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Requirements Facets

• The prerequisite for studying this chapter is that you, as a requirements
engineer, need to know: what are the constituents of a proper model of
requirements?

• The aims are to introduce the concept that a proper requirements pre-
scription is made up from most of the following constituent prescriptions,
i.e., facets: (i) domain, (ii) interface and (iii) machine requirements, and,
within each of these three groups of facets, of (i) projections, determi-
nations, instantiations, extensions and fittings, respectively of (ii) shared
data intialisation and refreshment, computational data and control, man-
machine dialogues, man-machine physiological, and machine-machine di-
alogues, and of (iii) performance, dependability, maintenance, platform,
and documentation requirements respectively; and to present principles,
techniques and tools for the prescription of these facets.

• The objective is to ensure that you will become a thoroughly professional
requirements engineer.

• The treatment is from systematic to formal.

Throughout requirements engineering remember to adhere to:

The “Golden Rule” of Requirements Engineering

Prescribe only those requirements that can be objectively shown to hold for
the designed software.

“Objectively shown” means that the designed software can either be proved
(verified), or be model checked, or be tested, to satisfy the requirements. Recall
also:

An “Ideal Rule” of Requirements Engineering

When prescribing (incl. formalising) requirements, also formulate tests (the-
orems, properties for model checking) whose actualisation should show ad-
herence to the requirements.
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The rule is labelled ideal since such precautions will not be shown in this
volume. It ought be shown, but either we would show one, or a few instances,
and they would “drown” in the mass of material otherwise presented. Or they
would, we claim, trivially take up too much space. The rule is clear. It is a
question of proper management to see that it is adhered to.

19.1 Introduction

As is the case with Chap. 11, “Domain Facets”, this chapter constitutes a
second “high point” of the present volume. It is in this chapter that we present
principles and techniques of requirements engineering which are not, today,
otherwise available in any other textbook on software engineering. So take
your time to become thoroughly familiar with the contents of the present
chapter.

The chapter is structured as follows: First we rough-sketch, with little or
no consideration of the carefully worked out domain descriptions, an initial
set of (eureka) requirements — such as they may emerge from a more or
less undigested requirements acquisitions process (Sect. 19.2). On the basis of
the rough (eureka requirements) sketch we create a requirements terminology
and install the first terms into that terminology. Then we decompose the
further requirements development into the four major facets, which are then
covered in the next sections: “Business Process Reengineering” (Sect. 19.3),
“Domain Requirements” (Sect. 19.4), “Interface Requirements” (Sect. 19.5)
and “Machine Requirements” (Sect. 19.6). As an ongoing effort, during the
requirements facets development stages, we use and maintain, that is, revise
and install, additional terms into the terminology.

19.2 Rough Sketching and Terminology

The aim of this section is to remind the reader that in order to come up
with a proper model of requirements we must first have performed proper
identification of and requirements acquisition from stakeholders. After such
a requirements acquisition stage we can analyse the acquired requirements
prescription units. And after such an analysis we are ready to rough sketch,
i.e., to make a first attempt at constructing, some requirements document,
while, at the same time, establishing a terminology document. In this section
we shall overview these two aspects of “Requirements Engineering”.

19.2.1 Initial Requirements Modelling

In Example 17.1 we illustrated examples of “one”, or “two”, or “three liner”
requirements description units. Once, as a result of requirements acquisition
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(Chap. 20), you have gathered what you may think of as a sufficient number
of such analysed requirements description units, you are ready to rough sketch
a requirements prescription.

19.2.2 Rough-Sketch Requirements

A rough-sketch requirements prescription is (thus) based on a number of par-
tially “digested”, i.e., partially analysed and conceptualised, requirements de-
scription units. The requirements engineer is encouraged to try to formulate
a reasonably complete and consistent rough-sketch requirements prescription,
in order to do a more thorough requirements analysis and concept formation.

The requirements description units, in a sense, only express the stakehold-
ers’ views on requirements. These units may reflect a somewhat incoherent
“total view”. After a reasonably proper requirements analysis and concept for-
mation stage, the requirements engineer (i.e., the analyst), is able to formulate
a more coherent total view. Rough-sketching these requirements thus affords
a first opportunity for the requirements engineer to express the requirements.

Example 19.1 A Rough-Sketch Container Terminal Domain: To illustrate a
rough-sketch requirements we need first be able to refer to a domain descrip-
tion. In this case we present a rough-sketch domain description.

Entities

We itemize list entities of container harbours, in no particular order, only as
they come to mind:

• Container terminal: A container terminal is a composite entity. It con-
sists of a harbour basin of water, of one or more quays, of one or more
container pools, and of zero, one or more container freight stations. The
harbour water basin connects on one side to the open sea, and on the
other side to one or more quays. Attributes of a container terminal are: its
name, its maritime location (latitude and longitude), its number of quays,
number of pools, etc.

• Quay: A quay is a composite entity. A quay is like a straight road: The
quays connect on one side to the harbour basin, and on the other side,
possibly via a container terminal internal road net, to one or more con-
tainer pools, and, possibly via these, to the possible container freight sta-
tions. The quay also consists of one or more cranes. Quays have attributes:
length, width, number of cranes, position within the container terminal,
possibly a name, etc.

• Container: A container is a composite entity. It consists of (i) the con-
tainer box (which has length [say 20 or 40 feet], height, width, owner, etc.,
attributes), (ii) its contents (which may be empty, and which we choose to
abstract from, i.e., to not consider (in other words: disregard)), and (iii)
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its bill of lading. The latter has attributes such as: contents listing, which
agent (i.e., merchant) is sending this container, which agent (merchant) is
to receive the container, from where, via where, and to where, etc.

• Bill of Lading (BoL): A document which evidences a contract of carriage
by sea. The document has the following functions:

1. A receipt for goods, signed by a duly authorised person on behalf of
the carriers.

2. A document of title to the goods described therein.

3. Evidence of the terms and conditions of carriage agreed upon between
the two parties.

At the moment three different models are used:

1. A document for either combined transport or port-to-port shipments,
depending on whether the relevant spaces for place of receipt and/or
place of delivery are indicated on the face of the document.

2. A classic marine BoL in which the carrier is also responsible for the
part of the transport actually performed by himself.

3. Sea waybill: A nonnegotiable document, which can only be made out
to a named consignee. No surrender of the document by the consignee
is required.

• Container ship: A container ship is a composite entity. It consists of one
or more locations which can each hold, or which actually hold a container.
So the container ship also consists of these containers. Container locations
are called cells, and cells are laid out in bays, rows and tiers (like an x, y, z
coordinate system). Thus containers are stacked. The container ship is
further so arranged as to have these columns (i.e., stacks) of containers be
accessible from the top, through what is called a hatchway, an opening,
that can be covered by what is called a hatch cover. This hatch cover is
removed when unloading and loading containers to the appropriate stacks
that it covers. Ship attributes have to do with the exact arrangement of
bays, rows and tiers, and thus as to how many containers the ship can,
and at any moment, actually carry. Ships can berth at a quay. They then
occupy a certain length of that quay.

• Ship/quay crane: A crane, either aboard the ship, or positioned at quay-
side, can lift (unload) containers out of hatchways and onto (a truck on) the
quay, or, the other way around (load containers). Cranes have attributes:
operating area (along a quay), possibly a unique name (identifier), carry-
ing (lifting) weight, handling speed (capacity), etc. For any ship there is a
maximum number of such cranes that can serve the ship at any one time.

• Container truck: A truck is a composite entity. It consists of a chassis
and usually zero or one container. The chassis may be considered either
composite or atomic. Whatever is chosen, the chassis enables the container
truck to move. Container trucks have attributes: carrying (load) capacity,
service speed, etc.
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• (Un)Loading plan: A load plan for a container ship is a document which
specifies the sequences of stacking and unstacking of containers, as that
container ship calls on a succession of container harbours. Since contain-
ers can only be removed from or added onto the top of the cell position
stacks on a container ship, the order in which these stacks are loaded and
unloaded determines is crucial. No container is ever to be temporarily un-
loaded in order to get at containers “below” it — whereupon, once these
containers have been unloaded, the temporarily unloaded containers are
again loaded. No Towers of Hanoi puzzles here!

• Pool: A pool is a composite entity. It consists of one or more areas where
a stack of containers may be, as well as the containers actually positioned
there. Some pools can receive and (can thus) handle refrigerated contain-
ers (reefers). Stacks within a pool are usually ordered by row and column.
Pools have attributes: location (name and position) within the container
terminal, capacity (number and height of stacks), whether reefer or ordi-
nary containers, etc.

• Pool crane: A pool crane, like a quay/ship crane, can move containers,
one at a time, between container trucks/chassis and pool stacks.

Functions

• Calling: A container ship contacts, i.e., calls, a container terminal to
advise it of its intended arrival, giving its call sign. The ‘calling may, or
may not imply a request for permission to go to a previously scheduled
quay position.

• Unloading movement: This is a simple function and could be regarded
as an atomic function. Often it is called a movement. The function concerns
the unloading of a single container from a cell position aboard the container
ship by a designated crane onto a container truck or a container chassis.

• Loading movement: See the above, since it is basically the reverse move-
ment.

These two movements reflect the fact that container truck and container chas-
sis can only move one container at a time.

• Chassis/truck movement: We also consider this a simple, atomic func-
tion: Moving, by motor driven vehicle, one container from a crane at a
quay to a crane at a pool, or vice versa.

• Hatch cover removal (opening): An atomic function which opens up
for the hatchway so that containers can be loaded or unloaded.

• Hatch cover replacement (closure): An atomic function which closes
the hatchway.

Events

We rough-sketch some possible events:
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• The arrival of a container vessel to a quay position
• The departure of a container vessel from a quay position
• The failure to remove (to open) a hatch cover
• The failure to replace (to close) a hatch cover
• The failure of a crane to grip a container
• The failure of a crane to release a container
• The failure of a container truck/chassis to move
• The failure of a container vessel to move
• The outbreak of an epidemic disease

Behaviours

• A ship visit: A normal, “uneventful” ship visit behaviour starts with the
ship calling (action) and proceeds to the arrival of the container vessel
at a quay position (event). Some hatch covers may be opened. It then
continues with one or more concurrent sequences of container unloadings
and loadings (actions). It ends (possibly) with the closing of hatch covers
(actions) and the departure of the container vessel from the quay position.

• A merchant freight truck visit: A freight truck usually carries just one
(say a 40-foot) container, or, in cases, two (20-foot) containers. A merchant
freight truck is a freight truck which carries one merchant’s container(s),
overland, to or from a container terminal. Its visit is for three purposes:
to deliver one or two containers, to fetch one or two containers, or both.
Its behaviour wrt. the container terminal is: arrival (an event) at the con-
tainer terminal, registration (a function) at the container terminal gate
(statement of purpose, showing of papers (waybills, bill of loadings), etc.),
unloading and/or loading of containers (either at a special area, called the
container yard (or, in certain cases, at the container freight station), or
directly to a pool area, or, even, directly on the quay, for immediate ship
loading or unloading).

• A 24-hour crane behaviour: We encourage the reader to try complete
this item as an exercise (Exercise 19.15).

• A 24-hour container truck/chassis behaviour: We encourage the
reader to try complete this item as an exercise (Exercise 19.16).

Please note that Exercises 19.15–19.16 asks you to both consider describing
actual domain behaviours and prescribing desirable requirements.

Now, on the background of the above rough domain sketch, we are ready to
express a rough requirements sketch.

Example 19.2 A Rough-Sketch Requirements for Container Stowage: After
some discussion with stakeholders we arrive at the following base requirements
for a ship and pool areas container loading plan computing system. (What we
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here name ship and pool area container loading plans are, more colloquially,
called stowage plans.)

1. Container: Every container c (that is to be involved in the planning of
loading plans, and hence subject to actual loading and unloading) shall
possess the following attributes: (i) length and (ii) BoL, b.

2. Bill of Lading: The BoL states the route which the container, c, is to
take, or is taking or has taken. It is a requirement that the system shall
establish and maintain BoLs for all relevant containers.

3. [Ship sailing] route: A route is here considered a sequence of two or
more container terminal visits. A container terminal visit is a pair: the
name of a container terminal (T ) and the name of a container ship (s) or,
for the last in such a sequence, say nil. The ship S takes the container C
from container terminal t. Let r : < (t1, s1), . . . , (ti, si), (ti+1, si+1), . . . ,
(tn,nil) > designate a route for some container. It expresses that that
container is transported from container terminal ti to container terminal
ti+1 by container ship si. It is a requirement that the system shall establish
and maintain ship sailing routes, for all of a ship owner’s relevant container
ships.

4. Ship container stack layout (‘context’): For every relevant container
ship (say, in the ship owner’s fleet of such), full information shall be
maintained of how each ship is laid out wrt. container stacks (this is
called contextual information).

5. Ship container stack ‘state’: For every container ship being consid-
ered, we further require that a state shall be maintained. The state is
information about the location of all current containers: where, aboard,
i.e., in which stack and cell position, they are stored. A well-formedness
about this state expresses that each container has a BoL which states that
it should indeed be aboard that ship at the moment the state is recorded.

6. Pool area container stack layouts (‘context’): For every relevant
container terminal, and for every container pool area (that is relevant to
the ship owner for which these requirements are to be developed, and
within these container terminals), information about the topological lay-
out and pool area stacks, whether for ordinary containers, or for reefers,
whether for 20-foot or for 40-foot (etc.) containers, shall be kept and reg-
ularly updated to reflect any changes in pool area layouts, etc.

7. Pool area container stack ‘states’: For every pool area container stack
being (thus) considered, we further require that a state shall be main-
tained. The state is information about all current containers being stored
in that pool area stack and their location, that is, BoLs and where (i.e.,
bay, row, cell position), etc.

8. Shipping orders: There shall at any moment be a latest set of shipping
orders. By shipping orders we understand a current set of outstanding
orders for the shipping of containers.
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(a) Pragmatics: Outstanding (container shipping) order. By an
outstanding (container shipping) order we mean an order for a con-
tainer transport, i.e., an order whose transport is being requested, but
for which no acknowledgement of its precise shipping has yet been
given.

(b) Syntax: Outstanding (container shipping) order. The order
document specifies (i.e., restates) the BoL of the container and a se-
quence of one or more container terminals.

(c) Semantics: Outstanding (container shipping) order. The
meaning of an outstanding (container shipping) order is, if it is ac-
cepted, that it enters the allocation and scheduling process of the
relevant shipowner(s), and thus, eventually, is confirmed.

9. Confirmed (container) shipping order: By a confirmed (container)
shipping order we mean a shipping order which is no longer outstanding:
Its syntax has been understood, and its semantics has been implemented.
That is, it has been used in the construction of one or more ship container
loading plans (and possibly also in one or more container pool area loading
plans). Whether the container in question is actually en route is here left
open.

10. Ship container loading plans: Based on the above forms of informa-
tion, i.e., items 1–9, the required computing system shall generate two
kinds of reasonably optimal ship container loading plans (i.e., documents):
static and dynamic.

11. Static ship container loading plan: A static ship container loading
plan is a plan that prescribes which containers are loading and unloading
at which container terminals, for a given ship, i.e., for a given route that
this ship is to follow, and for a given set of outstanding shipping orders.
The plan also states where each container is to be located aboard the ship.

12. Dynamic ship container loading plan: Given a static ship container
loading plan, and given a container terminal (i.e., the name of a terminal
at which the ship for that loading plan is berthed), the dynamic ship
container loading plan specifies the sequences in which containers are to
be unloaded and loaded.

• As an example of the issues involved in loading and unloading, let us
consider the following:
? Let container ci be loaded on stack s in terminal ti.
? Let container ci+1 be loaded on stack s in terminal ti or ti+1 (i.e.,

immediately “on top of” ci).
? Now container ci+1 can be unloaded from stack s in terminal ti+2.
? Container ci can be unloaded from stack s in terminal ti+2, or some

suitable later terminal.
• That is, a stack push and pop discipline must be adhered to.

13. [Reasonably] optimal static ship container loading plan: A static
loading plan is said to be [reasonably] optimal if no other such plan can
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be found which “fills” all stacks of a ship to their (almost) fullest capacity
while adhering to the stacking discipline.

14. [Reasonably] optimal dynamic ship container loading plan: A
dynamic loading plan is said to be [reasonably] optimal if no other such
plan can be found which generates the longest sequences of ship crane
container movements with respect to the same ship stack.

15. The generation of plans: The intent of any dynamic ship container
loading plan is that actual unloadings and loadings shall be commensurate
with, i.e., “follow”, that plan.

16. Container pool area loading plan: And so on; this plan will not be
prescribed.

17. Container ship loadings and unloadings: By container ship loadings
and unloadings we understand the sequences of ship crane positions, along
the quay, next to, i.e., servicing, a given ship, as well as the movement,
for each ship crane position, of containers to and from the ship (i.e., from
and to the quay). Since translocating a ship crane (from one quay/ship
position to another) takes time we wish to minimise the number of ship
crane translocations.

Lest you have lost sight of what the rough-sketch requirements really were,
we here summarise these:

2. Initialisation and refreshment of container BoLs
3. Initialisation and refreshment of ship sailing routes
4. Initialisation and refreshment of ship container stack layouts
5. Initialisation and refreshment of ship container stack states
6. Initialisation and refreshment of pool area container stack layouts
7. Initialisation and refreshment of pool area container stack states
8. Storage and reference to shipping orders, includes securing item 9
11. Generation of static ship container loading plan, securing item 13
12. Generation of dynamic ship container loading plan, securing item 14
16. Generation of container pool area loading plan (prescription omitted)
17. Minimise ship crane translations, securing item 15

We remind the reader that the above constitutes a set of rough-sketched re-
quirements and that we likewise presented only rough-sketched descriptions
of some aspects of the domain of container terminals in Example 19.1.

So the above gave you some kind of rough-sketch example of what require-
ments may entail. The example was not that small. It had to be “semi-large”.
You have to see, with your “own eyes”, that rough sketches are not small. In
fact, they are much larger than the above example.

Before we proceed to the main material of this chapter on requirements
facets, let us take a brief look at the interaction between rough-sketching and
terminologisation.
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19.2.3 Requirements Terminology

We briefly covered, in Chap. 2, the topic of terminology. We do this to put
that topic in a more proper context, that is, to hint at the size and complexity,
of a realistic terminology.

Example 19.3 An Incomplete Container Terminal Terminology:
This terminology section is (i) far from complete, (ii) and much too long.

And it only covers the domain, not the requirements. We bring in a rather
extensive extract so that the reader can see what it takes to construct a ter-
minology. Namely that it takes quite a lot. The sheer size of the example,
albeit just a minor part of the real list, should indicate to the reader the seri-
ousnees with which we press the issue of constructing realistic terminologies.
The terms are culled from the Internet [276] (a list of terms from the P&O
Nedlloyd shipping company). We stress that we have copied freely from [276]
and that we encourage the reader, as Exercise 19.1, to rephrase and formalise
part of this terminology.

