwise also call an abstract data type: namely
a collection of data values and a collection of functions (i.e., operations) over
these.

4 When reading this book in the formal version: Defining their types only as sorts
and defining their functions only by giving signatures.

5 When reading this book in the formal version: That is, their concrete type coun-
terparts, respectively the function definition bodies, undefined. Thus architecture
design may “design” part of the component structure.

26 1 The Triptych Paradigm

Discussion. So, by an abstract data type, i.e., a module we mean a set of
data values and a set of procedures (routines) that apply to such data values
and yield such data values. Typically module specifications are of the following
schematic form:

module m:
types

t1 = te1, t2 = te2, ..., tt = tet;
variables

v1 type ta := ea, v2 type tb := eb, ..., vv type tc := ec
functions

f1: ti → tj, f1(ai) ≡ C1(ai)
f2: tk → t`, f2(ak) ≡ C2(ak)
...
fn: tp → tq, fn(ap) ≡ C1(ap)

hide: fi, fj, ..., fk
end module

(1) Syntactically the idea of the above is roughly as follows: m is the name
of the module. The module defines t types: t1, t2, . . . , tt, local to that mod-
ule. A type definition has a left-hand side name ti, and a right-hand side
type expression tei. These right-hand side type expressions could be such
things as integer, real, Boolean, character, record structures over types,
vector structures over a type, and so on. The module also declares v vari-
ables: v1, v2, . . . , vv, local to that module. A variable declaration consists of
three parts: the variable name, the type of the data values that the vari-
able is allowed to contain and an initialising expression e (something). The
module then defines n functions (procedures, routines, operations, methods,
or whichever name you wish to call them). Each function definition has two
parts: a function signature, and a function definition body. The function signa-
ture defines the name of the function, f , and the type of argument and result
values — those types, t, t′, that are mentioned on either side of the function
space symbol →. The function definition body consists of three parts: the
function name followed by a formal parameter list, a function definition sym-
bol, say, as here, ≡, and the function body — here schematised in the form
of the abstract clause C(a). This clause can stand for an expression, or a list
of statements, or whatever your favourite programming language allows. The
module finally lists those function names which are local, i.e., which cannot
be referred to by program texts outside the defining module.

(2) The above described, to some — albeit incomplete — extent, the syntax
of a typical kind of module. We shall explain the semantics, i.e., the mean-
ing, of a module, by just saying: You are assumed to know the meaning of
type definitions, of variable declarations, and of function (procedure, method,
etc.) definitions. So what’s new? The new “thing” is the “encapsulation”,
the structuring, the “putting together” of these program text structures in a

1.2 The Triptych of Software Engineering 27

module structure — one beginning with the keyword module and one end-
ing with the keyword end module. The meaning of this encapsulation is —
again roughly speaking — as it changes “slightly” from actual programming
language to actual programming language — that all types, all variables, all
function definition bodies, and some function names and signatures are hid-
den, that is: Their definition cannot be known by program texts outside the
defining module. Thus one can substitute one module text by another as long
as the function signatures that were visible from outside remain the same in
the new, the replacement module. This typically means that the signature
types of visible functions are not locally defined types.

(3) The pragmatics of a module — perhaps its most important distinguishing
feature — can be summarised as follows: The programmer has decided, for
whatever reasons, to “lump together” some data structures, in the form of
typed variable declarations, and some functions over these, to form an ab-
stract data type, while preserving the right to replace the implementation
details of this abstract data type with any other that is believed to yield the
same abstract data type. Two things are involved here. First, we have the
hiding of implementation details, that is, (i) the local types, the local vari-
ables, the auxiliary functions (those which are hidden) and the bodies of all
function definitions. (ii) Second, we have the decomposition of larger program
texts into a collection, a usually unordered set, of module definitions. We shall
have more to say about this in later sections and chapters.

Characterisation. By a component specification we shall usually under-
stand a set of type definitions, a set of component local variable declarations,
together defining a component local state, and a set of modules.

The above is just a rough, generic characterisation of components.

Discussion. The idea is that a component specification to some surrounding
text offers functions of some of its modules. The surrounding text may consist
of modules, what we call initial modules of a software system.

We may suggest a syntax for components:

component
types: Ti1 , Ti2 , . . . , Tit

variables: Vj1 ,Vj2 , . . . ,Vjv

modules: Mk1
,Mk1

, . . . ,Mkm

hide: H`1 ,H`1 , . . . ,H`h

end component

Ti suggests some form of type definitions, Vj suggests some form of variable
declarations, Mk suggests some form of module specifications, and H` sug-
gests some form of export or hiding of module visible functions (etc.).

28 1 The Triptych Paradigm

Systems, Design and Refinement

Characterisation. By a software system specification we shall understand a
set of what we shall call initial modules together with a set of components —
and such that functions of the set of initial modules together invoke functions
of modules in the set of components. Systems are what we are developing.

Discussion. The idea is that a system is a completely self-contained “item”
of software, and that it is composed from components and the core, that is,
the initial modules. The idea is also that a most abstract level system may
be the same as a software architecture, or a component plus initial module
structure.

Characterisation. By software system design we understand (i) the deter-
mination, (i.1) from domain requirements and from some interface require-
ments, of the software architecture, or (i.2) from machine requirements and
from other interface requirements, of the component structuring plus initial
modules. Since software architecture design also entails determination of com-
ponent structuring plus initial modules, we get, more generally, that software
system design, in its first stage, i.e., where only the domain description and the
requirements prescription exists, entails (ii.1) the determination of the main
(system) types of values, (ii.2) the determination of the basic structuring of
and facilities (i.e., functions) offered by components, and (ii.3) the determina-
tion of such initial modules as are necessary to get the system executing once
it is committed.

Usually a first stage of systems design is expressed abstractly, i.e., in a form
not suited as a prescription for execution. Hence we need stages and steps of
what is called refinement:

Characterisation. By software system refinement we understand (i) the
stagewise and stepwise transformation of (i.1) an abstract specification (i.2)
into increasingly more concretely specified modules and components.

Characterisation. By abstract specification we mean one that indicates how
requirements are to be implemented, but does it by using specification cum
programming constructs that are not necessarily efficiently executable.