1. Actual voyage number: A code for identification purposes of the voyage
and vessel which actually transports the container/cargo.

2. Agency fee: Fee payable by a ship owner or ship operator to a port agent.
3. Agent:

(a) A person or organization authorised to act for or on behalf of another
person or organization.

(b) In P&O Nedlloyd, an Agent is a corporate body with which there is
an agreement to perform particular functions on behalf of them for
an agreed payment. An Agent is either a part of the P&O Nedlloyd
organization or an independent body. The following functions and
responsibilities may apply to the activities of an agent.
i. Sales: Marketing, acquisition of cargo, issuing quotations, conclud-

ing contracts in coordination with P&O Nedlloyd. Basically the
agent is the first point of entry into the P&O Nedlloyd organiza-
tion for a shipper.

ii. Bookings: Booking of cargo in accordance with allotments as-
signed to the agent for a certain voyage by P&O Nedlloyd.

iii. Customs: Dealing with the national customs administration for
cargo declarations, manifest alterations and cargo clearance on
behalf of P&O Nedlloyd.

iv. Documentation: Responsible for timeliness and correctness of all
documentation required, regarding the carriage of cargo.

v. Handling: Taking care of all procedures connected with physical
handling of cargo.

vi. Equipment control: Managing of all equipment stock in a partic-
ular area.
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vii. Issuing: Authorised to sign and issue Bills of Lading and other
transport documents.

viii. Collecting: Authorised to collect freight and charges on behalf of
P&O Nedlloyd.

ix. Delivery: The agent who releases the cargo and is responsible for
its delivery to the consignee.

x. Handling of cargo claims: Handling of cargo claims as per agency
contract.

xi. Husbanding: Handling non-cargo-related operations of a vessel as
instructed by the master, owner or charterer.

4. Area code: A code for the area where a container is situated.

5. Area off hire lease: Geographical area where a leased container becomes
off hire.

6. Area off hire sublease: Geographical area where a subleased container
becomes off hire.

7. Area on hire lease: Geographical area where a leased container becomes
on hire.

8. Area on hire sublease: Geographical area where a subleased container
becomes on hire.

9. Arrival date: The date on which goods or a means of transport is due to
arrive at the delivery site of the transport.

10. Arrival notice: A notice sent by a carrier to a nominated notify party
advising of the arrival of a certain shipment or consignment.

11. Auto container: Container equipped for the transportation of vehicles.

12. Automated guided vehicle system: Unmanned vehicles equipped with au-
tomatic guidance equipment which follow a prescribed path, stopping at
each necessary station for automatic or manual loading or unloading.

13. Automatic identification: A means of identifying an item, e.g., a product,
parcel or transport unit, by a machine (device) entering the data auto-
matically into a computer. The most widely used technology at present
is barcode; others include radio frequency, magnetic strips and optical
character recognition.

14. BoL: See Bill of Lading.

15. Barcoding: A method of encoding data for fast and accurate electronic
readability. Barcodes are a series of alternating bars and spaces printed or
stamped on products, labels, or other media, representing encoded infor-
mation which can be read by electronic readers, used to facilitate timely
and accurate input of data to a computer system. Barcodes represent
letters and/or numbers and special characters like +, /, −, etc.

16. Barge: Flat-bottomed inland cargo vessel for canals and rivers with or
without own propulsion for the purpose of transporting goods.

17. Bay: A vertical division of a vessel from stem to stern, used as a part of the
indication of a stowage place for containers. The numbers run from stem
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to stern; odd numbers indicate a 20-foot position, even numbers indicate
a 40-foot position.

18. Bay plan: A stowage plan which shows the locations of all the containers
on the vessel.

19. Berth: A location in a port where a vessel can be moored, often indicated
by a code or name.

20. Bill of Lading: Abbreviation: BoL. A document which evidences a contract
of carriage by sea. The document has the following functions:

(a) A receipt for goods, signed by a duly authorised person on behalf of
the carriers.

(b) A document of title to the goods described therein.
(c) Evidence of the terms and conditions of carriage agreed upon between

the two parties.

At the moment 3 different models are used:
(d) A document for either Combined Transport or Port-to-Port shipments

depending on whether the relevant spaces for place of receipt and/or
place of delivery are indicated on the face of the document.

(e) A classic marine Bill of Lading in which the carrier is also responsible
for the part of the transport actually performed by himself.

(f) Sea Waybill: A non-negotiable document, which can only be made out
to a named consignee. No surrender of the document by the consignee
is required.

21. Bill of Lading clause: A particular article, stipulation or single proviso in
a Bill of Lading. A clause can be standard and can be preprinted on the
BoL.

22. Bill of Material: A list of all parts, subassemblies and raw materials that
constitute a particular assembly, showing the quantity of each required
item.

23. Boat: A small open-decked craft carried aboard ships for a specific pur-
pose, e.g., lifeboat, workboat.

24. Bonded: The storage of certain goods under charge of customs viz. customs
seal until the import duties are paid or until the goods are taken out of
the country.
(a) Bonded warehouse (place where goods can be placed under bond).
(b) Bonded store (place on a vessel where goods are placed behind seal

until the time that the vessel leaves the port or country again).
(c) Bonded goods (dutiable goods upon which duties have not been paid,

i.e., goods in transit or warehoused pending customs clearance).
25. Box: Colloquial name for container (e.g., Box-club).
26. Bulk container: A container designed for the carriage of free-flowing dry

cargo, loaded through hatchways in the roof of the container and dis-
charged through hatchways at one end of the container.

27. Business process: A business process is the action taken to respond to
particular events, convert inputs into outputs, and produce particular re-
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sults. Business processes are what the enterprise must do to conduct its
business successfully.

28. Business process model: The business process model provides a breakdown
(process decomposition) of all levels of business processes within the scope
of a business area. It also shows process dynamics, lower-level process
interrelationships. In summary it includes all diagrams related to a process
definition, allowing for understanding what the business process is doing
(and not how).

29. Business process redesign (BPR): The process of redesigning business
practice models including the exchange of data and services amongst
the stakeholders (i.e., finance, merchandising, production, distribution)
involved in the life cycle of a client’s product.

30. Call: The visit of a vessel to a port.
31. Call sign: A code published by the International Telecommunication Union

in its annual List of Ships’ Stations to be used for the information inter-
change between vessels, port authorities and other relevant participants in
international trade. Note: The code structure is based on a three-digit des-
ignation series assigned by the ITU and one digit assigned by the country
of registration. (PDHP = P&O Nedlloyd Rotterdam)

32. Cargo:
(a) Goods transported or to be transported, all goods carried on a ship

covered by a BoL.
(b) Any goods, wares, merchandise, and articles of every kind whatsoever

carried on a ship, other than mail, ship’s stores, ship’s spare parts,
ship’s equipment, stowage material, crew’s effects and passengers’ ac-
companied baggage.

(c) Any property carried on an aircraft, other than mail, stores and ac-
companied or mishandled baggage. Also referred to as ‘goods’.

33. Carrier: The party undertaking transport of goods from one point to an-
other.

34. Cell: Location aboard a container vessel where one container can be
stowed.

35. Cell position: The location of a cell aboard of a container vessel identified
by a code for, successively, the bay, the row and the tier, indicating the
position of a container on that vessel.

36. Cellular vessel: A vessel, specially designed and equipped for the carriage
of containers.

37. Consignee: The party such as mentioned in the transport document by
whom the goods, cargo or containers are to be received.

38. Consignment: A separate identifiable number of goods (available to be)
transported from one consignor to one consignee via one or more than one
modes of transport and specified in one single transport document.

39. Consignment instructions: Instructions from either the seller/consignor or
the buyer/consignee to a freight forwarder, carrier or his agent, or other
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provider of a service, enabling the movement of goods and associated
activities. The following functions can be covered:

• Movement and handling of goods (shipping, forwarding and stowage).

• Customs formalities.

• Distribution of documents.

• Allocation of documents (freight and charges for the connected oper-
ations).

• Special instructions (insurance, dangerous goods, goods release, addi-
tional documents required).

40. Container: An item of equipment as defined by the International Organi-
zation for Standardization (ISO) for transport purposes. It must be:

(a) a permanent character and accordingly strong enough to be suitable
for repeated use;

(b) specially designed to facilitate the carriage of goods, by one or more
modes of transport, without intermediate reloading;

(c) fitted with devices permitting its ready handling, particularly from
one mode of transport to another;

(d) so designed as to be easy to fill and empty;

(e) having an internal volume of one cubic meter or more.

41. Container chassis: A vehicle specially built for the purpose of transport-
ing a container so that, when container and chassis are assembled, the
produced unit serves as a road trailer.

42. CFS: Container freight station: A facility at which (export) LCL (less than
container load) cargo is received from merchants for loading (stuffing) into
containers or at which (import) LCL cargo is unloaded (stripped) from
containers and delivered to merchants.

43. CLP: Container load plan: A list of items loaded in a specific container
and where appropriate, their sequence of loading.

44. Container logistics: The controlling and positioning of containers and
other equipment.

45. Container manifest: The document specifying the contents of particular
freight containers or other transport units, prepared by the party respon-
sible for their loading into the container or unit.

46. Container moves: The number of actions performed by one container crane
during a certain period.

47. Container pool: A certain stock of containers which is jointly used by
several container carriers and/or leasing companies.

48. Container ship: A vessel, i.e., a floating structure designed for the trans-
port of containers.

49. Container stack: Two or more containers, one placed above the other,
forming a vertical column.

50. Container terminal: Place where loaded and/or empty containers are
loaded or discharged into or from a means of transport.
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51. Container yard: Abbreviation: CY. A facility at which FCL traffic and
empty containers are received from or delivered to the Merchant by or on
behalf of the Carrier.

52. Fully cellular container ship: Abbreviation: FCC. A vessel specially de-
signed to carry containers, with cell-guides under deck and necessary fit-
tings and equipment on deck.

53. Full container load: Abbreviation: FCL.
(a) A container stuffed or stripped under risk and for account of the ship-

per and/or the consignee.
(b) A general reference for identifying container loads of cargo loaded

and/or discharged at merchants’ premises.
54. Grid number: An indication of the position of a container in a bay plan

by means of a combination of page number, column and line. The page
number often represents the bay number.

55. Hatch cover: Watertight means of closing the hatchway of a vessel.
56. Hatch way: Opening in the deck of a vessel through which cargo is loaded

into, or discharged from the hold and which is closed by means of a hatch
cover.

57. LCL: Less than container load.
58. Merchant: For cargo carried under the terms and conditions of the Car-

rier’s Bill of Lading and of a tariff, it means any trader or persons (e.g.,
Shipper, Consignee) and including anyone acting on their behalf, owning
or entitled to possession of the goods.

59. Reefer container: A thermal container with refrigerating appliances (me-
chanical compressor unit, absorption unit, etc.) to control the temperature
of cargo.

60. Etcetera!

We again refer to [276] for full details.

The “moral” of the above three examples is the composite of: a real domain
description is long; a real requirements prescription is long; and a real termi-
nology is long. In a textbook we can only hint at, but not illustrate, the real
size of our descriptions, prescriptions and specifications.

19.2.4 Systematic Narration

From the rough sketches of requirements to a properly expressed, consistent,
relatively complete and well-structured requirements document, there is still
a long way to go in order to cover all relevant aspects, here called facets, of
the requirements. It is the purpose of the next sections to overview proper
structures, proper principles and proper prescription techniques, for attaining
such well-designed requirements documents.
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19.3 Business Process Reengineering Requirements

We remind the reader of Section 11.2.1.

Characterisation. By business process reengineering we understand the re-
formulation of previously adopted business process descriptions, together with
additional business process engineering work.

Business process reengineering (BPR) is about change, and hence BPR is also
about change management. The concept of workflow is one of these “hyped” as
well as “hijacked” terms: They sound good, and they make you “feel” good.
But they are often applied to widely different subjects, albeit having some
phenomena in common. By workflow we shall, very loosely, understand the
physical movement of people, materials, information and “centre (‘locus’) of
control” in some organisation (be it a factory, a hospital or other). We have,
in Vol. 1, Chap. 12 (Petri Nets), in Sect. 12.5.1 covered the notion of work
flow systems.

19.3.1 Michael Hammer’s Ideas on BPR

Michael Hammer, a guru of the business process reengineering “movement”,
states [140]:

1. Understand a method of reengineering before you do it for serious.

So this is what this chapter is all about!

2. One can only reengineer processes.
3. Understanding the process is an essential first step in reengineering.

And then he goes on to say: “but an analysis of those processes is a waste
of time. You must place strict limits, both on time you take to develop this
understanding and on the length of the description you make.” Needless to
say we question this latter part of the third item.

4. If you proceed to reengineer without the proper leadership, you are making
a fatal mistake. If your leadership is nominal rather than serious, and isn’t
prepared to make the required commitment, your efforts are doomed to
failure.

By leadership is basically meant: “upper, executive management”.

5. Reengineering requires radical, breakthrough ideas about process design.
Reengineering leaders must encourage people to pursue stretch goals1 and
to think out of the box; to this end, leadership must reward creative
thinking and be willing to consider any new idea.

1 A ‘stretch goal’ is a goal, an objective, for which, if one wishes to achieve that
goal, one has to stretch oneself.
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This is clearly an example of the US guru, “new management”-type ‘speak’ !

6. Before implementing a process in the real world create a laboratory version
in order to test whether your ideas work. . . . Proceeding directly from idea
to real-world implementation is (usually) a recipe for disaster.

Our careful both informal and formal description of the existing domain pro-
cesses, as covered in Chap. 11, as well as the similarly careful prescription of
the reengineered business processes shall, in a sense, make up for this other-
wise vague term “laboratory version”.

7. You must reengineer quickly. If you can’t show some tangible results within
a year, you will lose the support and momentum necessary to make the
effort successful. To this end “scope creep” must be avoided at all cost.
Stay focused and narrow the scope if necessary in order to get results fast.

We obviously do not agree, in principle and in general, with this statement.

8. You cannot reengineer a process in isolation. Everything must be on the
table. Any attempts to set limits, to preserve a piece of the old system,
will doom your efforts to failure.

We can only agree. But the wording is like mantras. As a software engineer,
founded in science, such statements as the above are not technical, are not
scientific. They are “management speak”.

9. Reengineering needs its own style of implementation: fast, improvisational,
and iterative.

We are not so sure about this statement either! Professional engineering work
is something one neither does fast nor improvisational.

10. Any successful reengineering effort must take into account the personal
needs of the individuals it will affect. The new process must offer some
benefit to the people who are, after all, being asked to embrace enormous
change, and the transition from the old process to the new one must be
made with great sensitivity as to their feelings.

This is nothing but a politically correct, pat statement! It would not pass the
negation test: Nobody would claim the opposite. Real benefits of reengineering
often come from not requiring as many people, i.e., workers and management,
in the corporation as before reengineering. Hence: What about the “feelings”
of those laid off?

19.3.2 What Are BPR Requirements?

Two “paths” lead to business process reengineering:

• A client wishes to improve enterprise operations by deploying new comput-
ing systems (i.e., new software). In the course of formulating requirements
for this new computing system a need arises to also reengineer the human
operations within and without the enterprise.
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• An enterprise wishes to improve operations by redesigning the way staff
operates within the enterprise and the way in which customers and staff
operate across the enterprise-to-environment interface. In the course of for-
mulating reengineering directives a need arises to also deploy new software,
for which requirements therefore have to be enunciated.

One way or the other, business process reengineering is an integral component
in deploying new computing systems.

19.3.3 Overview of BPR Operations

We suggest six domain-to-business process reengineering operations:

1. introduction of some new and removal of some old intrinsics;
2. introduction of some new and removal of some old support technologies;
3. introduction of some new and removal of some old management and or-

ganisation substructures;
4. introduction of some new and removal of some old rules and regulations;
5. introduction of some new and removal of some old work practices (relating

to human behaviours); and
6. related scripting.

19.3.4 BPR and the Requirements Document

Requirements for New Business Processes

The reader must be duly “warned”: The BPR requirements are not for a
computing system, but for the people who “surround” that (future) system.
The BPR requirements state, unequivocally, how those people are to act, i.e.,
to use that system properly. Any implications, by the BPR requirements, as
to concepts and facilities of the new computing system must be prescribed
(also) in the domain and interface requirements.

Place in Narrative Document

We shall thus, in Sects. 19.3.5–19.3.10, treat a number of BPR facets. Each of
whatever you decide to focus on, in any one requirements development, must
be prescribed. And the prescription must be put into the overall requirements
prescription document.

As the BPR requirements “rebuilds” the business process description part
of the domain description2, and as the BPR requirements are not directly
requirements for the machine, we find that they (the BPR requirements texts)
can be simply put in a separate section.

2 — Even if that business process description part of the domain description is
“empty” or nearly so!
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There are basically two ways of “rebuilding” the domain description’s busi-
ness process’s description part (DBP ) into the requirements prescription part’s
BPR requirements (RBPR). Either you keep all of D as a base part in RBPR,
and then you follow that part (i.e., RBPR) with statements, R′

BPR, that ex-
press the new business process’s “differences” with respect to the “old” (DBP ).
Call the result RBPR. Or you simply rewrite (in a sense, the whole of) DBP

directly into RBPR, copying all of DBP , and editing wherever necessary.

Place in Formalisation Document

The above statements as how to express the “merging” of BPR requirements
into the overall requirements document apply to the narrative as well as to
the formalised prescriptions.

Formal Presentation: Documentation

We may assume that there is a formal domain description, DBP , (of business
processes) from which we develop the formal prescription of the BPR require-
ments. We may then decide to either develop entirely new descriptions of the
new business processes, i.e., actually prescriptions for the business reengi-
neered processes, RBPR; or develop, from DBP , using a suitable schema
calculus, such as the one in RSL, the requirements prescription RBPR, by
suitable parameterisation, extension, hiding, etc., of the domain description
DBP .

19.3.5 Intrinsics Review and Replacement

Characterisation. By intrinsics review and replacement we understand an
evaluation as to whether current intrinsics stays or goes, and as to whether
newer intrinsics need to be introduced.

Example 19.4 Intrinsics Replacement: A railway net owner changes its busi-
ness from owning, operating and maintaining railway nets (lines, stations and
signals) to operating trains. Hence the more detailed state changing notions
of rail units need no longer be part of that new company’s intrinsics while the
notions of trains and passengers need be introduced as relevant intrinsics.

Replacement of intrinsics usually point to dramatic changes of the business
and are usually not done in connection with subsequent and related software
requirements development.