Characterisation. By concrete specification we mean one that uses specifi-
cation cum programming constructs that prescribe efficient executions.

Components and Modules, Design and Refinement

Characterisation. By component design (II) we shall additionally under-
stand the determination of which facilities, that is, which functions (defined

1.2 The Triptych of Software Engineering 29

locally “within” the component), and which types (defined globally, i.e., “out-
side”), the component shall offer. We shall also, by component design roughly
speaking mean, the decomposition of the component into modules, and hence,
the functions offered by these modules.

One cannot expect a first attempt at component design to succeed in finalising
all aspects of an efficient implementation. As will be argued in the next section,
separation of concerns makes it easier to tackle many diverse issues. Hence
our development needs to proceed in stages and steps of refinement.

Characterisation. By component refinement we shall usually understand:
(i) a concretisation of the usually initially abstractly defined component types,
(ii) a concretisation of the usually initially abstractly specified initialisations
of component variables, and, possibly, (iii) the refinement of the component
modules.

Characterisation. By module refinement we understand: (i) a concretisa-
tion of the usually initially abstractly defined module types, (ii) a concreti-
sation of the usually initially abstractly specified initialisations of component
variables and (iii) a concretisation of the usually initially abstract module
function definitions — (iv) with the latter often entailing the introduction of
additional auxiliary (i.e., hidden) function definitions.

Code Design

Finally, we reach the development stage where such program specifications
are constructed that can be the basis for efficient execution. We call this kind
of program specification ‘code’. Since we shall assume the reader to have a
necessary background in programming we shall not cover this topic in these
volumes.

More on Software Design

We have briefly previewed some software concepts. There are many more.
We shall cover these and other software design concepts a little more in Sec-
tion 1.3.1, and in some detail in Chaps. 25–30. But, these volumes will not
present anywhere near a fully satisfactory treatment of the software design
problem. That is neither the aim nor the objectives of these volumes. First, we
have assumed some knowledge, education and training of the reader. Second
we have to refer to special topic texts for detailed software design principles,
techniques and tools.

30 1 The Triptych Paradigm

1.2.6 Discussion

We have introduced the three main phases of software development:

• Domain engineering in which we describe “what there is”
• Requirements engineering in which we prescribe “what there shall be!”
• Software design in which we specify “how it will be!”

We have indicated, assuming some programming maturity of the readers, some
software design structuring — such as revolving around components and mod-
ules (with locality and hiding of names), types and variables (abstract and
concrete), and program statements and expressions — summarised as clauses
(C).

We have not — so far — suggested similar structuring mechanisms for
domain descriptions, or for requirements prescriptions. The software design
cum programming language structuring constructs of components and mod-
ules, of types and variables, etc., aid the developer in knowing “what to do
next!” by providing documentation “standards”. In the next section we shall
preview such textual structuring (decomposition, composition) mechanisms
for domain descriptions and requirements prescriptions.

Also, we have intimated, rather loosely, notions of abstract versus con-
crete software design specifications, and hence we have intimated the entailed
notion of refinement. We have not mentioned such stagewise and stepwise
mechanisms, for domain descriptions and requirements prescriptions in gen-
eral, other than for the business process reengineering, and domain, interface
and machine requirements stages. Such development stage and step principles
are mentioned already in the next section.

1.3 Phases, Stages and Steps of Development

Three Terms

The terms phase, stage, and step, are just that: terms. They are meant to
designate basically the same idea: the decomposition of something occurring in
time into adjacent, repeated or concurrent intervals. The “something” here is
the development of software. The adjacent, concurrent or overlapping intervals
are logically and otherwise distinguishable development activities.

A Principle of “Separation of Concerns”

The main reason for decomposing the software development process into
clearly distinguishable development activities is to tackle separate develop-
ment issues at separate times, hopefully scheduling these in adjacent, concur-
rent or overlapping intervals in a fruitful, beneficial way.

In the next several numbered sections we shall briefly review possible de-
compositions. Each represent a concern; together they represent separation of
concerns.

1.3 Phases, Stages and Steps of Development 31

Linear, Cyclic and Parallel Development Activities

In the next sections we shall present a view of the software development pro-
cess as proceeding in strict linear order. Given human nature, such is rarely
the case. At the end of this section we shall therefore present two additional
views on the software development process: one in which iterations, backwards
and forwards, are discussed; and one in which the concurrent tackling of log-
ically separate stages or steps is discussed. By a repeated, or cyclic, interval
we mean two intervals, occurring in non-overlapping time periods, in which
basically the same item of work is done, i.e., repeated, for example, because
a first iteration was not good enough. By concurrent or overlapping intervals
we mean two (or more) intervals, in which clearly unrelated work items can
be done, independently of one another, hence in parallel.

1.3.1 Phases of Software Development

We have already introduced the main three phases of software development: (i)
domain development, (ii) requirements development, and (iii) software design.
We have earlier argued for their distinctness, i.e., their focus on truly separate
concerns, but we have also emphasised their desirable order, namely as listed.

1.3.2 Stages and Steps of Development

In order to capture a notion of development stage it is important to first
capture a notion of the complete documentation — as here — of a phase of
development. The documentation for a phase of development is complete if
all there is to be documented — at a certain level of abstraction — has been
so documented! The idea of “all there is to be documented” is explained in
Chap. 2.

It is thus important to also capture a notion of abstract versus concrete
documentation — as here — of a phase of development. The phase documen-
tation can be more or less abstract, i.e., more or less concrete. The phase
documentation is abstract if primarily properties have been described. The
phase documentation is concrete if primarily a model in terms of either a
computable program, or a model in terms of such discrete mathematical no-
tions as sets, Cartesians, lists, maps, etc., has been presented. The above
distinction allows one to speak about grades of abstractness, versus grades of
concreteness.

The distinction between stages and steps is basically a pragmatic distinc-
tion. That is, there is no “hard” theoretical basis for making that distinction,
but there are good, sensible, practical reasons for doing so.

Characterisation. By a development stage we shall understand a set of de-
velopment activities which either starts from nothing and results in a complete
phase documentation, or which starts from a complete phase documentation

32 1 The Triptych Paradigm

of stage kind, and results in a complete phase documentation of another stage
kind.