19.3.6 Support Technology Review and Replacement

Characterisation. By support technology review and replacement we un-
derstand an evaluation as to whether current support technology as used in
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the enterprise is adequate, and as to whether other (newer) support technology
can better perform the desired services.

Example 19.5 Support Technology Review and Replacement: Currently the
main information flow of an enterprise is taken care of by printed paper, copy-
ing machines and physical distribution. All such documents, whether originals
(masters), copies, or annotated versions of originals or copies, are subject to
confidentiality. As part of a computerised system for handling the future in-
formation flow, it is specified, by some domain requirements, that document
confidentiality is to be taken care of by encryption, public and private keys,
and digital signatures. However, it is realised that there can be a need for
taking physical, not just electronic, copies of documents. The following busi-
ness process reengineering proposal is therefore considered: Specially made
printing paper and printing and copying machines are to be procured, and
so are printers and copiers whose use requires the insertion of special signa-
ture cards which, when used, check that the person printing or copying is
the person identified on the card, and that that person may print the desired
document. All copiers will refuse to copy such copied documents — hence the
special paper. Such paper copies can thus be read at, but not carried outside
the premises (of the printers and copiers). And such printers and copiers can
register who printed, respectively who tried to copy, which documents. Thus
people are now responsible for the security (whereabouts) of possible paper
copies (not the required computing system). The above, somewhat construed
example, shows the “division of labour” between the contemplated (required,
desired) computing system (the “machine”) and the “business reengineered”
persons authorised to print and possess confidential documents.

It is implied in the above that the reengineered handling of documents
would not be feasible without proper computing support. Thus there is a
“spill-off” from the business reengineered world to the world of computing
systems requirements.

19.3.7 Management and Organisation Reengineering

Characterisation. By management and organisation reengineering we un-
derstand an evaluation as to whether current management principles and or-
ganisation structures as used in the enterprise are adequate, and as to whether
other management principles and organisation structures can better monitor
and control the enterprise.

Example 19.6 Management and Organisation Reengineering: A rather com-
plete computerisation of the procurement practices of a company is being con-
templated. Previously procurement was manifested in the following physically
separate as well as designwise differently formatted paper documents: requi-
sition form, order form, purchase order, delivery inspection form, rejection
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and return form, and payment form. The supplier had corresponding forms:
order acceptance and quotation form, delivery form, return acceptance form,
invoice form, return verification form, and payment acceptance form. The cur-
rent concern is only the procurement forms, not the supplier forms. The pro-
posed domain requirements are mandating that all procurer forms disappear
in their paper version, that basically only one, the procurement document,
represents all phases of procurement, and that order, rejection and return no-
tification slips, and payment authorisation notes, be effected by electronically
communicated and duly digitally signed messages that represent appropriate
subparts of the one, now electronic procurement document. The business pro-
cess reengineering part may now “short-circuit” previous staff’s review and
acceptance/rejection of former forms, in favour of fewer staff interventions.

The new business procedures, in this case, subsequently find their way into
proper domain requirements: those that support, that is monitor and control
all stages of the reengineered procurement process.

19.3.8 Rules and Regulations Reengineering

Characterisation. By rules and regulations reengineering we understand an
evaluation as to whether current rules and regulations as used in the enterprise
are adequate, and as to whether other rules and regulations can better guide
and regulate the enterprise.

Here it should be remembered that rules and regulations principally stipulate
business engineering processes. That is, they are — i.e., were — usually not
computerised.

Example 19.7 Rules and Regulations Reengineering: Our example contin-
ues that of Example 11.19. We kindly remind the reader to restudy that ex-
ample. Assume now, due to reengineered support technologies, that interlock
signalling can be made magnitudes safer than before, without interlocking.
Thence it makes sense to reengineer the rule of Example 11.19 from: In any
three-minute interval at most one train may either arrive to or depart from a
railway station into: In any 20-second interval at most two trains may either
arrive to or depart from a railway station.

This reengineered rule is subsequently made into a domain requirements,
namely that the software system for interlocking is bound by that rule.

19.3.9 Human Behaviour Reengineering

Characterisation. Human Behaviour Reengineering: By human behaviour
reengineering we understand an evaluation as to whether current human be-
haviour as experienced in the enterprise is acceptable, and as to whether
partially changed human behaviours are more suitable for the enterprise.
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Example 19.8 Human Behaviour Reengineering: A company has experi-
enced certain lax attitudes among members of a certain category of staff.
The progress of certain work procedures therefore is reengineered, implying
that members of another category of staff are henceforth expected to follow
up on the progress of “that” work.

In a subsequent domain requirements stage the above reengineering leads
to a number of requirements for computerised monitoring of the two groups
of staff.

19.3.10 Script Reengineering

On one hand, there is the engineering of the contents of rules and regulations,
and, on another hand, there are the people (management, staff) who script
these rules and regulations, and the way in which these rules and regulations
are communicated to managers and staff concerned.

Characterisation. By script reengineering we understand evaluation as to
whether the way in which rules and regulations are scripted and made known
(i.e., posted) to stakeholders in and of the enterprise is adequate, and as
to whether other ways of scripting and posting are more suitable for the
enterprise.

Example 19.9 Script Reengineering: We refer to Examples 11.22–11.25.
They illustrated the description of a perceived bank script language. One
that was used, for example, to explain to bank clients how demand/deposit
and mortgage accounts, and hence loans, “worked”.

With the given set of “schematised” and “user-friendly” script commands,
such as they were identified in the referenced examples, only some banking
transactions can be described. Some obvious ones cannot, for example, merge
two mortgage accounts, transfer money between accounts in two different
banks, pay monthly and quarterly credit card bills, send and receive funds
from stockbrokers, etc.

A reengineering is therefore called for, one that is really first to be done in
the basic business processes of a bank offering these services to its customers.
We leave the rest as an exercise, cf. Exercise 19.13.

19.3.11 Discussion: Business Process Reengineering

Who Should Do the Business Process Reengineering?

It is not in our power, as software engineers, to make the kind of business
process reengineering decisions implied above. Rather it is, perhaps, more the
prerogative of appropriately educated, trained and skilled (i.e., gifted) other
kinds of engineers or business people to make the kinds of decisions implied
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above. Once the BP reengineering has been made, it then behooves the client
stakeholders to further decide whether the BP reengineering shall imply some
requirements, or not.

Once that last decision has been made in the affirmative, we, as software
engineers, can then apply our abstraction and modelling skills, and, while
collaborating with the former kinds of professionals, make the appropriate
prescriptions for the BPR requirements. These will typically be in the form
of domain requirements, which are covered extensively in Sect. 19.4.

General

Business process reengineering is based on the premise that corporations must
change their way of operating, and, hence, must “reinvent” themselves. Some
corporations (enterprises, businesses, etc.) are “vertically” structured along
functions, products or geographical regions. This often means that business
processes “cut across” vertical units. Others are “horizontally” structured
along coherent business processes. This often means that business processes
“cut across” functions, products or geographical regions. In either case ad-
justments may need to be made as the business (i.e., products, sales, markets,
etc.) changes. We otherwise refer to currently leading books on business pro-
cess reengineering: [139,140,176,186].

19.4 Domain Requirements

Characterisation. By domain requirements we understand requirements
which are expressed solely in terms of domain phenomena and concepts.

So in setting out, initially, acquiring (that is, eliciting or “extracting”) re-
quirements, the requirements engineer naturally starts “in” or “with” the
domain. That is, the requirements engineer asks questions, of the stakehold-
ers, that eventually should lead to the formulation of domain requirements.
The structuring of these questions — it is strongly suggested — should follow
the structuring and contents of the domain facets description of the domain
model, Sects. 11.3–11.8, and the five kinds of domain-to-requirements opera-
tions outlined next and treated in some depth in the following.

19.4.1 Domain-to-Requirements Operations

Characterisation. By a domain-to-requirements operation we shall under-
stand a transformation of domain description documents into requirements
description documents.
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These document transformation operations are carried out by the require-
ments engineer. They follow as the result of the requirements engineer working
closely with possibly alternating groups of stakeholders.

We suggest the following five domain-to-requirements operations covered
in depth in five subsections below (Sects. 19.4.4–19.4.8).

1. domain projection
2. domain determination
3. domain instantiation
4. domain extension
5. domain fitting

19.4.2 Domain Requirements and the Requirements Document

Some remarks need to be made before we go into details of domain require-
ments modelling techniques.

Requirements for Functionalities

Domain requirements are about “operating” part of the domain “inside” the
machine. Domain requirements engineering is about which parts to leave out,
i.e., which parts to “emulate”, and then in what “shape, forms and contents”.

Place in Narrative Document

In Sects. 19.4.4–19.4.8 we shall treat a number of domain requirements facets.
Each of whichever you decide to focus on, in any one requirements develop-
ment, must be prescribed.

The domain requirements all take their “departure point”, that is, are
based upon, the entire domain description. That is, the domain require-
ments represent a kind of “rewrite” of the domain description. Whether this
“rewrite” is done one way, or another way, for that we cannot really state
any hard principles. It all depends, so much, on the subject domain and the
subject requirements. There are basically two ways of doing the “rebuilding”
of the domain description’s non-business process description part (D3) into
the requirements prescription part’s domain requirements (RDR), and that is
as follows:

Either you keep all of D as a base part (R′

DR) in RDR, and then you follow
that part (i.e., R′

DR) with statements, R′′

DR, that express the new business
process’s “differences” with respect to the “old” (D). Call the result RDR. Or
you simply rewrite (in a sense, the whole of) D directly into RDR, copying all
of D, and editing wherever necessary.

3 Here D stands for the (i) intrinsics, the (ii) support technology, the (iii) manage-
ment and organisation, the (iv) rules and regulations, the (v) script, and the (vi)
human behaviour parts
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Place in Formalisation Document

The above statements as how to express the “rewrite” of requirements into
the overall requirements document applies, in particular, to narrative pre-
scriptions. But as we shall see, it also applies to formal prescriptions.

Formal Presentation: Documentation

We may assume that there is a formal domain description, D, from which we
develop the formal prescription of the domain requirements. We may then
decide to either develop entirely new descriptions of the new “domain”, i.e.,
actually prescriptions for the domain requirements, RDR; or develop, from
D, using a suitable schema calculus, such as the one in RSL, the requirements
prescription, RDR, by suitable parameterisation, extension, hiding, etc., of
the domain description D.

19.4.3 A Domain Example

The bulk of this, the domain requirements section, is “carried” by a num-
ber of examples, one each, basically, for each of the domain-to-requirements
transformation schemes. To place these transformations in a proper context
we first present a rather simple-minded domain description.

Example 19.10 A Simple Domain Example: A Timetable System: We
choose a very simple domain: that of a traffic timetable, say flight timetable.
In the domain you could, in “ye olde days”, hold such a timetable in your
hand, you could browse it, you could look up a special flight, you could tear
pages out of it, etc. There was no end as to what you could do to such a
timetable. So we will just postulate a sort, TT, of timetables.

Airline customers, clients, in general, only wish to inquire a timetable (so
we will here omit treatment of more or less “malicious” or destructive acts).
But you could still count the number of digits “7” in the timetable, and other
such ridiculous things. So we postulate a broadest variety of inquiry functions,
qu:QU, that apply to timetables, tt:TT, and yield values, val:VAL.

Specifically designated airline staff may, however, in addition to what a
client can do, update the timetable. But, recalling human behaviours, all we
can ascertain for sure is that update functions, up:UP, apply to timetables and
yield two things: another, replacement timetable, tt:TT, and a result, res:RES,
such as: “your update succeeded”, or “your update did not succeed”, etc. In
essence this is all we can say for sure about the domain of timetable creations
and uses.
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We can view the domain of the timetable, clients and staff as a behaviour
which nondeterministically alternates (de) between the client querying the
timetable client 0(tt), and the staff updating the same staff 0(tt).

Formal Presentation: A Timetable Domain

scheme TI TBL 0 =
class

type
TT, VAL, RES
QU = TT → VAL
UP = TT → TT × RES

value
client 0: TT → VAL, client 0(tt) ≡ let q:QU in q(tt) end
staff 0: TT → TT × RES, staff 0(tt) ≡ let u:UP in u(tt) end

tim tbl 0: TT → Unit
tim tbl 0(tt) ≡

(let v = client 0(tt) in tim tbl 0(tt) end)
de (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

end

The timetable function, tim tbl, is here seen as a never ending process, hence
the type Unit. It nondeterministically4 alternates between “serving” the
clients and the staff. Either of these two nondeterministically4 chooses from
a possibly very large set of queries, respectively updates.

19.4.4 Domain Projection

Usually the span of the requirements is far “narrower” than the scope of the
domain. That is, the conceived or actually described domain covers phenom-
ena and concepts that will not be of concern when constructing requirements
for some particular application. We shall therefore have to explicitly express
a “projection”.

Characterisation. By domain projection we understand an operation that
applies to a domain description and yields a domain requirements prescription.
The latter represents a projection of the former in which only those parts of
the domain are present that shall be of interest in the ongoing requirements
development.

4 The nondeterminism referred to is internal in the sense that no outside behaviour
influences the choice.
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In a sense, of course, the document resulting from a domain projection is still
a domain description, but — for pragmatic reasons — we shall refer to it as
a domain requirements prescription.

A Specific Example

Example 19.11 Projection of Airline Timetable and Air Space:
We start out by formulating a rough-sketch domain description for the

subdomain of airline timetables: There are airports, and one can fly between
certain airports. There are airlines, and an airline offers flight services between
such airports and at certain times. These services are recorded in an airline
timetable. It lists for every flight offered its flight number and flight days,
and a list of two or more airport visits: names of airports, and arrival and
departure times.

There is the air space. It consists of airports, of air corridors (zero, one
or more between pairs of airports), and of controlled areas around airports
where the flight of aircraft is specially monitored (and partly controlled) by
air traffic control centres.

Formal Presentation: Projection of Airline Timetable and Air Space, I

scheme AIR TT SPACE =
extend TI TBL 0 with
class

type
AS, Airport, Air Corridor, Controlled Area, ATC

...
end

Now to a rough-sketch domain projection prescription: From the above we
leave out any description of the air space. That is, we project “away” air
corridors, controlled areas and air traffic control centres. We leave the details
to the reader.

Formal Presentation: Projection of Airline Timetable and Air Space, II

scheme TI TBL 1 = TI TBL 0

We have taken the liberty, above, in AIR TT SPACE, not to model the details
of timetables and the air space.

You may rightfully claim that the above example was construed so as to fit
the idea of projection. That may be so. But the idea has been demonstrated,
has it not?
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A General Example

It is typical to have sorts in a domain description. Once these are projected
onto the requirements they change from being abstractions of phenomena to
being concepts of these. The former are descriptions, informal or formal, of
“things out there”, in the domain. The latter are prescriptions, informal or
formal, of “things in there”, in the software to be built! Whereas observer
(and functions defined on the basis of observer) functions are just postulated,
the projected observer (etc.) functions prescribe functions that must be im-
plemented. To make that distinction clear we may choose to rename these
functions.

Example 19.12 From Domain Sorts to Requirements Sorts, I: A transport
net consists of segments and junctions such that every segment is connected
to exactly two distinct junctions and such that to every junction there is
connected one or more segments. Thus from a transport net one may observe
its segments (e.g., street segments) and junctions (e.g., street intersections).
To achieve a proper, consistent and complete net description we will, most
likely, have introduced the concepts of segment and junction identifications
— and related, via axioms, segments, junction and their identifiers.

Formal Presentation: A Transport Net Domain Description

type
N, S, J, Si, Ji

value
obs Ss: N → S-set
obs Js: N → J-set
obs Si: S → Si
obs Ji: J → Ji
obs Jis: S → Ji-set
obs Sis: J → Si-set

axiom
∀ s:S • card obs Jis(s)=2 ∧
∀ n:N, s,s′:S •

{s,s′} ⊆ obs Ss(n) ∧ s6=s′ ⇒ obs Si(s)6=obs Si(s′) ∧
s ∈ obs Ss(n) ⇒

let {ji,ji′} = obs Jis(s) in
∃ j,j′:J • {j,j′} ⊆ obs Js(n) ∧ ji=obs Ji(j) ∧ ji′=obs Ji(j′) end ∧

∀ j:J • card obs Sis(j)≥1 ∧
∀ n:N, j,j′:J •

{j,j′} ⊆ obs Js(n) ∧ j6=j′ ⇒ obs Ji(j)6=obs Ji(j′) ∧
j ∈ obs Js(n) ⇒

let sis = obs Sis(j) in
∀ si:Si • si ∈ sis ⇒ ∃ s:S • s ∈ obs Ss(n) ∧ si=obs Si(s) end



19.4 Domain Requirements 417

We can annotate the above axioms, line by line: (1) Each segment is con-
nected to exactly two distinct junctions. (3) Two segments of a net, if dis-
tinct, have distinct segment identifications. (4–6) For every segment of a net
one can observe the identifications of two junctions — and these identifica-
tions must be those of junctions of the net. (7) Each junction is connected
to one or more distinct segments. (9) Two junctions of a net, if distinct,
have distinct junction identifications. (10–12) For every junction of a net
one can observe the identifications of one or more segments — and these
identifications must be those of segments of the net.

The annotation of the formalisation is really part also of the informal narrative
description.

Domain projection now considers which entities: sorts and values, axioms
relating these, functions: observer functions, etc., events and behaviours are
to be represented, somehow, in the required software.

Example 19.13 From Domain Sorts to Requirements Sorts, II: We continue
Example 19.12. In this example we may decide to project all that is described
in Example 19.12. This means that nets, their segments and junctions shall
be represented in the required software. This also means that segment and
junction identifiers shall be represented in the required software. Whereas the
nets, segments and junctions (i.e., their descriptions) were (models of) real
phenomena in the domain, the net, segment and junction prescriptions are
models of the required software. Observer functions become functions that
must now be implemented. As such we may choose to rename them. Axioms
are no longer axioms. They become invariants that must hold of any data
structure representation of nets, segments and junctions.

Formal Presentation: A Transport Net Domain Requirements Prescription

type
N, S, J, Si, Ji

value
xtr Ss: N → S-set
xtr Js: N → J-set
xtr Si: S → Si
xtr Ji: J → Ji
xtr Jis: S → Ji-set
xtr Sis: J → Si-set

wf N: N → Bool
wf N(n) ≡

∀ s:S•s ∈ xtr Ss(n)⇒card xtr Jis(s)=2 ∧
∀ s,s′:S •
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{s,s′}⊆xtr Ss(n)∧s6=s′ ⇒ xtr Si(s)6=xtr Si(s′) ∧
s ∈ xtr Ss(n) ⇒

let {ji,ji′}=xtr Jis(s) in
∃ j,j′:J•{j,j′}⊆xtr Js(n)∧ji=xtr Ji(j)∧ji′=xtr Ji(j′) end ∧

∀ j:J•j ∈ xtr Js(n)⇒card xtr Sis(j)≥1 ∧
∀ j,j′:J •

{j,j′}⊆xtr Js(n)∧j6=j′ ⇒ xtr Ji(j)6=xtr Ji(j′) ∧
j ∈ xtr Js(n) ⇒
let sis=xtr Sis(j) in
∀ si:Si•si ∈ sis⇒∃ s:S•s ∈ xtr Ss(n)∧si=xtr Si(s) end

At most a mere renaming, you may say. Yes, but the restatement of the
projected domain onto the domain requirements means that from the domain
is “such and such” we have now required the software shall implement “such
and such”.

The projection of domain observer functions to requirements extraction func-
tions usually are implemented in terms of queries of a relational database.
The various attributes of sorts (as above: segment and junction identifiers
(and whatever other attributes one might associate with segments and junc-
tions (length, average cost of traversal, state-of-repair, etc.))) then become
attributes of relation tuples. We refer to Sect. 28.3.3 for the story on rela-
tional databases.

From Concepts to Phenomena

The projection of the domain description of Example 19.12 onto the domain
requirements prescription of Example 19.13 reflects a subtlety: We may claim
that the segment and junction identifications of Example 19.12 were mere
concepts. There may not have been any physically recognisable phenomena
amounting to these identifications other than the — almost “law of nature”
— fact that the mere manifestations of two distinct segments and two distinct
junctions amount to the unique identifications of all such segments and junc-
tions. There may thus not be any physically discoverable junction identifiers
associated with segments (and segment identifiers associated with junctions).
But it is clear that from junctions one can identify connected segments, and
from segments one can identify the “end” junctions.

Conceptual segment and junction identifiers of Example 19.13 now become
eventually physically discoverable phenomena of the required software. As
such the segment and junction identifications of Example 19.13 are models of
phenomena.
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19.4.5 Domain Determination

Often a domain exhibits nondeterminism, that is: A function result or a be-
haviour can either be such and such or it can be such and such (different
from the first such and such), or it can be such and such (different from the
first two such and suches!). Or a function result or a behaviour can be loose
(i.e., loosely described): not all possible outcomes of a function application,
or not all possible behaviours of a phenomenon may have been described, or
even knowable. Sometimes, for a requirements, the stakeholders may wish to
remove such seeming uncertainty — nondeterminism, or looseness — as to
some function results or some behaviours.

Characterisation. By domain determination we understand an operation
that applies to a (projected) domain description, i.e., a requirements pre-
scription, and yields a domain requirements prescription, where the latter has
made deterministic, or specific, some function results or some behaviours of
the former.

Certainly the result of domain determination represents, not a domain descrip-
tion (any longer), but a requirements prescription. The point of requiring some
software is to exactly make certain behaviours, certain function outcomes, de-
terminate — predictable.

Example 19.14 Determination of Airline Timetable Queries: To exemplify
this rough-sketch domain (to) requirements operation we first present a rough
domain description, then the “more deterministic” domain requirements pre-
scription. (i) A rough-sketch timetable-querying domain description is: There
is given a further undefined notion of timetables. There is also given a concept
of querying a timetable. A timetable query, abstractly speaking, denotes (i.e.,
stands for) a function from timetables to results. Results are not further de-
fined. (i) A rough-sketch timetable querying domain requirements description
is: There are given notions of departure and arrival times, and of airports,
and of airline flight numbers.

Formal Presentation: Determination of Airline Timetable Queries, I

scheme TI TBL 2 =
extend TI TBL 1 with

class
type

T, An, Fn
end

A timetable consists of a number of air flight journey entries. Each entry has a
flight number, and a list of two or more airport visits. an airport visit consists
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of three parts: An airport name, and a pair of (gate) arrival and departure
times.

Formal Presentation: Determination of Airline Timetable Queries, II

scheme TI TBL 3 =
extend TI TBL 2 with

class
type

JR′ = (T × An × T)∗

JR = {| jr:JR′
• len jr ≥ 2 ∧ ... |}

TT = Fn →m JR
end

We illustrate just one, simple form of airline timetable queries. A simple airline
timetable query either just browses all of an airline timetable, or inquires of
the journey of a specific flight. The simple browse query thus need not provide
specific argument data, whereas the flight journey query needs to provide a
flight number. A simple update query inserts a new pairing of a flight number
and a journey to the timetable, whereas a delete query need just provide the
number of the flight to be deleted.

The result of a query is a value: the specific journey inquired, or the entire
timetable browsed. The result of an update is a possible timetable change and
either an “OK” response if the update could be made, or a “Not OK” response
if the update could not be made: Either the flight number of the journey to
be inserted was already present in the timetable, or the flight number of the
journey to be deleted was not present in the timetable.

That is, we assume above that simple airline timetable queries only des-
ignate simple flights, with one aircraft. For more complex air flights, with
stopovers and changes of flights, see Example 19.16.

You may skip the rest of the example, its formalisation, if your reading of
these volumes does not include the various formalisations. First, we formalise
the syntactic and the semantic types:

Formal Presentation: Determination of Airline Timetable Queries, III

scheme TI TBL 3Q =
extend TI TBL 3 with

class
type

Query == mk brow() | mk jour(fn:Fn)
Update == mk inst(fn:Fn,jr:JR) | mk delt(fn:Fn)
VAL = TT
RES == ok | not ok

end
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Then we define the semantics of the query commands:

Formal Presentation: Determination of Airline Timetable Queries, IV

scheme TI TBL 3U =
extend TI TBL 3 with

class
value

Mq: Query → QU
Mq(qu) ≡

case qu of
mk brow() → λtt:TT•tt,
mk jour(fn)

→ λtt:TT • if fn ∈ dom tt
then [ fn7→tt(fn) ] else [ ] end

end end

And, finally, we define the semantics of the update commands:

Formal Presentation: Determination of Airline Timetable Queries, V

scheme TI TBL 3U =
extend TI TBL 3 with

class
Mu: Update → UP
Mu(up) ≡

case qu of
mk inst(fn,jr) → λtt:TT •

if fn ∈ dom tt
then (tt,not ok) else (tt ∪ [ fn7→jr ],ok) end,

mk delt(fn) → λtt:TT •

if fn ∈ dom tt
then (tt \ {fn},ok) else (tt,not ok) end

end end

We can “assemble” the above into the timetable function — calling the new
function the timetable system, or just the system function. Before we had:

Formal Presentation: Determination of Airline Timetable Queries, VI

value
tim tbl 0: TT → Unit
tim tbl 0(tt) ≡
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(let v = client 0(tt) in tim tbl 0(tt) end)
de (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

Now we get:

value
system: TT → Unit
system() ≡

(let q:Query in let v = Mq(q)(tt) in system(tt) end end)
de (let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end)

Or, for use in Example 19.32:

system(tt) ≡ client(tt) de staff(tt)

client: TT → Unit
client(tt) ≡

let q:Query in let v = Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end

We remind the reader that the above example can be fully understood by just
reading the rough-sketch texts, that is, without reading their formalisations.

19.4.6 Domain Instantiation

Domain descriptions are usually “lifted” to cover several instances of domains:
A railway system domain description may cover railways in several — or be
claimed to cover them in “all” — countries! The similar situation holds true
for a domain description of “the” financial service industry, “the” healthcare
sector, etc. Usually software is being requested for specific instances of such
application domains: the railway software of a specific region, the banking soft-
ware for a specific bank, the hospital software for a specific region’s healthcare
system, and so on.

Characterisation. By domain instantiation we understand an operation
that applies to a (projected and possibly determined) domain description,
i.e., a requirements prescription, and yields a domain requirements prescrip-
tion, where the latter has been made more specific, usually by constraining a
domain description.
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Example 19.15 Instantiation: Local Region Railway Nets: The domain de-
scription to be (rough-sketch) requirements instantiated is provided by the
rough sketch of Example 11.8- We also refer to Fig. 19.1. The constraints
are: There are exactly n stations (where n is given). The n stations have
the following names: s1, s2, . . . , sn. These stations can be linearly ordered
(< s1, s2, . . . , sn >) such that if two stations are connected by a line, as are
si, si+1 for i ∈ {1..n − 1}, then they are connected by exactly two lines,
lfi,i+1

, lfi+1,i
, one permitting traffic in one direction (lfi,i+1

from si to si+1),
the other in the other direction (lfi+1,i

from si+1 to si). Each station has
exactly one platform, with tracks on either side. Both tracks can be reached
from any line incident upon the station. Any line emanating from the station
can be reached from both station tracks. We refer to Exercise 19.2 which asks
for a formalisation of the above.

Station s1 Station s2 Station snPlatform
Line Lf1−2
Line Lf2−1

Fig. 19.1. A schematic local region railway net

We leave as an exercise, Exercise 19.2, to formalise Example 19.15.

19.4.7 Domain Extension

We make a distinction between genuine domain extensions and “domain ex-
tensions” due to “forgotten” domain facets. The distinction, as are the two
kinds of extensions, are pragmatic notions.

Genuine Extensions

Certain phenomena in a domain are conceivable “in theory”, but occur rarely
in reality — like someone counting to a trillion! But with computing, comput-
ers can do your counting! So, although these phenomena, in a sense, “belong”
to the domain, they are really only believably feasible when spoken of in
connection with computing, hence requirements.

Characterisation. By domain extension we understand an operation that
applies to a (projected and possibly determined and instantiated) domain
description, i.e., a (domain) requirements prescription, and yields a (domain)
requirements prescription. The latter prescribes that a software system is to
support, partially or fully, an operation that is not only feasible but also
computable in reasonable time.
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Example 19.16 Extension: n-Transfer Travel Inquiry: We assume a pro-
jected and instantiated timetable (see Example 19.14).

A query of a timetable may, syntactically, specify an airport of origin, ao,
an airport of destination, ad, and a maximum number, n, of intermediate
stops. The query semantically designates the set of all those trips of one up to
n direct air journeys between ao and ad, i.e., trips where the passenger may
change flights (up to n − 1 times) at intermediate airports.

Formal Presentation: Extension: n-Transfer Travel Inquiry

scheme TI TBL 3C =
extend TI TBL 3 with

class
type

Query′ == Query | mk conn(fa:An,ta:An,n:Nat)
VAL′ = VAL | CNS
CNS = (JR∗)-set

value
Mq(mk conn(fa,ta,n)) ≡ ...

end

Here we leave it to the reader to define the “connections” function! At present
you need not be concerned with the fact that TI TBL 3C does not include
the timetable initialisation command. To secure that we need to “juggle” some
of the previously defined TI TBL x schemes. We omit showing this.

The point about this example is that for n being just 4 or above, a hand
calculation is infeasible. But a Prolog program of less than a dozen lines, when
the basis for executions, will start producing results after very few seconds on
most PCs, for example for n=5.

“Forgotten” Domain Descriptions

Sometimes one forgets to describe some domain facet. The discovery that
one (might) have forgotten such a facet is usually made during domain re-
quirements prescription. A stakeholder requirements is such that the domain
requirements engineer lacks a “socket”, some text and possibly formulas in the
domain description which can serve as a basis for projection, instantiation,
determination and extension. An example may serve to focus the idea.

Example 19.17 A “Forgotten” Transport Net Domain Description: We con-
tinue Examples 19.12–19.13.

We have not equipped segments with attributes (such as lengths, geode-
tic (cadastral) coordinates, segment state of fitness (i.e., “need of repair”),
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or other). And we have therefore not described any functions that observe
attributes, attribute values for given attributes, and, for example, those seg-
ments of a net which possess attributes (A) of specified values (VAL).

We “discover” this general omission during the requirements gathering
stage when stakeholders, for one set of requirements, express the requirement
to offer travellers shortest routes in nets, or, for another set of requirements,
express the requirement to maintain a high level of fitness of segments.

So we extend the domain description of Example 19.12. With every seg-
ment we associate a finite, usually small number of attributes (that is, at-
tribute names, a : A). And with every attribute we associate a set of attribute
values (v1, v2, . . . : V ). Thus we are able to observe which attributes are asso-
ciated with a given segment, and, for that segment and an attribute of that
segment, we are able to observe the associated attribute value.

Now we can express the further extensions: Assume ordering relations, �ai
,

one per attribute ai : A, on attribute values. Now we shall require a function
which, from a net, extracts all those segments which for a given attribute have
attribute values within a given range.

Formal Presentation: “Extended” Domain Description

type
/∗ N, S, J, Si, and Ji as in Example 19.12 ∗/
A, VAL

value
obs As: S → A-set

obs A VAL: S × A
∼

→ VAL
pre obs A VAL(s,a): a ∈ obs As(s)

�a: VAL × VAL → Bool

is in range: S × (A × (VAL × VAL)) → Bool
is in range(s,(a,(v,v′))) ≡

v�aobs A VAL(s,a)�av′

extract Ss: N × (A × (VAL × VAL)) → S-set
extract Ss(n,(a,(v,v′))) ≡

{s|s:S•s ∈ obs Ss(n)∧a ∈ obs As(s)∧v�aobs A VAL(s,a)�a v′}

The reader can extend the above to also cover junctions.

Once identified, “repairing” the description of a “forgotten” domain facet can
either be thought of as a domain extension — and that is why we have placed
the issue of “forgetfulness” in this section on domain extension — or it may
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prompt the requirements engineer to have the “original” domain description
updated.

To keep in line with our treatment of the omission, we decide to handle
the “repair” in the extension part of our domain requirements engineering.

Thus we have obviously decided to project the repaired domain facet onto
the domain requirements prescription. This first part of the domain extension
is then to be followed by possibly further domain to requirements operations.

19.4.8 Domain Requirements Fitting

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in
some areas with, another domain: transportation with logistics, healthcare
with insurance, banking with securities trading and/or insurance, and so on.

Characterisation. By domain requirements fitting we understand an oper-
ation that applies to two or more, say m, projected and possibly determined,
instantiated and extended domain descriptions, i.e., to two or more, say m,
original domain requirements prescriptions, and yields m + n (resulting, re-
vised original plus new, shared) domain requirements prescriptions. The m
revised original domain requirements prescriptions resulting from the fitting
prescribe most of the original (m) domain requirements. The n (new, shared)
domain requirements prescriptions resulting from the fitting prescribe require-
ments that are shared between two or more of the m revised original domain
requirements.

Example 19.18 Shared Domain Requirements: Let the domain be that of
multi-modal transportation nets: A multi-modal transportation net has seg-
ments (roads, rail lines, air lanes and shipping lanes) and junctions (street
intersections, train stations, airports and harbours). Segments and junctions
are uniquely identified. Segments possess attributes: to which two junctions
they are connected, length, standard traversal time, standard traversal cost,
wear-and-tear (relevant for rail lines and roads), modality (whither road, rail,
air lane or shipping lane), and possibly other attributes. Junctions also pos-
sess attributes: to which one or more segments they are connected, standard
traversal time, standard traversal cost (which is a function of the entry and
exit segments: if of the same segment modality then maybe the cost is zero
whereas if of different segment modalities then it reflects the cost of transfer
(unloading and loading), and the set of one or more modalities of the con-
nected segments. One can speak of paths, from junction via a segment to a
connected junction, and routes — as sequences of connected paths. Hence one
can speak of the longest route(s) and the shortest standard traversal time be-
tween two junctions. One can also speak of best wear-and-tear quality route(s)
also between two junctions.

We outline two rough text original domain requirements.
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A transportation net maintenance support system: The software package
for this support system shall help rail line maintenance planners to identify
segments (i.e., lines) in need of immediate repair (that is, corrective mainte-
nance) or scheduled preventive maintenance (that is inspection), and, when
such has been effected to record the (new) wear-and-tear status of main-
tained segments. These requirements imply further determination of segment
attributes. Etcetera.

A transportation net logistics support system: The software package for
this support system shall help combined road-rail travel planners to identify
combinations of one or more of shortest length route(s), shortest traversal time
route(s), least costly route traversal(s), and/or route(s) with fewest transfers
between transport modalities. Etcetera.

The shared domain requirements are the following: Nets consisting of seg-
ments and junctions, thus also identification of segments and junctions; provi-
sion for segment attributes; and ability to select segments of a given modality.

We leave it to the reader to formulate what is specific to the two revised
original domain requirements.

Exercise 19.3 asks that you provide formal models of the domain, the
two original requirements, and the 2+1 revised original + shared domain
requirements outlined above.

Another example:

Example 19.19 Fitting of Passenger Transfers Between Busses and Trains:
We assume that there are two domain requirements prescriptions, one for
metropolitan bus systems of bus lines, bus stops, etc., and one for railway
systems of rail lines and stations. We further assume that one of the prescrip-
tions has been in existence for some time — maybe even that an existing
product is based on those requirements — and that the other prescription is
currently being developed.

Rough sketches are as follows:
The bus system consists of a set of bus lines, each being numbered and

otherwise designated in a bus timetable, where this bus timetable, modulo
“every” hour, for every bus line, specifies at which minutes (“past the hour”)
the bus stops at each stop of the line. After this there follow a number of
other entity, function and possibly behaviour descriptions.

Formal Presentation: Fitting of Passenger Transfers, I

scheme BUS =
class

type
BSn, BLn, Min
BTT′ = BLn →m (BSn × Min)∗

BTT = {| btt:BTT′
• wf BTT(btt) |}
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value
wf BTT: BTT′ → Bool
...

end

The railway system consists of a set of train lines, each being numbered and
otherwise designated in a train timetable, where this timetable, modulo “ev-
ery” hour, for every train line specifies at which minutes (“past the hour”) the
train stops at stations of the line. After this there follow a number of other
entity, function and possibly behaviour descriptions.

Formal Presentation: Fitting of Passenger Transfers, II

scheme RAIL =
class

type
Sn, RLn, Min
RTT′ = RLn →m (Sn × Min)∗

RTT = {| rtt:RTT′
• wf RTT(rtt) |}

value
wf RTT: RTT′ → Bool
...

end

Now the “fitting”: Certain stations (bus stops) are to be designated as bus
(train) transfer stations (bus stops). Passenger travel routes may include
transfers at such stations (bus stops) between buses and trains. After this
there follows a number of other entity, function and possibly behaviour pre-
scriptions.

Formal Presentation: Fitting of Passenger Transfers, III

scheme BUS RAIL =
extend BUS with extend RAIL with
class

type
Transfer′ = Bsn →m Sn
Transfer = {| tr:Transfer′ • card dom tr = card rng tr |}

value
...

end
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End of Example 19.19

19.4.9 Discussion: Domain Requirements

We have outlined five reasonably distinguishable operations that the require-
ments engineer may need perform in order to construct a domain require-
ments prescription. There may be other such operations. The above five have
been found useful in several development projects. Knowing about them, their
underlying principles, and their techniques and tools should help the require-
ments engineer to more efficiently acquire domain requirements prescriptions,
and to document them, i.e., to structure their documentation logically.