Characterisation. By a stage kind we shall loosely understand a way of
characterising a set of development documents as being comprehensive (i.e.,
relatively complete) and, at the same time, as specifying (describing, prescrib-
ing) a set of properties of what is being specified in such a way that other such
sets of documents can be said to describe the same stage kind, or a different
stage kind.

Characterisation. Thus a stage kind imposes an equivalence relation on
a set of sets of related documents: some sets, sk, s′k, . . . , s′′k as belonging to
the same kind (k), other sets, sk, s′k′ , . . . , s′′k′′ as belonging to different kinds
(k, k′, . . . , k′′).

Discussion. The notion of stage kinds is deliberately vague. As for philo-
sophical notions, it therefore needs to be discussed and exemplified. Here we
shall discuss that notion. The basic problem is really that, in actual devel-
opment practice, we need operate with a spectrum of “phases”, “stages” and
“steps”. That is, the simple tripartite decomposition into phases (domain,
requirements and software design) may be OK, whereas the likewise simple
quadruple decomposition into, for example, business process reengineering
requirements, domain requirements, interface requirements and machine re-
quirements stages may, in several development cases, not be entirely satisfac-
tory. The borders between these stages are not that sharp. Human ingenuity
allows us to break molds, and to discover new principles and techniques. So
why do we then suggest the phases, stages and steps that we do indeed name
and describe? We do this so that the reader can be looking vigilant for ad-
ditional stage and step concepts. In the best case the reader will discover
additional, usefully nameable stage concepts. In the worst case the reader
may finally decide that our stage and step conjecture is all wrong, and must
be refuted. Such, sometimes, happens — as is amply illustrated in works by
Imre Lakatos [208] and Sir Karl Popper [277–279].

The examples given next presuppose that you have read the previous ma-
terial carefully. We are basically referring to concepts that were just briefly
mentioned, i.e., to concepts that will only be further mentioned below, to be
finally “disposed of” in later chapters. Some examples, and the discussion text
following, refer to concepts that are introduced only a few pages further on!

Example 1.10 Stage Kinds: Examples of domain stage kinds are: (d1) busi-
ness processes, (d2) intrinsics, (d3) support technologies, (d4) management
and organisation, (d5) rules and regulations and (d6) human behaviour.

Examples of requirements stage kinds are: (r1) business process reengineer-
ing, (r2) domain requirements, (r3) interface requirements and (r4) machine
requirements.

1.3 Phases, Stages and Steps of Development 33

Examples of software design stage kinds are: (s1) software architecture,
(s2) component design (in which the entire component structuring of a soft-
ware architecture is decided), (s3) module design (in which all modules of all
components are designed) and (s4) code.

Discussion. One may properly argue whether the following are not also stage
kinds rather than steps: domain requirements (r21

) projection, (r22
) determi-

nation, (r23
) instantiation, (r24

) extension and (r25
) fitting. It really is just a

matter of convenience, hence pragmatics.

To properly describe what we shall wish to call a step of development it
seems necessary to further elaborate on two concepts. First the concept of a
module of description. We already covered a version of this notion in an earlier
section, where it was “tied” to the concept of program specification (text).
We now enlarge upon the module concept and speak of similar, contained
domain description and requirements prescription parts. Second we refer to
the concept of refinement. We also covered a version of this notion in an earlier
section, where it was likewise “tied” to the concept of relation between pairs of
program specifications (texts). We now enlarge upon the refinement concept
and speak of similar refinements of domain description modules as well as
requirements prescription modules.

Characterisation. By a development step we mean a refinement of a de-
scription module, from a more abstract to a more concrete description.

It may now be necessary to improve upon the characterisation of the concept
of stage, so as to make the distinction between stages and steps more practical.

Characterisation. By a development stage we mean a set of development
activities such that some (one or more) activities have created new, externally
conceivable (i.e., observable) properties of what is being described, whereas
some (zero, one or more) other activities have refined previous properties.

1.3.3 Domain Development

Stages of Domain Development

Within domain development we can distinguish the following major stages —
on which work can beneficially be pursued basically in the order now listed:
identification and classification of domain stakeholders, and identification and
modelling, relative to identified domain stakeholder classes, of a number of do-
main facets. (i) These include: modelling business process facets of a domain,
(ii) modelling intrinsics facets of a domain, (iii) modelling possible support
technology facets of a domain, (iv) modelling possible management and or-
ganisation facets of a domain, (v) modelling possible rules and regulations

34 1 The Triptych Paradigm

facets of a domain, (vi) modelling possible script facets of a domain, and
(vii) modelling possible human behaviour facets of a domain. We shall briefly
characterise these stages shortly, and we cover them in detail in Chap. 11.

Characterisation. By a business process domain we shall understand one
or more behavioural descriptions in which strategic, tactical and operational
sequences of transactions of a business,6 an enterprise,7 a public administra-
tion,8 an infrastructure component,9 are given — each from possibly a number
of stakeholder perspectives10.

The business process facet overlaps with the next facets. So be it!

Example 1.11 Railway Business Processes: A simple business process is that
of a passenger inquiring, with a travel agent, about train travel possibilities;
being offered some alternatives; settling for one; reserving appropriate tickets;
paying and collecting these; starting the travel (i.e., train journey); being
ticketed and finishing the journey.

Characterisation. By domain intrinsics we shall understand those phenom-
ena and concepts of a domain which are basic to any of the other facets (listed
below), with such a domain intrinsics initially covering at least one specific,
hence named, stakeholder view.

Example 1.12 Rail Intrinsics: Examples of rail intrinsics are: the rail net,
the lines, and the stations — as seen from the passenger perspective — and the
above plus the rail units (whether linear [including curved], points [switches],
crossover, etc.), connectors (that allow units to be put together), etc. — as
seen from the rail net signalling staff; and so on.

Characterisation. By domain support technology we shall understand ways
and means of implementing certain observed phenomena.

Example 1.13 Railway Support Technologies: A rail unit switch can be im-
plemented in either of a number of support technologies: as operated purely

6 By a business we mean such things as a retail store, a wholesaler, a hotel, a
restaurant, etc.

7 By an enterprise we mean such things as a manufacturing plant, like a distribution
company, like a logistics firm, etc.