19.5 Interface Requirements

Characterisation. By interface requirements we understand those require-
ments that are expressed solely in terms of such phenomena and concepts
that are shared between the domain and the machine. The machine is the
hardware to be prescribed and the software to be developed.

The term ‘shared’ is crucial. For “something” to be shared between the domain
and the machine, that “something” must be present in the domain. It must
be en entity, a function, an event or a behaviour which has been projected, in-
stantiated, possibly made more deterministic, possibly extended and possibly
fitted. And that “something” must be present in the machine: Its attributes,
including value, if an entity, must “somehow” be more or less regularly mon-
itored by (read in from the domain, or set by, output from the) machine.
Its functionality, if a function, must somehow replace that “present” in, or
“co-opted”, taken over from the domain, and its behaviour, if a behaviour,
must somehow “simulate” the behaviour of the domain, or its occurrence, if
an event, must somehow be replicated: If in the domain, then recorded by the
machine, and if in the machine, then signaled to the domain.

The “something” is said to be a shared phenomenon cum concept. We
use the “somehow” hedge to indicate to the reader that the interface require-
ments shall stipulate, shall prescribe that ‘somehow’! Shared phenomena cum
concepts is what this section (Sect. 19.5) is all about! The shared “things”
are usually phenomena in the domain, but always concepts in the machine.
Domain concepts can also be shared.

Example 19.20 Shared Phenomena: We may think of a train traffic monitor-
ing and control system being interface requirements developed. The following
phenomena are identified as among those being shared: rail units, signals, road
level crossing gates, train sensors (optical sensor sensing passing trains) and
trains.
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Example 19.21 Shared Concepts: We continue Example 19.20. The follow-
ing train traffic concepts are among those being identified as being shared:
state of units, including whether a unit is open, closed, reserved, occupied,
etc., routes (a route is, in general, not humanly visible (being often geograph-
ically widespread)), and hence open routes.

19.5.1 Shared Phenomena and Concept Identification

A crucial step of requirements development is therefore that of identifying,
from among the many phenomena and concepts of the projected (etc.) domain
which of these are shared. Examples 19.20 and 19.21 gave informal, rough-
sketch examples. Whether and how to categorise these shared phenomena and
concepts is what the rest of this section on interface requirements is about.

Suffice it to state that we here expect that the requirements engineers
— in close collaboration with requirements stakeholders — list these shared
“things”, and, along the road, while individually pursuing any one of the
interface requirements facets, annotate this list with classifiers (whither one
of the six interface requirements facets treated next, “where used”, etc.).

19.5.2 Interface Requirements Facets

We shall consider six kinds of interface requirements:

• shared data initialisation requirements,
• shared data refreshment requirements,
• computational data and control requirements,
• man-machine dialogue requirements,
• man-machine physiological interface requirements, and
• machine-machine dialogue requirements.

We foresee further identification of (i.e., other) interface requirements facets
than the six so far listed. And we foresee an analysis, in the future, of some
of the six listed facets into a more finely granulated set of (more or less)
orthogonal interface requirements facets. Suffice it now, for the purposes of this
part of this volume, namely that of presenting basic principles and techniques
of requirements engineering, to bring in just these six facets.

The first three interface requirements facets motivate the need for the
last three interface requirements facets. Shared data generally reside in the
domain and in the machine. Computational data and control typically (but do
not exclusively) reside in the human users who may interface with the machine
during its computations, i.e., may interact with the machine. These first three
interface requirements facets prescribe what information shall (need to) be
shared, as well as some abstract principles according to which the external
domain information shall be communicated into internal machine data and
vice versa. The dialogue requirements facets prescribe how that information
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concretely shall be communicated between humans and/or other machines
(and equipment in general) and the machine being requirements prescribed.
We now explain these six facets of interface requirements. But first we bring
in a brief aside.

19.5.3 Interface Requirements and the Requirements Document

Some remarks need to be made before we go into details of domain require-
ments modelling techniques.

Requirements for “Input/Output”

Interface requirements are about: “putting” part of the domain “inside” the
machine. Interface requirements engineering is about how to get parts of the
domain into a machine (to become part of its state), from the domain, or
from other machines; and how to reflect [new, computed] states back into the
domain, or onto other machines. Thus interface requirements are about shared
(usually entity) phenomena and concepts.

Place in Narrative Document

In Sects. 19.5.4–19.5.9 we shall treat a number of interface requirements facets.
Each of whichever you decide to focus on, in any one requirements develop-
ment, must be prescribed. The interface requirements all take their “departure
point”, that is are based upon, the entire domain description, as well as po-
tentially available machine input/output technology.

That is, the interface requirements represent a kind of “merging” of some
form of the domain description, with descriptions of relevant, i.e., chosen, in-
put/output technology. The two “merged” descriptions become a prescription,
the interface requirements prescription. Since that “merge” was not present in
the domain, the interface requirements prescription becomes an entirely new
document part.

Place in Formalisation Document

The above statements on how to express the interface requirements also apply
to formal interface requirements prescriptions.

Formal Presentation: Documentation

We may assume that there is a formal domain description, D (from which we
develop parts of the formal prescription of the interface requirements), and
narrative descriptions of the input/output technologies. We further assume
that there are formal descriptions, DIO , of these input/output technolo-
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gies. We then develop an entirely new document, the interface requirements,
RI/F . It somehow “merges” parts of D with parts of DIO into the resulting
RI/F .

This section on interface requirements is about the “merge” principles and
techniques.

19.5.4 Shared Data Initialisation

Information that is shared between the domain and the machine is often
nontrivial in its structure and extent. Special care must be taken to introduce
such information to the machine.

Characterisation. By shared data initialisation we understand an operation
that creates a shared data structure in the machine.

Thus a shared data initialisation requirements is an operation on requirements
documents. It applies to a (projected and possibly determined, instantiated,
extended and fitted) domain description, i.e., a domain requirements pre-
scription, and yields an interface requirements prescription, where the latter
prescribes that certain information of the domain is to be represented as a
shared data structure in the machine, and generally how such data is initially
to be set up by the machine.

Example 19.22 Shared Data Initialisation of Railway Net: We rough-sketch
illustrate a case of shared data initialisation based on the rough sketch of
Example 11.8 (Page 265). The software system shall start in an initial state
which — rough-sketching — represents an empty rail net, and “ends” in a state
which includes a representation of an “entire” rail net, i.e., a representation
of all static and dynamic properties of each and every rail unit. In addition
— as will be seen from other parts of these domain requirements5 — it shall
be possible to simply relate rail units to their physical surroundings: whether
the rail runs along a platform, in a tunnel, up/down hill, is curved, etc.; the
pertinent electric train power line segment; etc. A special software subsystem
shall handle the initial establishment of this start state as follows: . . . , etc.

We refer to Exercise 19.11 which asks that you complete the “. . . , etc.”
and provide a formalisation of the above.

The ellipses, . . . , indicate that a longer narrative follows. The whole thing can
furthermore be formalised on the basis of formalisation of the projected, deter-
minate, instantiated, and possibly extended and fitted domain requirements.
We leave that as an exercise (cf. Exercise 19.2).

5 This is not illustrated in these examples.
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19.5.5 Shared Data Refreshment

Shared data, once initialised, usually need be kept updated. The domain —
usually — changes, irrespective of any computing system inserted into it.

Characterisation. By shared data refreshment we understand a machine
operation which, at prescribed intervals, or in response to prescribed events,
updates an (originally initialised) shared data structure.

Thus a shared data refreshment requirements is an operation on requirements
documents. It applies to an interface requirements prescription, where the
latter prescribes that certain information of the domain is to be represented
as a shared data structure in the machine. The shared data refreshment re-
quirements then prescribe how often, and by which means, that shared data
structure is to be refreshed (i.e., updated).

Example 19.23 Shared Data Refreshment of Railway Net: We continue Ex-
ample 19.22 by providing a rough sketch of a shared data refreshment require-
ments. Regular inspections of the wear and tear of the rail net units, signals,
optical gates (and other sensors), road level crossings, etc., shall lead to sim-
ilarly updating of that equipment’s shared data structure, and such regular
inspections shall be prompted by the machine and as prescribed by the re-
quired software. Inspections, with resulting updates, may take place before
the usual expiry of inspection interval. And so on.

We refer to Exercise 19.12 which asks that you complete the “And so on”
and to provide a formalisation of the above.

The ellipses, . . . , indicate that a longer narrative follows. The whole thing
can furthermore be formalised on the basis of formalisation of the interface
requirements resulting from shared data initialisation. We leave that as an
exercise (cf. Exercise 19.11).

19.5.6 Computational Data and Control Interface Requirements

For many applications it is the case that the flow of computations that may be
desired by the users, i.e., the stakeholders, shall be influenced by interaction
between the machine and these users. That is: It is often to be prescribed how
such interaction shall take place, whether by users interrupting the machine,
or the machine polling the users, and what it shall entail, i.e., which com-
putational consequences the user interference shall have. It is this, perhaps
“grey-zone” facet that we call the computational data and control interface.

Characterisation. By computational data and control interface require-
ments we understand requirements which prescribe that certain forms of input
be provided over the user-machine interface, in order to help control the flow
of computation: when to start or stop certain subcomputations, and/or with
which argument data such subcomputations should be carried out, etc.
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The argument data may characterise certain “boundary” conditions, or initial
program points, or other, for such subcomputations.

Example 19.24 Computational Data and Control Interface: We continue
Example 19.22. In that example reference (. . . ) was made to a software sub-
system. It is this software subsystem which, such as we (now) requirements
specify it, needs frequent computational data and control directives from the
person or persons who monitor the input of the mass data. The railway net
is represented, in the machine (database), by geographical area (i.e., area by
area). Input of rail unit data is, in batches, by such areas. Hence a compu-
tational data input specifies that “until further notice” the next many future
unit inputs are intended to “belong” to that area. Another computational
data input (i.e., the “further notice”) specifies “the end” of such a series of
area-specific unit data. Occasionally, during unit data input, that and past
input may need be checked (“vetted”). Hence a computational data input may
specify that such vetting is to be performed,6 and other, immediately subse-
quent computational data input may be prompted as to the specific nature of
the desired checks. Finally, prompts may inquire as to whether further checks
need to be done, or the check series terminated. (We do not here specify the
vetting procedures.)

The computational data and control interface is typically specified, semifor-
mally, by means of message or live sequence charts (MSCs [182–184], respec-
tively LSCs [73, 149, 203]), or by formal RSL/CSP specifications. RSL/CSP was
covered in Vol. 1, Chap. 21. MSC and LSC were covered in Vol. 2, Chap. 13.

19.5.7 Man-Machine Dialogue

Characterisation. By man-machine dialogue requirements we understand
the prescription of the syntax (including sequential structure) and semantics
of the communications (i.e., messages) transferred, in either direction, over
the interface between man and machine, whether communicated textually
through a keyboard (by the human) or on the screen (by machine), by a
mouse or other tactile means (by human), or by voice (by human) or sound
(by machine).

It must be stressed that the man-machine dialogue referred to above sub-
sumes the physiological interfaces mentioned next, but that it emphasises the
sequencing of possibly alternative events and messages. Thus man-machine di-
alogue is “overall” wrt. the individual man-machine physiological events and
messages.

6 We envisage that certain kinds of checks cannot be performed concurrently with
the unit input.
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Example 19.25 Man-Machine Dialogue Requirements: We continue Exam-
ple 19.23.

When, for any rail unit, its wear and tear information becomes older than
six months, a message is to be displayed on the console (screen) of the rail-
way net maintenance group responsible for that rail unit (this is an interface
requirement). This group must respond within 72 hours with the requested
update information (this is a business process reengineering requirement).

Man-machine dialogues are typically specified, semiformally, by means of mes-
sage or live sequence charts (MSCs [182–184], respectively LSCs [73, 149,203]),
or by formal RSL/CSP specifications.

19.5.8 Man-Machine Physiological Interface

Humans can, “thanks” to a variety of technological “gadgets”, communicate
with computers in various ways. (i) Besides the conventional keyboard, they
can also communicate by other tactile means: (ii) the “mouse”; (iii) “pointing
with fingers at the screen”; “pressing, with, for example, fingers”, fields of the
screen; etc.; (v) possibly by voice, etc. These technological “gadgets” imply the
man-machine physiological interface. Computers can likewise communicate
with humans by means of graphics and sound.

Characterisation. By man-machine physiological interface we understand
the possibly combined use of three forms of man-machine interfaces: (A)
graphical (visual) user interface, (B) audio (voice, sound) interface and (C)
tactile (keyboard, touch, “point”, button, etc.) interface.

Example 19.26 Man-Machine Physiological Interface Requirements of Rail-
way Net Status Input: We continue Example 19.25. If no update of a rail unit’s
wear and tear status has occurred within 72 hours of its visual display request,
then a series of alarm bells shall sound (...) with one-hour intervals in desig-
nated offices of the railway groups responsible for recording this status, and,
synchronised with this, bright red alarm lamps shall blink in line and station
management offices.

By a graphical user interface (GUI) we understand a visual display unit (VDU,
e.g., a colour screen). Typically the VDU screen can be programmed to dis-
play various “windows”, icons, scroll-down “curtains”, etc., with these being
possibly labelled, and/or providing fields for text (keyboard) input.

Example 19.27 Man-Machine Physiological Interface Requirementsof GUIs
and Databases: Assume that a database records the data which reflects the
topology of some railway net, or that records the contents of a timetable.
Also assume that some graphical user interface (GUI) windows represent the
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interface between man and machine such that items (fields) of the GUI are
indeed “windows” into the underlying database. We prescribe and model, as
an interface requirements, such GUIs and databases, the latter in terms of a
relational, say a SQL, database:

Formal Presentation: GUIs and Databases, I

type
Nm, Pos, Rn, An, Txt
GUI = Nm →m (Item × Pos)
Item = Txt × Imag
Imag = Icon | Curt | Tabl | Wind
Icon == mk Icon(val:Val)
Curt == mk Curt(vall:Val∗)
Tabl == mk Tabl(rn:Rn,tbl:TPL-set)
Wind == mk Wind(gui:GUI)

Annotations:

• A gui:GUI item, irrespective of the position, pos:Pos, of that item on the
screen,

• maps distinct item names, Nm, into items, item:Item.
• An item has some “labeling” text, txt:Txt, and an image, imag:Imag.
• An image, imag:Imag, is either an icon, icon:Icon, a curtain, curt:Curt, a

table, tabl:Tabl, or a window, wind:Wind.
• An icon has a value, mk Icon(val:Val).
• A curtain consists of a list of values, mk Curt(vall:Val∗).
• A table, mk Tabl(rn:Rn,tbl:TPL-set), names the relation, rn:Rn, from

which the set tuples, tbl:TPL-set, of the table are queried.
• A window, mk Wind(gui:GUI), is, hence recursively, a graphical user in-

terface.

Formal Presentation: GUIs and Databases, II

Val = VAL | REF | GUI
VAL = mk Intg(i:Intg) | mk Bool(b:Bool)

| mk Text(txt:Text) | mk Char(c:Char)

Annotations:

• A value (val:Val) is
? either a proper value (in VAL),
? or a reference (to a database entry),
? or a graphical user interface (gui:GUI).
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• A proper value (val:VAL) is
? either an integer (mk Intg(i:Intg)),
? or a Boolean truth (mk Bool(b:Bool)) value,
? or a text string mk Text(txt:Text) value,
? or a character mk Char(c:Char) value.

Formal Presentation: GUIs and Databases, III

RDB = Rn →m TPL-set
TPL = An →m VAL
REF == mk Ref(rn:Rn,an:An,sel:SEL)
SEL = An →m OptVal
OptVal == null | mk Val(val:VAL)

Annotations:

• A relational database (rdb:RDB) maps unique relation names (rn:Rn) into
relations, and these are sets of tuples (tpls:TPL-set).

• A tuple (tpl:TPL) maps unique attribute names into proper values
(val:VAL).

• A reference (is a proper value and) consists of a relation name, (rn:Rn), an
attribute name (an:An) and a selection criterion (sel:SEL).

• A selection criterion (An →m OptVal) is a possibly empty map from at-
tribute names into possibly optional, proper values.

• An optional value is either nil, or is a proper value (mk Val(val:VAL)).

Further on database references: Wherever, in a GUI, there is a reference, it
is the value designated by that reference which is displayed. The reference
relation name designates a relation in the database. The reference attribute
name, an, designates an attribute of any tuple in the designated relation. If
there is a tuple in the relation whose values equal those expressed in the
selector, attribute by attribute, then that tuple’s value at an is the value
displayed; otherwise the optional (i.e., the so-called surrogate) value null is
displayed. That is, the reference is a hidden quantity.

Formal Presentation: GUIs and Databases, IV

value
de ref: REF × RDB → OptVAL
de ref(mk Ref(rn,an,sel))(rdb) ≡

if ∃ tpl:TPL • tpl ∈ rdb(rn)∧tpl/dom sel = sel
then

let tpl:TPL • tpl ∈ rdb(rn)∧tpl/dom sel = sel in
tpl(an) end

else null
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end
pre rn ∈ dom rdb ∧

∃ tpl:TPL•tpl ∈ rdb(rn) ∧ dom sel ∪{an}⊆dom tpl

Annotations:
Further on database references:

• To de reference a database reference
• consisting of a relation name, rn,
• an attribute name, an, and
• a selection criterion, sel,
• is to inquire whether there exists a tuple, tpl,
• in the name relation, rdb(rn),
• for which the selection criterion applies: tpl/dom sel = sel.
• If such a tuple is found, then it is the result of the dereferencing;
• if not, then the null value is yielded.

Icons effectively designate a system operator or a user-definable constant or
variable value, or a value that “mirrors” that found in a relation column
satisfying an optional value (OptVal), and similarly for curtains and tables.
Tables more directly reflect relation tuples (TPL). GUIs (windows) are defined
recursively.

If, for example, the names space values of Nm, Rn, and An, and the chosen
constant texts, Txt, suitably mirror names and phenomena of the domain, then
we may be on our way to satisfying a “classical” user interface requirement,
namely that “the system should be user friendly”.

Thus a definition, much like the one of GUI above, is, in a sense, pulled
out of the “thin” air and presented, without much further ado, as part of an
interface requirements. Where was its domain “counterpart”? Or one might
just be content with the reuse of the above definition.

For a specific interface requirements there now remains the task of relating
all shared phenomena and data to one another via the GUI. In a sense this
amounts to mapping concrete types onto primarily relations, and entities of
these (phenomena and data) onto the icons, curtains, and tables.