8 By a public administration we mean such things as taxes and excises, social
services etc.

9 By an infrastructure component we mean such things as a nation’s healthcare
system (whether public and/or private), a rail infrastructure owner, a railway,
etc.

10 The above examples, i.e., footnotes 6–9, overlap, and are only suggestive.

1.3 Phases, Stages and Steps of Development 35

by human power, as operated, from afar by mechanical wires, as operated elec-
tromechanically, or as operated electronically and electromechanically (say, in
interlocking mode).

Characterisation. By domain management we shall understand such peo-
ple who determine, formulate and thus set standards (rules and regulations,
see next) concerning strategic, tactical, and operational decisions. Domain
management (i) ensures that these decisions are passed on to the (“lower”)
levels of management, and to “floor” staff, (ii) makes sure that such orders, as
they were, are indeed carried out, (iii) handles undesirable deviations in the
carrying out of these orders cum decisions, and (iv) “backstops” complaints
from lower management levels and from floor staff.

Example 1.14 Railway Management: An aspect of train operator manage-
ment is that some functions, being of strategic nature, are considered on a
yearly basis (whether to offer new train services). Other functions, being of
a tactical nature, are considered more regularly, although not daily (whether
prices should be lowered or raised due to lower, or higher costs, or due to
competition or lack thereof). Yet other functions being of an operational na-
ture, and are considered, and decided upon, “from hour to hour” (rescheduling
trains due to delays, etc.).

Characterisation. By domain organisation we shall understand the struc-
turing of management and nonmanagement staff levels, and the allocation of
strategic, tactical and operational concerns to within management and non-
management staff levels. Hence we mean the “lines of command”: who does
what and who reports to whom, both administratively, and functionally.

Example 1.15 Railway Organisation: Example 1.14 considered management
functions. The number and specialised nature of these usually warrants cor-
responding organisational structures: executive management entrusted with
strategic issues, mid-level management with tactical issues and “floor” (or
operational) management with operational issues.

Characterisation. By a domain rule we shall understand some text which
prescribes how people or equipment are expected to behave when dispatching
their duty, respectively when performing their functions.

Example 1.16 Railway Rules: In China: At railway stations, no two (or
more) trains are allowed to enter and/or leave, including basically move
around, simultaneously. In fact, train arrivals and departures must be sched-
uled to occur with at least 2-minute intervals.

36 1 The Triptych Paradigm

Elsewhere: A line between neighbouring stations is usually segmented into
blocks with the rule that at most one train may occupy any one block, or
even, in cases, with at least one “empty” (i.e., no train block) between two
trains.

Characterisation. By a domain regulation we shall understand some text
which prescribes what remedial actions are to be taken when it is decided that
a rule has not been followed according to its intention.

Example 1.17 Railway Regulations: Regulations may thus prescribe prop-
erties that must hold when rescheduling trains, for instance, negotiating with
neighbouring stations, etc. Or regulations may prescribe punitive staff actions
when a train driver disobeys a train signal.

Characterisation. By domain human behaviour we shall understand any
of a quality spectrum of humans carrying out assigned work: From careful,
diligent and accurate, via sloppy despatch and delinquent work, to outright
criminal pursuit.

Example 1.18 Railway Staff Behaviour: A railway ticket collector may check
and double-check that all passengers have been duly ticketed, or may fail to
do so, or may deliberately skip checking a whole carriage, etc.

Steps of Domain Development

Steps of domain development are now to be seen as such activities which
do not materially, i.e., in substance, change the properties of what is being
described, but which refine, from more abstract to more concrete, their way
of description. Other than the above, we shall not cover the issue of domain
development steps in the present chapter, but refer to Chaps. 8–16 for more
details.

1.3.4 Requirements Development

From Sect. 1.2.3 we repeat some of the below characterisations.

Characterisation. By requirements we shall understand a document which
prescribes the desired properties of a machine: what the machine shall (must,
not should) offer of functions and behaviours, and what entities it shall “main-
tain”.

Characterisation. By requirements prescription we mean the process —
and the document which results from the process — of requirements capture,
analysis and synthesis.

1.3 Phases, Stages and Steps of Development 37

Characterisation. By requirements engineering we understand the devel-
opment of requirements prescriptions: from requirements prescription via the
analysis of the requirements document itself, its validation with stakeholders
and its possible theory development.

Stages of Requirements Development

We see four different kinds of requirements: (i) business process reengineer-
ing, (ii) domain requirements, (iii) interface requirements, and (iv) machine
requirements. Conventionally the following terms are in circulation:

• functional requirements which approximately cover our domain require-
ments;

• user requirements which approximately cover our interface requirements;
• non-functional requirements which approximately cover some of our ma-

chine requirements; and
• system requirements which approximately cover some other of our machine

requirements.

Business Process Reengineering Requirements

Characterisation. By business process reengineering requirements we un-
derstand such requirements which express assumptions about the future, usu-
ally changed, business process behaviour of the environment of the machine
as brought about by the introduction of computing.

We suggest five domain-to-business process reengineering operations — which
will be covered in Sect. 19.3: (i) introduction of some new and removal of some
old support technologies, (ii) introduction of some new and removal of some
old management and organisation structures, (iii) introduction of some new
and removal of some old rules and regulations, (iv) introduction of some new
and removal of some old work practices (relating to human behaviours), and
related access rights (i.e., password authentication, authorisation), and (v)
related scripts.

Domain Requirements

Characterisation. By domain requirements we understand such require-
ments, to software, which are expressed solely in terms of domain phenomena
and concepts.

We suggest five domain to requirements operations that will be covered in
Sect. 19.4: domain projection, domain determination, domain instantiation,
domain extension and domain fitting.

38 1 The Triptych Paradigm

Business Process Reengineering and Domain Requirements

So in setting out, initially, acquiring (eliciting, “extracting”) requirements,
the requirements engineer naturally starts “in” or “with” the domain. That
is, asks questions, of or to the stakeholders, that eventually should lead to the
formulation of business process reengineering and domain requirements.

Interface Requirements

Characterisation. By interface requirements we understand such require-
ments, to software, which are expressed in terms of domain phenomena shared
between the environment and the machine.