Example 19.28 Man-Machine Physiological Interface Requirements: A Spe-
cific GUI for Timetables: We exemplify a very simple GUI. We omit naming
the only three items: (i) the scroll-down curtain which displays (i.e., lists)
the client and staff commands — as well as the no command (nil); (ii) a
prompt field which initially is blank, i.e., nil, but which — depending on the
clicked command name of the scroll-down curtain — lists the command field
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Icon Prompt

CHI

. . .

init
add
delete

Result

Fig. 19.2. An example CHI: staff clicking icon

names for desired values, and for which the user (client or staff) is to provide
appropriate text values; (iii) finally, a result field.

Formal Presentation: Specific GUI of Timetable, I

type
GUI = Curt × Prompt × Result
Curt == browse | display | connection | init | add | delete | nil
Prompt = Query | Update | Conn | nil
Result = RES

Annotations:

• The graphical user interface, gui:GUI, consists of three items:
? a scroll-down curtain, curt:Curt,
? a prompt field, prompt:Prompt,
? and a result field, result:Result.

• A scroll-down curtain in the concrete lists exactly the available query and
update commands possible on a timetable.

• These are designated by the keywords: browse, display, connection, init, add
and delete.

• At most one of these keywords can be selected, i.e., is therefore highlighted.
Thus the above model defines a curtain to be just one of these, or, when
none is selected, the nil option.

• The prompt field, prompt:Prompt, is to contain an appropriate query/up-
date command, as “selected” by the curtain highlight, or nil.

• The result field, res:Result, will contain a result value.

In Example 19.14 we defined the semantics of query and update commands.
We now use these definitions to define the requirements, namely that these
commands obtain their arguments, and, when subject to execution, deliver
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(deposit) their result into the user interface, that is, as part of the GUI. We
exemplify, perhaps rather too extensively, the resulting query and update
function semantics. First the query commands:

Formal Presentation: Specific GUI of Timetable, II

value
client: GUI → TT → GUI
client(,,)(tt) ≡

let icon = browse de display de connection in
case icon of:

browse → (browse,mk Brws(),Mq(mk Brws())(tt)),
display

→ let fn:Fn • fn ∈ dom tt ∨ ... in
(display,mk Disp(fn),Mq(mk Disp(fn))(tt)) end,

connection
→ let `:Nat,da,ta:An•{da,ta}⊆Ans(tt) ∧ ... in

(connection,
mk Conn(`,da,ta),

Mq(mk Conn(`,da,ta))(tt)) end
end end

Annotations:

A client, by his own decision, either issues a browse, or a display, or a
connection query.

• If browse then

? it means that the curtain alternative browse has been “clicked”, and is
hence highlighted,

? that the prompt field shows an obvious mk Brws() command, requiring
no arguments,

? and the result field shows the result, Mq(mk Brws())(tt), of interpret-
ing that command on the timetable.

• If display then

? it means that the curtain alternative display has been “clicked”, and is
hence highlighted,

? that a flight number is provided by the client, here shown as nondeter-
ministically selected,

? that the prompt field shows the corresponding display command,
mk disp(fn),

? and the result field shows the result, Mq(mk Disp(fn))(tt), of inter-
preting that command on the timetable.

• If connection then
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? it means that the curtain alternative display has been “clicked”, and is
hence highlighted,

? that the maximum number of flight changes, `, and departure da and
destination ta airports are provided by the client, here shown as non-
deterministically selected,

? that the prompt field shows the corresponding connection command
mk Conn(`,da,ta),

? and the result field shows the result of interpreting that command on
the timetable, Mq(mk Conn(`,da,ta))(tt).

Formal Presentation: Specific GUI of Timetable, III

Then the semantics of update commands wrt. the graphical user interface:

value
staff: GUI → TT → GUI × TT
staff(,,)(tt) ≡

let icon = init de add de delete de ... in
case icon of:

init → let (r,tt′) = Mu(mk init())(tt) in ((init,tt′,r),tt′) end,
add → let fn:Fn,j:Journey • fn 6∈ dom tt ∨ ... in

let (r,tt′) = Mu(mk add(fn,j))(tt) in
((add,mk add(fn,j),r),tt′) end end,

delete → let fn:Fn • fn ∈ dom tt ∨ ... in
let (r,tt′) = Mu(mk del(fn))(tt) in
((delete,mk del(fn),r),tt′) end end

end end

Annotations: We leave annotations as an exercise to the reader.
The semantics functions illustrate the internal nondeterministic choices

that the client, respectively the staff, makes — as seen from the point of view of
the semantics — of the parameters that go into the specific query, respectively
update commands. For the display query it is the choice of the flight number.
For the connection query it is the choice of the maximum number of changes
of flights, as well as the choice of the from (departure, or airport of origin)
and to (destination) airports. For the add journey update it is the choice of
the flight number and the journey (of that flight). For the delete flight update
it is the choice of the flight number.

We “reassemble” the above formula into the previously defined system
function, cf. Example 19.14. Before we had:

Formal Presentation: Specific GUI of Timetable, IV

value
system: TT → Unit
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(let q:Query in let v = Mq(q)(tt) in system(tt) end end)
de (let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end)

Annotations:

• The system nondeterministically (internally, de) chooses
• whether to engage in a q:Query behaviour,
• or in an u:Update behaviour.
• In either case a command is arbitrarily selected and interpreted on the

global timetable tt.
• The system then continues with a possibly updated timetable tt′.

Now we get:

Formal Presentation: Specific GUI of Timetable, V

value
system: GUI → TT → Unit

(let gui′ = client(gui)(tt) in system(gui′)(tt) end)
de (let (gui′,tt′) = staff(gui)(tt) in system(gui′)(tt′) end)

Annotations:

• The system, still nondeterministically (internally, de) chooses, but now be-
tween

• either the client behaviour
• or the staff behaviour.
• In both cases, the system “temporarily” hands either of these behaviours,

the timetable tt.

19.5.9 Machine-Machine Dialogue

The desired machine is usually serving in a context in which it has been fitted
to other machines or to supporting technologies. These may provide sensory
data or accept actuation (i.e., control) data. Some fitted machines may provide
for, or accept mass data transfers. Usually supporting technologies provide for,
or accept rather “small”, i.e., single (simple) data transfers.

Characterisation. By machine-machine dialogue requirements we under-
stand syntax (incl. sequential structure) and semantics (i.e., meaning) of the
communications (i.e., messages) transferred in either direction over the auto-
mated interface between machines (including supporting technologies).
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Example 19.29 Machine-Machine Dialogue Requirements: A Simple Cabin
Tower Rail Switch Monitoring and Control:

This example is from a rather outdated railway station. Today’s railway
stations provide for what is known as interlocking: The simultaneous setting
and resetting of several, i.e., groups of switches and signals.

Rail switches are assumed, upon request, to provide sensory signals, which
report on their state: “straight” or “turn-off”. And these rail switches will
respond to control signals which, within an assumed response time of their
being issued, set the switch to a desired state (“straight” or “turn-off”). The
cabin tower maintains a display which shows the states of all switches in its
associated station. Associated with this cabin tower display are two buttons:
Pressing either of these shall correspond to sending “straight” or “turn-off”
control signals. Only one of these buttons can be pressed in any one-minute
interval. At half-minute intervals each switch reports its status, and that status
shall be reflected in the cabin tower display. When a “straight” or “turn-off”
control button is depressed, then a signal shall be sent to the designated
switch, and that switch shall react accordingly within a 15-second time lapse.
The cabin tower switch display shall sound and flash appropriate alarms if
the switch status, within half a minute, is not the desired (control signalled)
one.

The above example admittedly provides only a very rough sketch indication.
It also “links” up to (that is, strongly depends on related) machine (including
support technology) requirements, as covered next.

Example 19.30 Machine-Machine Dialogue Requirements: Bulk Data Com-
munication: Suppose that an application calls for the massive transfer of data
over noisy distances. That is, the probability that transferred data may be
corrupted, i.e., change value during communication, is considerable. What is
known as a suitable data communication protocol therefore has to be pre-
scribed, one that helps ensure detection of corrupted data so as to enable re-
transmission until it has been decided that a correct, i.e., uncorrupted, transfer
has been completed.

These data communication protocols are of the kind that we would call
machine-machine dialogues. Other than treating this as a metaexample we
shall not go into detail in this book, but refer to, for example, [332] for a more
authoritative treatment.

19.5.10 Discussion: Interface Requirements

Dialogue Prescription Techniques and Tools

We have not, in this section on interface requirements, shown any examples
of, or formalised the dialogue aspects of interface requirements. The term
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interface implies at least two interacting behaviours. Therefore techniques and
tools (i.e., notations) for process modelling are used in such formalisations.
We refer to Vol. 1, Chap. 21 (Concurrent Specification Programming) and
Vol. 2, Chap. 13 (Message and Live Sequence Charts), where we cover formal
tools and techniques for modelling such interaction.

General

We have outlined six reasonably distinguishable facets that the requirements
engineer may need perform in order to construct an interface requirements
prescription. There may be other such facets. The above six have been found
useful in several development projects. Knowing about them, their underly-
ing principles, and their techniques and tools should help the requirements
engineer to more efficiently acquire interface requirements prescriptions, and
to document them, i.e., to structure their documentation logically.

Special Principles and Techniques

Interface requirements, in most people’s minds and expression, are concerned
with so-called “user-friendliness”. That is, interface requirements focus, very
much, on the form of the dialogues and the layout of GUIs. Much can be said
about this. We shall venture our definition of “user-friendliness”.

Characterisation. By a user-friendly man-machine interface we understand
one which somehow satisfies the following criteria:

• Faithful: The interface reflects only the shared phenomena and concepts,
and reflects “absolutely” no machine (i.e., hardware + software) concepts
(i.e., jargon). That is, the terminology used “across” the interface is that
of the domain.

• Didactic: The sequence of presentation of shared phenomena and con-
cepts reflects some clarified view on how these phenomena and concepts
relate, which are the more important ones, and which reflect current or
changing business processes, support technologies, managements and or-
ganisations, rules and regulations, etc.

• Pedagogic: The number of phenomena and concepts presented in any
one step of interaction is small, say from one to at most five. The order of
presentation is initially from core phenomena and concepts to increasingly
derived phenomena and concepts. That order may initially be pedantic,
but is accepted by novice users. For more experienced users means for
clear, logical “shortcuts” should be made available.

• Physiologic: The number of current and alternative physiologic “gad-
gets”7 needed to maintain interaction should be modest and be balanced
against simplicity or complexity of interaction.

7 Screen, keyboard, mouse, other tactile instruments (“pointing to”, pressure-
sensitive screens), audio (i.e., loudspeakers), microphone, etc.
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• Psychologic: Interaction response, incl. prompt times and texts should
not irritate8 or shame the users, or make these users feel inadequate, or
guilty (say, of “not knowing”).

• Artistic: And then it is certainly user-friendly, this author believes, if the
interface reflects some artistic ideas.

The above characterisation is only approximate. We also refer to Sect. 6.2 for
a discourse on “What Is Art?”.

If referring to special textbooks [233,312] on the subject, we advise the reader
to pay strict attention to the issues we have raised: Make sure that interface
requirements, when referring to phenomena and concepts, refer “strictly” to
those that are well understood in the domain.

19.6 Machine Requirements

Characterisation. By machine requirements we understand those require-
ments that can be expressed solely in terms of (or with prime reference to)
machine concepts.

19.6.1 Machine Requirements Facets

We shall, in particular, consider the following five kinds of machine require-
ments: performance requirements, dependability requirements, maintenance
requirements, platform requirements and documentation requirements. There
may be other kinds of machine requirements, but these suffice to sharpen our
quest for comprehensive requirements. And there may be machine require-
ments which are “not quite” one or the other of the kinds listed above, or
which also contain (albeit minor) uses of terms of the domain without being
“typical” interface requirements.9 We now cover each of the main kinds of
machine requirements identified above.

19.6.2 Machine Requirements and the Requirements Document

Some remarks need to be made before we go into details of domain require-
ments modelling techniques.

8 The response to a user query, which took the user maybe a minute to prepare,
should not follow the submission of that query in the order of microseconds, rather
1.5–3 seconds is more pleasing, psychologically. For short, “click”-type “queries”,
response times of 100 milliseconds seem OK.

9 The use of domain terms, for us still to claim that the requirements are proper
machine requirements, must be of generic nature, that is, they can be substituted
by terms from other domains without changing the real nature of the machine
requirements.
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Requirements for “the Machine Only”

Machine requirements are about the machine only! They, the machine require-
ments, “in the extreme” contain no references to any specific aspect of the
domain.

But there may be general references, and they could be of the same nature
for whichever domain was the base, such as, such and such function invocations
shall terminate in less than m microseconds, whereas such and such function
invocations shall terminate in less than n seconds. Or, such and such data
shall be replicated for back-up reasons, or auxiliary storage for performing
such and such functions shall be less than 500 KB.

The machine requirements all take their “departure point”, that is, are
based upon, potentially available machine technology, whether central, or dis-
tributed, or input/output, or peripheral.

Place in Narrative and Formalisation Document

In Sects. 19.6.3–19.6.8 we shall treat a number of machine requirements facets.
Each of whichever you decide to focus on, in any one requirements develop-
ment, must be prescribed.

The machine requirements are really void of any (material) reference to
domain phenomena and concepts. Hence the machine requirements prescrip-
tions form a separate, “freestanding” document. That document must de-
scribe both the machine component (i.e., hardware, and software) interfaces
and functionalities (the latter, say, in pre/postcondition form).

19.6.3 Performance Requirements

Characterisation. By performance requirements we mean machine require-
ments that prescribe storage consumption, (execution, access, etc.) time con-
sumption, as well as consumption of any other machine resource: number of
CPU units (incl. their quantitative characteristics such as cost, etc.), number
of printers, displays, etc., terminals (incl. their quantitative characteristics),
number of “other”, ancillary software packages (incl. their quantitative char-
acteristics), of data communication bandwidth, etcetera.

Pragmatically speaking, performance requirements translate into financial re-
sources spent, or to be spent.

Example 19.31 Performance Requirements: Timetable System Users and
Staff — Narrative Prescription Unit: We continue Example 19.16. The ma-
chine shall serve 1000 users and 1 staff member. Average response time shall
be at most 1.5 seconds, when the system is fully utilised.
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Till now we may have expressed certain (functions and) behaviours as generic
(functions and) behaviours. From now on we may have to “split” a specified
behaviour into an indexed family of behaviours, all “near identical” save for
the unique index. And we may have to separate out, as a special behaviour,
(those of) shared entities.

Example 19.32 Performance Requirements: Timetable System Users and
Staff: We continue Example 19.14 and Example 19.31. In Example 19.14 the
sharing of the timetable between users and staff was expressed parametrically.

Formal Presentation: Timetable System Users and Staff, I

system(tt) ≡ client(tt) de staff(tt)

client: TT → Unit
client(tt) ≡ let q:Query in let v = Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) = Mu(u)(tt) in system(tt′) end end

We now factor the timetable entity out as a separate behaviour, accessible,
via indexed communications, i.e., channels, by a family of client behaviours
and the staff behaviour.

Formal Presentation: Timetable System Users and Staff, II

type
CIdx /∗ Index set of, say 1000 terminals ∗/

channel
{ ct[ i ]:QU,tc[ i ]:VAL | i:CIdx }
st:UP,ts:RES

value
system: TT → Unit
system(tt) ≡ time table(tt) ‖ (‖ {client(i)|i:CIdx}) ‖ staff()

client: i:CIdx → out ct[ i ] in tc[ i ] Unit
client(i) ≡ let qc:Query in ct[ i ]!Mq(qc) end tc[ i ]?;client(i)

staff: Unit → out st in ts Unit
staff() ≡ let uc:Update in st!Mu(uc) end let res = ts? in staff() end

time table: TT → in {ct[ i ]|i:CIdx},st out {tc[ i ]|i:CIdx},ts Unit
time table(tt) ≡
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debc {let qf = ct[ i ]? in tc[ i ]!qf(tt) end | i:CIdx}
debc let uf = st? in let (tt′,r)=uf(tt) in ts!r; time table(tt′) end end

Please observe the “shift” from using de in system earlier in this example
to debc just above. The former expresses nondeterministic internal choice. The
latter expresses nondeterministic external choice. The change can be justified
as follows: The former, the nondeterministic internal choice, was “between”
two expressions which express no external possibility of influencing the choice.
The latter, the nondeterministic external choice, is “between” two expressions
where both express the possibility of an external input, i.e., a choice. The latter
is thus acceptable as an implementation of the former.

The next example, Example 19.33, continues the performance requirements
expressed just above. Those two requirements could have been put in one
phrase, i.e., as one prescription unit. But we prefer to separate them, as they
pertain to different kinds (types, categories) of resources: terminal + data
communication equipment facilities versus time and space.

Example 19.33 Performance Requirements of Storage and Speed for n-
Transfer Travel Inquiries: We continue Example 19.16. When performing the
n-Transfer Travel Inquiry (rough sketch) prescribed above, the first — of an
expected many — result shall be communicated back to the inquirer in less
than 5 seconds after the inquiry has been submitted, and, at no time dur-
ing the calculation of the “next” results must the storage buffer needed to
calculate these exceed around 100,000 bytes.

19.6.4 Dependability Requirements

To properly define the concept of dependability we need first introduce and
define the concepts of failure, error, and fault.

Characterisation. A machine failure occurs when the delivered service de-
viates from fulfilling the machine function, the latter being what the machine
is aimed at [287].

Characterisation. An error is that part of a machine state which is liable to
lead to subsequent failure. An error affecting the service is an indication that
a failure occurs or has occurred [287].

Characterisation. The adjudged (i.e., the ‘so-judged’) or hypothesised cause
of an error is a fault [287].

The term hazard is here taken to mean the same as the term fault.
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One should read the phrase: “adjudged or hypothesised cause” carefully:
In order to avoid an unending trace backward as to the cause,10 we stop at
the cause which is intended to be prevented or tolerated.

Characterisation. The service delivered by a machine is its behaviour as
it is perceptible by its user(s), where a user is a human, another machine or
a(nother) system which interacts with it [287].

Characterisation. Dependability is defined as the property of a machine
such that reliance can justifiably be placed on the service it delivers [287].

We continue, less formally, by characterising the above defined concepts [287].
“A given machine, operating in some particular environment (a wider system),
may fail in the sense that some other machine (or system) makes, or could in
principle have made, a judgement that the activity or inactivity of the given
machine constitutes a failure”.

The concept of dependability can be simply defined as “the quality or
the characteristic of being dependable”, where the adjective ‘dependable’ is
attributed to a machine whose failures are judged sufficiently rare or insignif-
icant.

Impairments to dependability are the unavoidably expectable circum-
stances causing or resulting from “undependability”: faults, errors and fail-
ures. Means for dependability are the techniques enabling one to provide the
ability to deliver a service on which reliance can be placed, and to reach con-
fidence in this ability. Attributes of dependability enable the properties which
are expected from the system to be expressed, and allow the machine quality
resulting from the impairments and the means opposing them to be assessed.