We consider five kinds of interface requirements which will be covered in
Sect. 19.5: shared data initialisation requirements, shared data refreshment
requirements, man-machine dialogue requirements, man-machine physiologi-
cal interface requirements, and machine-machine dialogue requirements.

Machine Requirements

Characterisation. By machine requirements we understand those require-
ments of software that are expressed primarily in terms of concepts of the
machine.

We shall, in particular, consider the following kinds of machine requirements
— to be covered in Sect. 19.6: performance requirements, dependability re-
quirements, maintenance requirements, platform requirements and documen-
tation requirements.

Steps of Requirements Development

Steps of requirements development are now to be seen as such activities which
do not materially, i.e., in substance, change the properties of what is being
prescribed, but which refine, from more abstract to more concrete, their way of
prescription. Other than the above, we shall not cover the issue of requirements
development steps in the present chapter, but refer to Chaps. 17–24 for more
details.

1.3.5 Computing Systems Design

Given a comprehensive set of requirements, including, notably, machine re-
quirements, one is then ready to tackle, systematically, the issue of imple-
menting these requirements. Usually these requirements not only, as their
main implication, direct us to design software, but also in many instances im-
ply hardware design. In other words: computing systems design derives from
requirements.

1.3 Phases, Stages and Steps of Development 39

Stages and Steps of Hardware Design

Performance, dependability and platform requirements typically imply a need
for rather direct considerations of hardware — whether computers, computer
peripherals, or sensory and actuator technologies. By stages and steps of hard-
ware design we thus mean such which determine the overall composition of
hardware: information technology units, buses, etc., and their interfaces, and
the specific design of information technology units and buses, and so on.

Sometimes trade-off decisions have to be made as to whether a required
function or behaviour is to be implemented in hardware or in software. These
are called codesign decisions. Other than just mentioning these facts here, we
shall not cover the subject till Chap. 25.

Stages of Software Design

We have briefly mentioned the problem before: sometimes a set of require-
ments and a set of (domain) assumptions on the stability of the environment
and the execution platform allow us to first develop a high-level, i.e., abstract,
software design from domain (and possibly some interface) requirements. At
other times these assumptions are such (i.e., imply instability, such) that we
must first, defensively, develop a less high-level, i.e., a less abstract, software
design from machine requirements.

In the former case we say that we are first designing a software architec-
ture: something that very directly reflects what the user most directly expects.
In the latter case we say that we are first designing a software component and
module structure: something that very directly reflects what some machine re-
quirements imply. The boundary between the two design choices is not sharp.

It is possible to identify other software design stages. Some may involve
“conversion” from informal (or formal, abstract specification) language spec-
ifications to the identification and (hence) reuse of existing, “ready-made”
and/or instantiatable (i.e., parameterisable) “off-the-shelf” (OTS) modules
and components. Others involve conversion from informal (or formal, abstract
specification) language specifications to formal (say, programming) language
specifications, without the use of OTS software. This stage includes the final
coding stage. Also here the boundaries are usually fuzzy.

Steps of Software Design

We have, for this book, assumed that the reader already has some knowledge
of programming, i.e., of software design, albeit at a perhaps rather concrete,
i.e., coding, level. In line with this assumption we shall not treat the important
concept of software refinement. Instead we shall assume that the reader has
studied, or will study, such textbooks as: Dijkstra’s Discipline of Programming
[86], Gries’ Science of Programming [130], Reynolds’ Craft of Programming
[296], Hehner’s Logic and Practical Theory of Programming [158,159], Jones’

40 1 The Triptych Paradigm

Systematic Software Development [197, 198], Morgan’s Refinement Calculus
[249] or Back and von Wright’s (earlier) Refinement Calculus [19]. In Chap. 29
we shall, however, briefly illustrate notions of software design refinement.

1.3.6 Discussion: Phases, Stages and Steps

The phase, stage and step concepts, i.e., the concept of separation of concerns,
are — pragmatically as well as semantically — important. Hence we shall
further clarify these concepts.

Iterations of Phases, Stages and Steps

Ideally it would be nice if a software development could proceed linearly, from
domain development, via requirements development, to software design. But
reality seldom permits linear thinking and development. Instead one often
encounters, in software developments which span the three phases, that they
iterate: forwards and backwards between temporally neighbouring, even fur-
ther temporally spaced phases. Figure 1.2 attempts to illustrate this iteration.

Domain Engineering

Software Design

Requirements Engineering

REDO
REDO

REDO

DO

DO

Software Engineering

= Software Development

Fig. 1.2. A diagramming of the iterative triptych phase development

The forward, i.e., the temporally linear progression, is in Fig. 1.2 shown by
arrows labelled DO. The backward, i.e., the temporally iterative regression,
is shown by arrows labelled REDO. Thus iteration is afforded by traversing,
in one’s development, a sequence of one or more DO and one or more REDO
labelled arrows. We shall later explain, more carefully, what it may mean
to do iterative and evolutionary development. Similar remarks can be made
concerning iterative stagewise and iterative stepwise developments.

Concurrency of Phases, Stages and Steps

Usually phases are developed, one at a time. First the domain phase is devel-
oped, then the requirements phase, and finally the software design phase. For

1.3 Phases, Stages and Steps of Development 41

stages of a phase and steps of different stages one may sometimes be able to
carry out their development concurrently, that is, by different teams of devel-
opers at the same, or at least in partially overlapping time intervals. Stage of
domain modelling usually follow the sequential order shown in Fig. 1.3.

DO

DO

DO

DO

DOREDO

REDO

REDO

REDO

REDO

Support Technologies

Intrinsics

Business Processes

Management and Organisation

Rules and Regulations

Human Behaviour

Fig. 1.3. A diagramming of iteration of domain stages

Typically the domain requirements, the interface requirements and the ma-
chine requirements stages can be developed independently, i.e., concurrently.
Independent development is also appropriate for the individual “steps” within
machine requirements: performance, dependability, maintainability, platform,
and documentation requirements steps. Figure 1.4 illustrates the possibly in-
dependent development of machine requirements stages.

P
er

fo
rm

an
ce

D
ep

en
d

ab
ili

ty

M
ai

n
ta

in
ab

ili
ty

P
la

tf
o

rm

D
o

cu
m

en
ta

ti
o

n

Fig. 1.4. A diagramming of stage concurrency of machine requirements

42 1 The Triptych Paradigm

The diagrams shown in this section lead us into the subject of process
models.

1.4 The Triptych Process Model — A First View

The term process model has had, and continues to have, some currency and
is somewhat fashionable among practitioners and researchers of software en-
gineering. We shall therefore very briefly respond to that notion.

1.4.1 The Concept of a Process Model

In software development many teams of many people each may have to col-
laborate over long periods of time and over geographically widely distributed
locations. It is therefore of utmost importance that clear guidelines, princi-
ples, techniques and tools are established and are agreed upon by all teams
and people involved. The concept of a software development process model
and its enunciation serves this role.

Characterisation. By a software development process model we shall un-
derstand a set of guidelines for how to start, conduct and end a software
development project, a set of principles and techniques for decomposing these
parts (start, conduct and end) into smaller, more manageable parts, and a
set of principles, techniques and tools for what to do in, and how to do, these
smaller parts.

In this section we shall thus very briefly summarise the basic ideas of the
software development process model that these volumes are based upon.

1.4.2 The Triptych Process Model

Figure 1.2 highlighted what we shall refer to as the triptych phase process
model. Figure 1.3 diagrammed an iterative process model for part of domain
development. Figure 1.4 illustrates a concurrent process model for part of
requirements development.

In the next sections we shall summarise the triptych process model.
Throughout it is useful to keep in mind our remarks (Sect. 1.3.6) on iter-
ative and concurrent phases, stages and steps of development.

1.5 Conclusion to Chapter 1

It is time to complete this long introductory survey chapter.

1.6 Bibliographical Notes 43

1.5.1 Summary

We have introduced crucial aspects of our approach to software development.

• Definitions of software engineering: First, in Sect. 1.1 we brought in “old”
and “new” definitions and characterisations of “what is software engineer-
ing”.

• The triptych of software engineering: Then, in Sect. 1.2 we surveyed the
three key phases of our unique approach to software development: domain
engineering, requirements engineering and software design.

• Phases, stages and steps of software development: In Sect. 1.3 we reviewed
these three phases and further suggested stages and steps of development
within these phases and stages. We invite the reader to recapitulate the
stages.

• Software development process models: And in Sect. 1.4.1 we very briefly
broached the topic of process models, in particular the one brought forward
by this book. This process model will be enlarged upon in subsequent
chapters, notably Chap. 16, Chaps. 24, 30 and 31.

1.5.2 What Will Be Covered Later?

Naturally, this chapter has only provided a glimpse of things to come.

• Domain Engineering: Part IV will cover domain engineering in “excruci-
ating” detail.

• Requirements Engineering: Part V will cover requirements engineering in
“painstaking” detail.

• Software Design: And Part VI will cover software design in a somewhat
more superficial manner!

1.6 Bibliographical Notes

Section 1.1 referred to several leading textbooks on software engineering.
Those and others are by the following authors:

• Ian Sommerville [338]
• Roger S. Pressman [284]
• Shari Lawrence Pfleeger [275]
• Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli [121]
• Watts S. Humphrey [175]
• Hans van Vliet [369]

If you do not have access to Vols. 1 and 2 of this series on Software Engineering,
then we recommend the Ghezzi, Jazayeri and Mandrioli textbook [121]. In
particular, Software Engineering, Vol. 2 makes our otherwise recommended
access to [121] unnecessary.

44 1 The Triptych Paradigm

To complement the present three volumes we strongly recommend Hans
van Vliet’s fine work [369]. Also, Humphrey’s work, [175], is a good supplement
to the present three volumes.

1.7 Exercises

1.7.1 On a Series of Software Developments

In this volume we will relate to a number of complete software developments.
Some will be covered, here and there, in the body of chapters in this volume,
or have already been partially touched upon in previous volumes (railways,
etc.). Other aspects of this claimed complete development will be covered in
the exercise sections of most chapters.

Common to this coverage is a number of rough sketches of specific ap-
plication domains. Expressed briefly and phrased as problem questions to be
solved these are:

1. What is administrative forms processing?
2. What is an airport?
3. What is air traffic?
4. What is a container harbour?
5. What is a document system?
6. What is a financial services system?
7. What is freight logistics?
8. What is a hospital?
9. What is a manufacturing company?

10. What is the market?
11. What is a metropolitan area11 tourism industry?
12. What is a railway system?
13. What is a university?
14. What is public administration?
15. What is a ministry of finance?

Next we briefly give very rough sketches of each of these individual domains.

1. What is administrative forms processing?

Typically enterprises base part of their day-to-day operations (especially ad-
ministration) on a small set of forms. These include employment forms: ap-
plication, employment offer, offer acceptance or rejection, work exercise form,
form(s) for reporting sick leave, leave with, or without pay, termination or no-
tification forms, and so on; and procurement forms: product or service inquiry,
product or service offers, requisition, receipt form, inspection (acceptance or

11 Such cities as Singapore, Macau, Hong Kong, London, New York, Tokyo, Paris,
etc. can be said to be ‘Metropolitan Areas’.

1.7 Exercises 45

rejection) form, payment form, etcetera. Each form basically contains pre-
formatted fields, to be filled in, partially or fully. Each such partially filled
in form may undergo several rounds of filling in and possibly, where needed,
approvals (i.e., signatures).

2. What is an airport?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with the flow of people
(passengers), material (fuel, catering, luggage), aircraft, information (passen-
ger, luggage, catering, fuel, servicing, etc., information), and control in an
airport.

3. What is air traffic?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with the movements
(start-up, take-off, flight, preparation for landing, possible holding (in hold-
ing areas), touch-down and taxiing) of aircraft — under the monitoring and
control by ground, terminal, area and continental air traffic control towers.

4. What is a container harbour?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with the flow of ships
and cargo, into and out from a container harbour: ships arriving at a container
harbour, ships having, possibly, to anchor for container quay place, ships un-
loading and loading containers, ships being detained for customs, illegal cargo,
or lack of sea-worthiness reasons in a harbour, ships cleaning their fuel tanks
in a harbour, and ships leaving harbour.