Having already discussed the “threats” aspect, we shall therefore discuss
the “means” aspect of the dependability tree.

• Attributes:
? Accessibility
? Availability
? Integrity
? Reliability
? Safety
? Security

• Means:
? Procurement

· Fault prevention

10 An example: “The reason the computer went down was the current supply did
not deliver sufficient voltage, and the reason for the drop in voltage was that
a transformer station was overheated, and the reason for the overheating was a
short circuit in a plant nearby, and the reason for the short circuit in the plant
was that . . . , etc.”
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· Fault tolerance
? Validation

· Fault removal
· Fault forecasting

• Threats:
? Faults
? Errors
? Failures

Despite all the principles, techniques and tools aimed at fault prevention,
faults are created. Hence the need for fault removal. Fault removal is itself
imperfect. Hence the need for fault forecasting. Our increasing dependence on
computing systems in the end brings in the need for fault tolerance. We refer
to special texts [212,213,226] on the above four topics.

Characterisation. By a dependability attribute we shall mean either one of
the following: accessibility, availability, integrity, reliability, robustness, safety
and security. That is, a machine is dependable if it satisfies some degree of
“mixture” of being accessible, available, having integrity, and being reliable,
safe and secure.

The crucial term above is “satisfies”. The issue is: To what “degree”? As we
shall see — in a later section — to cope properly with dependability require-
ments and their resolution requires that we deploy mathematical formula-
tion techniques, including analysis and simulation, from statistics (stochastics,
etc.).

In the next seven subsections we shall characterise the dependability at-
tributes further. In doing so we have found it useful to consult [212].

Accessibility

Usually a desired, i.e., the required, computing system, i.e., the machine, will
be used by many users — over “near-identical” time intervals. Their being
granted access to computing time is usually specified, at an abstract level, as
being determined by some internal nondeterministic choice, that is: essentially
by “tossing a coin”! If such internal nondeterminism was carried over, into an
implementation, some “coin tossers” might never get access to the machine.

Characterisation. A system being accessible — in the context of a machine
being dependable — means that some form of “fairness” is achieved in guar-
anteeing users “equal” access to machine resources, notably computing time
(and what derives from that).
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Example 19.34 Accessibility Requirements: Timetable Access: Based on
Examples 19.14 and 19.16, we can express: The timetable (system) shall be
inquirable by any number of users, and shall be updateable by a few, so au-
thorised, airline staff. At any time it is expected that up towards a thousand
users are directing queries at the timetable (system). And at regular times,
say at midnights between Saturdays and Sundays, airline staff are making
updates to the timetable (system). No matter how many users are “on line”
with the timetable (system), each user shall be given the appearance that that
user has exclusive access to the timetable (system).

Availability

Usually a desired, i.e., the required, computing system, i.e., the machine, will
be used by many users — over “near-identical” time intervals. Once a user has
been granted access to machine resources, usually computing time, that user’s
computation may effectively make the machine unavailable to other users —
by “going on and on and on”!

Characterisation. By availability — in the context of a machine being de-
pendable — we mean its readiness for usage. That is, that some form of
“guaranteed percentage of computing time” per time interval (or percentage
of some other computing resource consumption) is achieved — hence some
form of “time slicing” is to be effected.

Example 19.35 Availability Requirements: Timetable Availability: We con-
tinue Examples 19.14, 19.16, and 19.34: No matter which query composition
any number of (up to a thousand) users are directing at the timetable (sys-
tem), each such user shall be given a reasonable amount of compute time
per maximum of three seconds, so as to give the psychological appearance
that each user — in principle — “possesses” the timetable (system). If the
timetable system can predict that this will not be possible, then the system
shall so advise all (relevant) users.

Integrity

Characterisation. A system has integrity — in the context of a machine
being dependable — if it is and remains unimpaired, i.e., has no faults, errors
and failures, and remains so, without these, even in the situations where the
environment of the machine has faults, errors and failures.

Integrity seems to be a highest form of dependability, i.e., a machine having
integrity is 100% dependable! The machine is sound and is incorruptible.
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Reliability

Characterisation. A system being reliable — in the context of a machine
being dependable — means some measure of continuous correct service, that
is, measure of time to failure.

Example 19.36 Timetable Reliability: Mean time between failures shall be
at least 30 days, and downtime due to failure (i.e., an availability require-
ments) shall, for 90% of such cases, be less than 2 hours.

Safety

Characterisation. By safety — in the context of a machine being depend-
able — we mean some measure of continuous delivery of service of either
correct service, or incorrect service after benign failure, that is: Measure of
time to catastrophic failure.

Example 19.37 Timetable Safety: Mean time between failures whose result-
ing downtime is more than 4 hours shall be at least 120 days.

Security

We shall take a rather limited view of security. We are not including any
consideration of security against brute-force terrorist attacks. We consider
that an issue properly outside the realm of software engineering.

Security, then, in our limited view, requires a notion of authorised user,
with authorised users being fine-grained authorised to access only a well-
defined subset of system resources (data, functions, etc.). An unauthorised
user (for a resource) is anyone who is not authorised access to that resource.

A terrorist, posing as a user, should normally fail the authorisation crite-
rion. A terrorist, posing as a brute-force user, is here assumed to be able to
capture, somehow, some authorisation status. We refrain from elaborating on
how a terrorist might gain such status (keys, passwords, etc.)!

Characterisation. A system being secure — in the context of a machine
being dependable — means that an unauthorised user, after believing that he
or she has had access to a requested system resource: (i) cannot find out what
the system resource is doing, (ii) cannot find out how the system resource is
working and (iii) does not know that he/she does not know! That is, prevention
of unauthorised access to computing and/or handling of information (i.e.,
data).
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The characterisation of security is rather abstract. As such it is really no
good as an a priori design guide. That is, the characterisation gives no hints
as how to implement a secure system. But, once a system is implemented,
and claimed secure, the characterisation is useful as a guide on how to test
for security!

Example 19.38 Security Requirements: Timetable Security: We continue
Examples 19.14, 19.16, 19.34, and 19.35. Timetable users can be any air-
line client logging in as a user, and such (logged-in) users may inquire the
timetable. The timetable machine shall be secure against timetable updates
from any user. Airline staff shall be authorised to both update and inquire,
in a same session.

Example 19.39 Security Requirements: A Hospital Information System:
General access to (including copying rights of) specially designated parts of
a(ny) hospital patient’s medical journals is granted, in principle, only to cor-
respondingly specially designated hospital staff. In certain forms of (otherwise
well-defined) emergency situations any hospital paramedic, nurse or medical
doctor may “hit a panic button”, getting access to a hospital patient’s med-
ical journal, but with only viewing, not copying rights. Such incidents shall
be duly and properly recorded and reported, such that proper postprocessing
(i.e., evaluation) of such “panic button” accesses can take take place.

Robustness

Characterisation. A system is robust — in the context of dependability —
if it retains its attributes after failure, and after maintenance.

Thus a robust system is “stable” across failures and “across” possibly inter-
vening “repairs” and “across” other forms of maintenance.

• • •

Fault Analysis: In pursuing the formulation of requirements for dependable
systems it is often required that the requirements engineer perform what is
called fault analysis. A particular approach is called fault tree analysis. De-
pendable systems development is worth a whole study in itself. So we cut short
our mentioning of this very important subject by emphasising its importance
and otherwise referring the reader to the relevant literature. A good intro-
duction to the issues of safety analysis in the context of formal techniques
is [292]. We strongly recommend this source — also for references to “the
relevant literature”.
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19.6.5 Fault Tree Analysis

Source: Kirsten Mark Hansen

This example was kindly provided by Kirsten Mark Hansen. It is edited from
Chap. 4 of her splendid PhD Thesis [141].

Fault tree analysis is one of the most widely used safety analysis techniques.
It presumes a hazard analysis, which has revealed the catastrophic system
failures [31]. For each system failure, it deduces the possible combinations of
component failures which may cause this failure.

Fault tree analysis is a graphical technique, in which fault trees are drawn
using a predefined set of symbols. The graphic representation may be appeal-
ing, but it also causes the fault trees to be big and unmanageable.

A fault tree analysis is closely related to a system model, as the different
levels of system abstraction are reflected in the tree. The root corresponds
to a system failure, and the immediate causes of this failure are deduced as
logical combinations (conjunction and disjunction) of failures of the system
components.

Display

Buttons

Pulse
Generator

Electronics

Beeper

Fig. 19.3. Alarm clock

Figure 19.3 shows an alarm clock which is built from the components: A
display, some buttons, a pulse generator, some electronics, and a beeper. A
fault tree analysis of the failure of the alarm clock failing to activate the alarm
is presented in Fig. 19.4. The causes of this failure may either be the beeper
failing; the pulse generator not generating the right pulses; the electronics
failing, either by not activating the beeper or by not registering the buttons
pushed; or the buttons failing. We assume that the display has no impact on
this failure. Each of the components may again be considered as a system
consisting of components. The analysis stops when a component is considered
to be atomic.

A minimal cut set of a fault tree is the smallest combination of component
failures which, if they all occur, will cause the top event to occur. Smallest
means that if just one component failure is missing from the cut set, then the
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Alarm clock does not
activate the alarm

OR

Pulse generator fails Electronics failBeeper fails Button fails

OR

activate beeper
Electronics do not

button pushed
Electronics do not register

Fig. 19.4. Fault tree for an alarm clock

top event does not occur. The fault tree in Fig. 19.4 has five minimal cut sets,
each containing a leaf as its only element. Two fault trees are defined to be
equivalent if they have the same minimal cut sets.

A concept related to the minimal cut set is the minimal path set. A minimal
path set is the smallest combination of primary events whose non-occurrence
assures the non-occurrence of the top event. The fault tree in Fig. 19.4 has
one minimal path set containing all the leaves of the tree.

As fault trees are used to analyse safety-critical systems for safety, it is
important that they have an unambiguous semantics. We will later illustrate
that often this is not the case. The aim of this chapter is therefore to assign a
formal semantics to fault trees, and to illustrate how such a semantics may be
used in the formulation of system safety requirements. The main reference in
this chapter is the fault tree handbook [358], which has been used intensively
in defining the syntax and the semantics of fault trees.

Some of the nodes of a fault tree are called events by safety analysts. In
order to avoid confusion, we stress that we use the safety analysis meaning
of the term event, namely the occurrence of a system state, rather than the
computer science meaning of an event, namely a transition between two states.

Fault Tree Syntax

A fault tree analysis consists of building fault trees by connecting nodes from
a predefined set of node symbols by directed edges. Edges are directed in the
sense that for a given node the child nodes are called input nodes, and the
father node is called the output node. The node symbols are divided into three
groups: event symbols, gate symbols, and transfer symbols. We describe each
of the groups separately.
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Event Symbols

The event symbols are divided into primary event symbols and intermediate
event symbols, where the primary event symbols are the leaves of the tree.

Primary events: The primary event symbols are shown in Fig. 19.5.

Conditioning event Undeveloped eventBasic event External event

Fig. 19.5. Primary event symbols

• Basic event: A basic event contains an atomic component failure.
• Conditioning event: Conditioning events are most often used as input

to PRIORITY AND and to INHIBIT gates. When used as input to a
PRIORITY AND gate, the condition event is used to specify the order in
which the input events must occur.

• Undeveloped event: An undeveloped event contains a non-atomic com-
ponent failure. The fault tree is not developed further from this event due
to lack of time, money, interest, etc. The component is not atomic, so it is
possible later to develop the event further.

• External event: The content of an external event is not a failure, but
something that is expected to occur in the system environment.

Intermediate events: The intermediate events consist only of one symbol,
namely the intermediate event symbol, a rectangular box. Intermediate events
cannot be found in the leaves of a fault tree.

Gate Symbols

Gate symbols designate Boolean combinators. They are shown in Fig. 19.6.

... ... ......
PRIORITY

AND INHIBITANDOR XOR

Fig. 19.6. Gate symbols

OR gate: The informal description of an OR gate is that the output event
occurs when at least one of the input events occur. An OR gate may have any
number of input events. Fig. 19.4 is an example of a fault tree with two OR
gates.
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AND gate: The informal description of an AND gate is that the output event
occurs only when all the input events occur. An AND gate may have any
number of input events. Fig. 19.7 is an example of a fault tree with an AND
gate. This fault tree states that all brakes on a bike have failed, when both
the foot brake “and” the hand brake have failed.

All brakes on bicycle failed

AND

Foot brake failed Hand brake failed

Fig. 19.7. Fault tree with AND gate

INHIBIT gate: An INHIBIT gate is a special case of an AND gate. An IN-
HIBIT gate has one input event and one condition. The output event occurs
when both the input event occurs and the condition is satisfied. In the fault
tree in Fig. 19.8, the chemical reaction goes to completion when all reagents
and the catalyst are present.

INHIBIT

goes to completion
Chemical reaction

All reagents
are present

Catalyst
is present

Fig. 19.8. Fault tree with INHIBIT gate

XOR (exclusive or) gate: The output event occurs only if exactly one of the
input events occurs. If more than one of the input events occur, the output
event does not occur. An XOR gate may have any number of input events.
Fig. 19.9 shows a fault tree with an XOR gate. This fault tree states that a
train is not at the platform, either if the train is ahead of the platform, or if
it is behind the platform. Since the (specific) train cannot be at both places
it is exactly at one or the other.

PRIORITY AND gate: The output event occurs only if all the input events
occur, and if they occur in a left to right order. A PRIORITY AND gate may



458 19 Requirements Facets

XOR

Train is ahead
of the platform

Train is behind
the platform

at the platform
Train is not

Fig. 19.9. Fault tree with XOR gate

have any number of input events. The fault tree in Fig. 19.10 states that the
door is locked if the door is (first) closed and the key is (then) turned.

Door is closed Key is turned

Door is locked

AND
PRIORITY

Fig. 19.10. Fault tree with PRIORITY AND gate

Fault Tree Semantics

In our attempt to give fault trees a formal semantics, we discovered that
the accepted informal descriptions of fault tree gates are ambiguous, allowing
several very different interpretations. For instance, the semantics of an AND
gate is defined as [358]: “The output fault occurs only if all the input faults
occur”; but what does this mean? Does it mean that all input faults have to
occur at the same time, or does it mean that all input faults have to occur,
but that they need not overlap in time? Does the output fault necessarily
occur when the input faults occur? Clearly such uncertainty is not desirable
when dealing with safety-critical systems. In this section we therefore give
fault trees a formal semantics.

Primary Events

The first step in assigning a formal semantics to fault trees is to define a model
of the system on which the fault tree analysis is performed. Assume that we
have defined such a model and that it takes the form of system states evolving
over time. (This “system states evolving over time” model is the basis for the
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duration calculus [381,382]. We refer to Chap. 15, Vol. 2, for an introduction
to the duration calculus.) Using this model, we interpret the leaves of a fault
tree, i.e., the basic events, the undeveloped events, the conditioning events,
and the external events as duration calculus formulas. Such a formula may
for instance be:

• the constants true, false
• occurrence of a state P , i.e., dP e
• occurrence of a transition to state P , i.e., d¬P e; dP e
• lapse of a certain time, i.e., ` ≥ (30 + ε), or
• a limit of some duration, i.e.,

∫
P ≤ 4 × ε.

We consider the distinction between the different types of leaves to be prag-
matic, describing why the fault tree has not been developed further from the
that leaf, and therefore we make no distinction between the types of the leaves
in the semantics.

Intermediate Events

The semantics of intermediate events is defined by the semantics of the leaves,
edges, and gates in the subtrees in which the intermediate events are the roots.
Intermediate events are merely names for the corresponding subtrees.

Edges

We now consider the meaning of the intermediate event, A, connected to an
event, B, by an edge, see Fig. 19.11.

A

B

Fig. 19.11. Fault tree with no gates

Assume that the semantics of B is B. We then define the semantics of A to
be

A = B,

i.e., as logical identity, meaning that the system failure A occurs when the
failure B occurs. This semantics is pessimistic in the sense that it assumes that
if something has a possibility of going wrong, then it does go wrong. Informal
readings of fault trees often state that it is not mandatory that A holds when
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B holds [353, 358], which is formalised as A ⇒ B. This semantics allows an
optimistic interpretation of fault trees in the sense that a system failure may
be avoided if the operator intervenes fast enough, has enough luck, etc. In
our opinion, speed, luck, and the like should not be parameters in safety-
critical systems, and we have therefore rejected this semantics. Another issue
is whether A and B occur at the same time or if there is some delay from the
occurrence of B to the occurrence of A. Often there will be such a delay, but
we have refrained from modelling it, as this again would give the impression
that once B has occurred there is a chance that A can be prevented.

Gates

We now consider the semantics of intermediate events connected to other
events through gates.

OR: For the fault tree in Fig. 19.12 assume that the semantics of B1, . . . , Bn

is B1, . . . , Bn. We define the semantics of A to be

...

...

A

B1 B2 Bn

OR

Fig. 19.12. Fault tree with OR gate

A = B1 ∨ . . . ∨ Bn,

i.e., A holds iff either B1 or . . . or Bn holds. This interpretation shows that an
OR gate introduces single point failure. The failure occurs if just one of the
formulas holds.

AND: In the fault tree in Fig. 19.13 assume that the semantics of B1, . . . , Bn

is B1, . . . , Bn.
We then define the semantics of A to be

A = B1 ∧ . . . ∧ Bn,

i.e., A holds iff B1, . . . , Bn hold simultaneously. We have considered a more
liberal interpretation of AND gates in which B1 to Bn need not hold simul-
taneously, namely A = 3B1 ∧ . . . ∧ 3Bn. This has been rejected since this
formula “remembers any occurrence of a Bi”, such that if B2 becomes true 1
year after B1, and B3 becomes true 3 years after B2, and . . . , then A holds.
This is clearly not the intended meaning of an AND gate.
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...

...

A

B1 B2 Bn

AND

Fig. 19.13. Fault tree with AND gate

INHIBIT: We only consider INHIBIT gates in which the condition is not a
probability statement. According to the fault tree handbook, [358], the fault

INHIBIT

A

B1

B2

Fig. 19.14. Fault tree with INHIBIT gate

tree in Fig. 19.14 reads: “If the output A occurs then the input B1 has occurred
in the past while condition B2 was true”. We interpret this to be if A holds,
then both B1 and B2 hold, i.e., as an AND gate with B1 and B2 as inputs.
Thus the semantics of an INHIBIT gate is

A = B1 ∧ B2.