5. What is a document system?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with documents: their
creation as originals, at a certain time and location, their placement with (al-
location to) people or file cabinets, their copying (whereby unique, distinct
copies are made, with no two copies of the same document being the same due
to their necessarily being copied at different times), their editing (whereby the
document which is being edited — whether an original, a copy, or a version —
becomes a version of the document it was “edited from”), their movement (i.e.,
transfer from persons or file cabinets to (other) persons or (other) file cabi-
nets, all necessarily having different locations — or their movement because
the person with whom a document is associated is carrying that document
“around”), or their shredding.

6. What is a financial services system?

46 1 The Triptych Paradigm

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with people, customers,
using banks, insurance companies, stockbrokers and portfolio managers. Thus
also the entities, functions, etc., of these phenomena need be described. Of
special interest are transfers of securities instruments between banks, insur-
ance companies, stockbrokers, the (assumed one) stock exchange, and portfolio
managers.

7. What is freight logistics?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with (1) people (senders)
inquiring with logistics firms about and actually sending or receiving freight
transports; (2) with logistics firms arranging such transportation with truck-
ing companies, with freight train operators, with ship owners, and with air
cargo companies — as well as logistics firms interacting with trucking and
freight train depots, harbours and airports; with (3) trucks, trains, ships and
aircraft unloading and loading freight at depots, harbours and airports, etc. A
central concept is that of a way bill (or a bill of lading), which directs freight
from its point of origin via intermediate hubs (depots, harbours, airports), to
its final destination.

8. What is a hospital?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with the flow of patients,
visitors and healthcare workers, of materials (beds, medicine, etc.), informa-
tion (patient medical records with update information on clinical tests, X-rays,
ECGs, MR scans, CT scans, etc.) and control in a hospital. Thus patient treat-
ment, as a process, and its interaction with other hospital processes needs to
be narrated.

9. What is a manufacturing company?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with the flow of orders
into and deliveries from a manufacturing company, as well as the flow of ma-
terials (parts), equipment (trucks, conveyor belts, etc.), information (sales
orders, production orders, etc.), and control among and within the various
departments of a manufacturing enterprise: marketing, sales and service, de-
sign, production floor (machines [lathes, saws, mills, planers, etc.] and their
in and out trays, delivery trucks, etc.), parts and products warehouses, etc.

10. What is the market?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with customers inquiring
about, ordering, taking delivery, returning (rejecting), accepting and paying

1.7 Exercises 47

for, merchandise — with, from, and to retailers, who again perform similar ac-
tions with wholesalers, who again perform similar actions with producers, and
where distribution companies may be involved in deliveries from producers to
wholesalers to retailers to consumers.

11. What is a metropolitan area tourism industry?

Domain descriptions of this topic shall identify and describe the entities,
functions upon, and events and behaviours in connection with the inquiry,
arrival, flow and departure of people (tourists, conference-goers, business peo-
ple) about, to, within and from a metropolitan area: between airports and
hotels, and between hotels, restaurants, shops, museums, theatres, parks, and
historic sights. Inquiry about and reservations of hotel rooms, restaurants (ta-
bles), theatres (tickets), the inquiry and buying of transport cards, what to
buy, planning of shopping (itinerary), etc. — all are part of what a visitor to a
metropolitan area undergoes, including possible visits to the dentist, medical
doctor or hospital emergency room.

12. What is a railway system?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with the rail net (lines
and stations), timetables, train traffic, passengers inquiring, buying tickets,
cancelling or using tickets, etc. The lines and stations consists of rail units,
signals, etc. Thus railway system personnel despatch and reschedule, maintain
(clean, repair, etc.) trains, and personnel are rostered (i.e., assigned to train
duties), and so on.

13. What is a university?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with students, lecturers
and administrators, students’ and lecturers’ courses cum classes, course de-
scriptions, lecture plans, lecture rooms (exercise and occupancy), examina-
tions, etc. Included is students applying for admission to a university and
registering for courses; of lecturers preparing courses, posting information,
lecture notes, etc., and actually giving lectures. You are to “add”, i.e., join to
the previous, all those “other things” that you associate with being a univer-
sity.

14. What is public administration?

The basis for this group of exercises is the creation and administration of
such laws which concern the daily life of citizens and whose effects they daily,
weekly, monthly, yearly or just occasionally “suffer” or benefit from — as the
case may be. For example, such laws as govern social welfare, healthcare bene-
fits, taxes and excise, building codes and land zoning (regulations), and so on.
Creation of these laws takes place in parliament. Ministries prepare drafts of

48 1 The Triptych Paradigm

laws to be put before parliament. Parliamentary committees discusses these
laws and may recommend changes or adoption by the parliament. Parlia-
ment discuss these laws and eventually adopts the laws with which this group
of exercises are concerned. Ministries formulate and ministers sign rules and
regulations on how civil servants are to administrate these laws. Public ad-
ministration divisions may further amend these rules and regulations with
respect to particular interpretation. And so on.

Domain descriptions of this topic shall identify and describe the entities,
functions upon, and events and behaviours in connection with the creation, all
the way through parliament, ministries, public administration divisions down
to the individual offices with which the citizens interact. Citizens may wish to
know about the history of the law: what motives there were for creating the
law in the first place, what discussions took place in parliamentary subcom-
mittees, in parliament (i.e., how it was enacted), what rules and regulations
were formulated by ministerial offices and which administrative procedures
were formulated, and the practice of these by public administration divisions,
and so on. Finally, and, as concerns the intention of the law, citizens need to
interact with the law by requesting, for example, benefits from it, by submit-
ting, for example, reports, and so forth.

15. What is a ministry of finance?

Domain descriptions of this topic shall identify and describe the entities, func-
tions upon, and events and behaviours in connection with a ministry of fi-
nance’s taxation and budget departments and the treasury.

In contrast to the above 14 domain outlines — where we relied on your
own prior, albeit only superficial, knowledge of those domains — we shall
elucidate the “workings” of the ministry of finance somewhat more.

A ministry of finance’s perception of the nation in which it serves is that it
is hierarchically organised: the state (s), the (nonoverlapping) provinces (pi),
the (nonoverlapping) districts (within provinces, dij

), and the (nonoverlap-
ping) communes (cities, townships, villages, etc., cijk

) within provinces — such
that all provinces “make up” the state ({p1, p2, . . . , pi, . . . , pp} = s), all dis-
tricts of a province “make up” that province ({di1 , di2 , . . . , diι

, . . . , did
} = pi),

and all communes of a district “make up” the district ({ciι1
, ciι2

,. . . ,ciιi
, . . . ,

ciιc
} = diι

).
Now the main functions of a ministry of finance wrt. the taxation and

budget departments and the treasury are as follows:
(1) Annually an order is issued — by the ministry of finance taxation de-

partment — whereby the corresponding taxation departments of each province
(of the state), each district within each province (of the state), and each com-
mune within each district (etc., etc.) are to assemble, gather, obtain, by census
or otherwise, statistical data, that is “the assessment data”. These data rep-
resent “best guesses” of the basis for tax revenue (such as personal income,
sales (for sales tax purposes), fees (for services rendered by province, dis-
trict or commune authorities), etc.). From the communes this kind of data is

1.7 Exercises 49

communicated (perhaps in simplified, summary form) to the district of that
commune, and likewise from district to province, and to state. These commu-
nications must take place before certain dates (Dac→d

, Dad→p
, Dap→s

).
(2) More or less simultaneously an order is issued — by the budget de-

partment of the ministry of finance — whereby each ministry (mµ, incl. the
ministry of finance, mf) is to set up a budget, Bmµ

, for next year’s activities
(i.e., expenditures) Emµ

. The ministry of finance sets an initial ceiling Imµ

(of so many millions of, say, dollars) for respective ministries’ expected in-
comes. The various ministries contribute their (possibly negotiated) budgets
for next year to the ministry of finance by a certain date D→m. A twist to
this budgeting process may occur if the ministry of finance judges, well before
D→m, but after Dap→s

, that the assessment data warrants either a downward
(pessimistic), or an upward (optimistic), adjustment of the income Imµ

. The
submitted budget Bmµ

must balance within the possibly adjusted set income
ceiling Imµ

. The various ministries also have “shadow” budget departments
in each province, district and commune.

(3) The parliament then negotiates and eventually, in time for the next
year, passes the national budget, Bs, as assembled from all ministries’ indi-
vidual budgets Bmµ

.
(4) The budget Bs is subdivided into province, district and commune

expenditures.
(5) Finally, the next fiscal year arrives, and the ministry of finance tax-

ation department requests the taxation departments (of provinces, districts
and communes) to regularly gather all relevant taxes and regularly send ap-
propriate proportions of these taxes to the corresponding commune, district,
province and state treasuries. Thus some proportion of a commune tax rev-
enue goes to that commune’s treasury, and the rest to the district treasury. As
districts, independently of communes, also gather taxes, their income derives
from these taxes and from the communes, and its outlay goes locally, to the
district treasury and the treasury of its province, and so on.

1.7.2 Introductory Remarks

Three remarks are in order:

• Selected Topic: When in the following we mention a selected topic, we are
referring to any one of the 15 problems listed in Sect. 1.7.1.

• Informal/Formal: When using the present volume in an informal course on
software engineering, answers to the below questions need only be given
informally, i.e., in precise natural language text (e.g., English). When using
the present volume in a formal course you are to present both a precise
natural language text and formulas to support that text.

• Incremental/Evolutionary Solutions: For each of the exercises — and, in
principle, you need solve all of them — you may try your mind and hand
on it. But since it is rather early in this volume and since, in particular,

50 1 The Triptych Paradigm

much material on how to really solve these exercises is given in almost all
chapters that follow you are expected to review your solution to the below
exercises, one review, ideally, for each of the many coming chapters!

1.7.3 The Exercises

Exercises in subsequent chapters will repeat the first nine exercises, but in
more elaborate forms.

Exercise 1.1 Domain Entities: For the fixed topic, selected by you, list
some dozen or so domain entities. Give suitably short names for their types
and describe these, whether simple or composite, and, if composite, describe
their composition.

Exercise 1.2 Domain Functions: For the fixed topic, selected by you, list
some half dozen or so domain functions: Give suitably short names to these
functions, and describe their signatures, that is, which arguments they “take”,
and what results in the “yield”.

Exercise 1.3 Domain Events: For the fixed topic, selected by you, list some
half dozen or so domain events. Give suitably short names to these events,
and describe them briefly.

Exercise 1.4 Domain Behaviours: For the fixed topic, selected by you,
list, say, three behaviours. Give suitably short names to these behaviours,
and describe them briefly.

Hint: Think of behaviours as processes, i.e., of a behaviour as “one” pro-
cess. Then describe that behaviour as it may also interact, or communicate,
thus exemplifying events, with other behaviours.

Exercise 1.5 Domain Requirements: For the fixed topic, selected by you,
list, say three or four, domain requirements. Describe them briefly and infor-
mally.

Exercise 1.6 Interface Requirements: For the fixed topic, selected by
you, list two or three interface requirements. Describe them briefly and infor-
mally.

Exercise 1.7 Machine Requirements: For the fixed topic, selected by
you, list one machine requirements for each of the “standard” areas: perfor-
mance, dependability, maintenance, platform, and documentation. Describe
them briefly and informally.

Exercise 1.8 Software Architecture Design: For the fixed topic, selected
by you, attempt, admittedly rather prematurely, to sketch a software architec-
ture — say in terms of (briefly specified) boxes and (briefly specified) arrows,
where boxes denote single-thread processes and arrows denote interactions
(messages) between processes. Do this only informally.

1.7 Exercises 51

Exercise 1.9 Software Component Design: This exercise is a continua-
tion of Exercise 1.8. For the architecture sketch given, by you, in answer to
Exercise 1.8, single out one or two “boxes” and specify their data structures
and functions. Do this only informally.

Exercise 1.10 The Triptych Process Model: Without referring back to
Sect. 1.4, try write down, for yourself, what the essence is of the triptych
process model. That is, phases and stages. Name these. Try to sketch some
process model diagrams.