XOR: A fault tree with an XOR gate is given in Fig. 19.15 (left). According

A

B1 B2

A

B1 B2

XOR OR Not both B1 AND B2

Fig. 19.15. Fault trees. Left with XOR gate. Right with OR gate and Condition
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to the fault tree handbook, [358], this tree may be drawn as in the same figure
to the right, in which “Not both B1 AND B2” is a necessary condition for
the root formula to hold. As for the INHIBIT gate we interpret the condition
“Not both B1 AND B2” as a leaf which should also hold. By interpreting “Not
both B1 AND B2” as ¬(B1 ∧ B2), we obtain the semantics

A = (B1 ∨ B2) ∧ ¬(B1 ∧ B2)

which may be rewritten to

A = (B1 ∧ ¬B2) ∨ (¬B1 ∧ B2).

This generalises to

A = (B1 ∧ ¬(B2 ∨ . . . ∨ Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨ Bn−1)).

PRIORITY AND: A fault tree with a PRIORITY AND gate is given in
Fig. 19.16. The informal semantics states that the output event occurs if

...

...

A

B1 B2 Bn

PRIORITY
AND

Fig. 19.16. Fault tree with PRIORITY AND gate

all the input events occur in a left to right order. Assuming that B1, . . . , Bn

have the semantics B1, . . . , Bn, we define the semantics of A to be

A = B1 ∧ 3(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .).

Refinement

As we saw in the beginning of this section, fault trees are often used to model
system failures at different abstraction levels, Figs. 19.3 and 19.4.

If there is a shift in abstraction levels in a fault tree, we require that it
is indicated by a dashed line connecting a root in one tree (concrete model)
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to a leaf in another tree (abstract model) as in Fig. 19.17. (In that figure we
have “abstracted” the Boolean combinators: BCx, BCy, BCz are either of OR,
AND, PRIORITY AND, INHIBIT or XOR.)

A

A1 A2

B

B1 B2

C

C1 C2

BCx

BCy

BCz

Fig. 19.17. Fault tree with three abstraction levels

We consider such a dashed line to connect two fault trees, where each of
the fault trees is defined in one system model. For each of the fault trees,
the semantics of the tree is defined as described previously. The dashed line
indicates a refinement relation between the systems for which the fault tree
analysis is performed. Consider the simple fault tree in Fig. 19.18 in which A
has the semantics A and is defined by the state functions V ara, and B has
the semantics B and is defined by the state functions V arb.

Assume that V ara is a subset of V arb. As a fault tree describes the un-
desired system behaviours, i.e., ¬A for the abstract system, and ¬B for the
concrete system, the refinement relation between the two systems is given by

¬B ⇒ ¬A
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A

B

Fig. 19.18. Simple fault tree with refinement

where ¬A is interpreted over the domain V arb. It is equivalent to

A ⇒ B.

If the state functions of the concrete system, B, relate to the state functions
of the abstract system, A, through a transformation φ, then the refinement
relation under transformation is interpreted over V ara ∪V arb and is given by

φ ∧ ¬B ⇒ ¬A

which is equivalent to

φ ∧ A ⇒ B.

In Fig. 19.17, assume that A1 has the semantics A1, A2 has the semantics A2,
B1 has the semantics B1, etc., then it may be deduced from the semantics of
fault trees that A has the semantics A1∨A2, B has the semantics B1∧B2 and
C has the semantics C1 ∨ C2. Further assume that the fault tree containing
the A’s is defined in model 1, which has the state functions V ara; the fault
tree containing the B’s is defined in model 2, which has the state functions
V arb; and the fault tree containing the C’s is defined in model 3, which has
the state functions V arc. Further assume that V arb relates to V ara through
the transformation φ, and that V arb is a subset of V arc. The proof obligations
that arise from the fault tree are therefore

φ ∧ A2 ⇒ B1 ∧ B2

which is interpreted over V ara ∪ V arb, and

B1 ⇒ C1 ∨ C2

in which B1 is interpreted over V arc.
In program development the chain of refinements is from true towards

false. For fault trees the refinements from the top towards the bottom are
from false towards true. The reason for this is that fault trees specify the
undesired system states, whereas program development specifies the desired
system states.
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Deriving Safety Requirements

Traditionally, fault trees are used to analyse existing system designs with
regard to safety. Instead of first developing a design, and then performing
a safety analysis, we propose that the design and the safety analysis should
be developed concurrently, thereby making it possible to let the fault tree
analysis influence the design. In order to do this, the fault tree analysis and
the system design must at each abstraction level use the same system model.
Given a common model, the system safety requirements may be deduced from
the fault tree analysis. Safety requirements derived in this way can be used
during system development in order to validate the design, but they can also
be used in a constructive way by influencing the design. We illustrate this
below.

For each fault tree in which the root is interpreted as S, the system should
be designed such that S never occurs, i.e., the safety commitment which the
system should implement is

2¬S.

If we have n fault trees in which the roots are interpreted as S1, . . . , Sn, the
safety commitment which may be deduced from these fault trees is

2¬S1 ∧ . . . ∧ 2¬Sn,

i.e., the system should ensure that no top event in any fault tree ever holds.
This corresponds to combining the trees by an OR gate.

Deriving Component Requirements

Assume that we have a fault tree like the one in Fig. 19.11, and that the safety
commitment is 2¬A. As the fault tree has the semantics A = B, 2¬A must
be implemented by implementing 2¬B. If the fault tree contains gates, the
derived specifications depend on the types of the gates.

OR gates: The fault tree in Fig. 19.12 has the semantics A = B1 ∨ . . . ∨ Bn.
In order to make the system satisfy the safety commitment 2¬A, we must
implement

2¬(B1 ∨ . . . ∨ Bn)

or equivalently

2¬B1 ∧ . . . ∧ 2¬Bn.

This formula expresses that the system only satisfies its safety commitments
if all its components satisfy their local safety commitments. Now suppose that
the designer cannot control the first component, i.e., it is outside the scope
of the design of that component whether it satisfies B1 or not. Making the



466 19 Requirements Facets

safe choice of B1 being true causes 2¬B1 to be false, which trivially implies
that the safety commitment is violated. Making the tacit assumption that B1

is false is a very poor judgment, which essentially ignores the results of the
safety analysis. The only reasonable option is to weaken the specification. We
assume that the behaviour of the first component never satisfies B1, i.e., that
2¬B1 is true. To make the design team aware of this assumption, we add it to
the environment assumptions. So, if the design involved the assumptions Asm
before this design step, we have assumptions Asm ∧ 2¬B1 afterwards. The
specification of the requirements Asm ⇒ Com has thus been weakened, to
Asm ∧ 2¬B1 ⇒ Com, and the designer should alert the appropriate persons
as to this change in assumptions. Many design errors are located on interfaces.
The interface is made clearer and the likelihood of errors is reduced if one has
an explicit list of assumptions and adds to this list as the system development
progresses.

AND gates: Bear in mind that the fault tree in Fig. 19.13 has the semantics
A = B1 ∧ B2 ∧ . . . ∧ Bn and assume that the safety commitment is 2¬A.
This safety commitment corresponds to specifying that the components never
satisfy their duration formulas at the same time, i.e.,

2¬(B1 ∧ B2 ∧ . . . ∧ Bn).

One way to implement this is to implement the stronger formula

2¬B1 ∨ 2¬B2 ∨ . . . ∨ 2¬Bn,

i.e., to design at least one of the components such that it always satisfies its
local safety commitment. Often, the designer does not control all the input
components of an AND gate. For such components a safe approach is to
assume the worst case, namely that the component is in a critical state and
thereby contributes to violation of the safety commitment. Let us for instance
assume in the case of the fault tree in Fig. 19.13 that the first component is
uncontrollable. The worst case is that the component satisfies B1, i.e., that

2¬(true ∧ B2 ∧ . . . ∧ Bn)

meaning that the designer has to implement

2¬(B2 ∧ . . . ∧ Bn).

If it is not possible to make such an implementation, a final solution is to
assume that B1 always is false, and then see to it that this is implemented in
another component by adding it to the list of assumptions, i.e., if we had the
assumptions Asm before this design step, we have the assumptions Asm ∧
2¬B1 afterwards. One should, at some point, arrive at a conjunction of Bi’s
which can be used in the design. Otherwise we must conclude that the system
is inherently unsafe. If the design relies on the absence of only one Bi, it is a
design which is vulnerable to single point failures.
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INHIBIT gates: As the semantics of INHIBIT gates are the same as for AND
gates, the derivations of safety requirements for INHIBIT gates are the same
as for AND gates.

XOR gates: An event A which is output from an XOR gate which has
B1, . . . , Bn as input events has the semantics

A = (B1 ∧ ¬(B2 ∨ . . . ∨ Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨ Bn−1)).

A safety commitment 2¬A must be implemented by

2¬ ((B1 ∧ ¬(B2 ∨ . . . ∨ Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨ Bn−1)))

which is equivalent to

2 ((¬B1 ∨ B2 ∨ . . . ∨ Bn)
∧
...
∧
(¬Bn ∨ B1 ∨ . . . ∨ Bn−1)).

This means that the designer has to make the design such that for every
observation interval either all the input events are false, or at least two of the
input events are true at the same time, i.e.,

2(All-false ∨ Two-true)

where

All-false ≡ ¬(B1 ∨ . . . ∨ Bn),

Two-true ≡ ((B1 ∧ B2) ∨ . . . ∨ (B1 ∧ Bn)
∨
...
∨
(Bn ∧ B1) ∨ . . . ∨ (Bn ∧ Bn−1)).

Now assume that one of the components is uncontrollable, i.e., the designer
cannot control whether, e.g., B1 is true or not. If the Exclusive Or (XOR)
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gate has more than two input events, then the design may be made such that
two of the other input events are always true. If this is not possible (perhaps
because the XOR gate only has two input events), the designer either has to
assume that B1 is false and then make the design such that the rest of the
B’s are always false, or assume that B1 is true and then make the design
such that one of the other input events is always true. In either case, he has
to make the rest of the design team aware of the assumption by adding it
to the list of assumptions about the environment. So, if the design involved
the assumptions, Asm, before this design step, and if the designer assumes
that B1 is always true, then the assumptions are Asm∧2B1 after this design
step, and if he assumes that B1 is always false, then the assumptions are
Asm ∧ 2¬B1. In principle the designer may also assume that whenever one
of the B’s which he can control is true then B1 is also true, and whenever all
the B’s he can control are false, then B1 is also false. As B1 is implemented in
another component than the rest of the B’s, and as A occurs if the components
are out of synchronization just once, we do not recommend this solution.

PRIORITY AND gates: The fault tree in Fig. 19.10 has the semantics A =
B1 ∧ 3(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .). If the safety commitment is 2¬A, the
designer must implement

2¬(B1 ∧ 3(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .)).

This may either be done by making the design such that the Bi’s do not occur
in the specified order or such that one of the Bi’s does not occur at all, i.e.,

2¬B1 ∨ 2¬B2 ∨ . . . ∨ 2¬Bn.

If one of the Bi’s, e.g., B1 is uncontrollable, the worst case is that it does
not satisfy its local safety commitment, i.e., that B1 is true. The designer
therefore assume that B1 is true and attempts to make the design such that

2¬(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .)

holds. If it is not possible to make such a design, the last opportunity is to
assume that B1 always is false, and then to assure that this is implemented
in another component by adding it to the list of assumptions about the envi-
ronment, i.e., the assumptions become Asm ∧ 2¬B1.

Refinement

Assume that we have a fault tree in which an event A, with the semantics
A, is refined by an event B, with the semantics B, see Fig. 19.18. Further,
assume that the refinement relation has been verified, and that the safety
commitment is 2¬A. As part of the refinement relation is A ⇒ B, then 2¬A
must be implemented by implementing 2¬B.
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Conclusion

In this section we have given fault trees a duration calculus semantics, and
we have defined how a fault tree analysis may be used to derive safety re-
quirements, both for systems and for system components. The semantics is
compositional such that the semantics of the root is expressed in terms of
the leaves. The derivation of safety requirements follows the structure of the
fault tree and results in safety requirements for the system’s components.
This derivation of safety requirements for components should stop when the
deduced requirements may be implemented using well-established methods,
e.g., formal program development techniques for software components.

As for all other techniques, this technique for deriving safety requirements
is no better than the people who use it. An error in the fault tree analysis
is reflected in the safety requirements, and the system failures for which a
safety analysis has not been performed are not extracted as requirements.
If, however, we compare this method to the existing ways of deriving safety
requirements, namely by more or less structured brainstorming, we think that
this method is an improvement.

In terms of safety requirements, a minimal cut set corresponds to the small-
est set of components which, if they do not fulfill their safety requirements,
will cause the system not to fulfill its safety requirements. If the minimal cut
set only contains one component, then the system is vulnerable to single point
failure.

A minimal path set corresponds to the smallest set of components which
must fulfill their safety requirements in order that the system fulfill its safety
requirements. If all components have to fulfill their safety requirements, i.e.,
the cardinality of the minimal path set equals the number of components,
then the system is unsafe, as it may fail if just one of the components fails.

We have defined the semantics in duration calculus, but other temporal
logics, like e.g., TLA+ [209,210,239] and linear temporal logic [228–230], could
also have been applied. The important thing is that the logic is capable of ex-
pressing both the semantics of the intermediate events, based on the structure
of the fault tree, and the semantics of the leaves.

Fault trees are sometimes used in a probabilistic analysis of safety. We have
not given semantics to fault trees with probabilistic figures, as this requires
a deeper knowledge of stochastic processes than we have. The foundation for
assigning a formal semantics to such trees has been established in [223], in
which a probabilistic duration calculus based on discrete Markov chains [354]
is defined and in [90] which defines a conversion algorithm from fault trees to
Markov chains. The idea, in probabilistic duration calculus, is that, given an
initial probability distribution, i.e., the probability that the system is initially
in a state v, and a transition probability matrix, i.e., the probability that the
system enters state u, given that the system is in state v, then it is possible
to calculate the probability that the system is in a certain state at a discrete
time t.



470 19 Requirements Facets

19.6.6 Maintenance Requirements

Characterisation. By maintenance requirements we understand a combina-
tion of requirements with respect to: (i) adaptive maintenance, (iii) corrective
maintenance, (ii) perfective maintenance, (iv) preventive maintenance and (v)
extensional maintenance.

Maintenance of building, mechanical, electrotechnical and electronic artifacts
— i.e., of artifacts based on the natural sciences — is based both on documents
and on the presence of the physical artifacts. Maintenance of software is based
just on software, that is, on all the documents (including tests) entailed by
software. We refer to the very beginning of Sect. 1.2.4 for a proper definition
of what we mean by software.

Adaptive Maintenance

Characterisation. By adaptive maintenance we understand such mainte-
nance that changes a part of that software so as to also, or instead, fit to
some other software, or some other hardware equipment (i.e., other software
or hardware which provides new, respectively replacement, functions).

Example 19.40 Adaptive Maintenance Requirements: Timetable System:
The timetable system is expected to be implemented in terms of a number of
components that implement respective domain and interface requirements, as
well as some (other) machine requirements. The overall timetable system shall
have these components connected, i.e., interfaced with one another — where
they need to be interfaced — in such a way that any component can later
be replaced by another component ostensibly delivering the same service, i.e.,
functionalities and behaviour.

Corrective Maintenance

Characterisation. By corrective maintenance we understand such mainte-
nance which corrects a software error.

Example 19.41 Corrective Maintenance Requirements: Timetable System:
Corrective maintenance shall be done remotely: from a developer site, via
secure Internet connections.

Perfective Maintenance

Characterisation. By perfective maintenance we understand such mainte-
nance which helps improve (i.e., lower) the need for hardware (storage, time,
equipment), as well as software.
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Example 19.42 Perfective Maintenance Requirements: Timetable System:
The system shall be designed in such a way as to clearly be able to monitor
the use of “scratch” (i.e., buffer) storage and compute time for any instance
of any query command.

Preventive Maintenance

Characterisation. By preventive maintenance we understand such main-
tenance which helps detect, i.e., forestall, future occurrence of software or
hardware errors.

Preventive maintenance — in connection with software — is usually mandated
to take place at the conclusion of any of the other three forms of (software)
maintenance.

Extensional Maintenance

Characterisation. By extensional maintenance we understand such main-
tenance which adds new functionalities to the software, i.e., which implements
additional requirements.

Example 19.43 Extensional Maintenance Requirements: Timetable System:
Assume a release of a timetable software system to implement a requirements
that, for example, expresses that shortest routes but not that fastest routes
be found in response to a travel query. If a subsequent release of that software
is now expected to also calculate fastest routes in response to a travel query,
then we say that the implementation of that last requirements constitutes
extensional maintenance.

• • •

Whenever a maintenance job has been concluded, the software system is to
undergo an extensive acceptance test: a predetermined, large set of (typically
thousands of) test programs has to be successfully executed.

19.6.7 Platform Requirements

Characterisation. By a [computing] platform is here understood a combi-
nation of hardware and systems software — so equipped as to be able to
execute the software being requirements prescribed — and ‘more’.

What the ‘more’ is should transpire from the next characterisations.
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Characterisation. By platform requirements we mean a combination of the
following: (i) development platform requirements, (ii) execution platform re-
quirements, (iii) maintenance platform requirements and (iv) demonstration
platform requirements.

Example 19.44 Platform Requirements: Space Satellite Software: Elsewhere
prescribed software for some space satellite function is to satisfy the following
platform requirements: shall be developed on a Sun workstation under Sun

UNIX, shall execute on the military MI1750 hardware computer running its
proprietary MI1750 Operating System, shall be maintained at the NASA
Houston, TX installation of MI1750 Emulating Sun Sparc Stations, and
shall be demonstrated on ordinary Sun workstations under Sun UNIX.

Development Platform

Characterisation. Development Platform Requirements: By development
platform requirements we shall understand such machine requirements which
detail the specific software and hardware for the platform on which the soft-
ware is to be developed.

Execution Platform

Characterisation. Execution Platform Requirements: By execution plat-
form requirements we shall understand such machine requirements which de-
tail the specific (other) software and hardware for the platform on which the
software is to be executed.

Maintenance Platform

Characterisation. Maintenance Platform Requirements: By maintenance
platform requirements we shall understand such machine requirements which
detail the specific (other) software and hardware for the platform on which
the software is to be maintained.

Demonstration Platform

Characterisation. Demonstration Platform Requirements: By demonstra-
tion platform requirements we shall understand such machine requirements
which detail the specific (other) software and hardware for the platform on
which the software is to be demonstrated to the customer — say for accep-
tance tests, or for management demos, or for user training.
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Discussion

Example 19.44 is rather superficial. And we do not give examples for each of
the specific four platforms. More realistic examples would go into rather exten-
sive details, listing hardware and software product names, versions, releases,
etc.

19.6.8 Documentation Requirements

We refer to Chap. 2 for a thorough treatment of the kind of documents that
normally should result from a proper software development project. And we
refer to overviews of these documents as they pertain to domain engineering
(Sects. 8.9 and 16.3), requirements engineering (Sects. 17.6 and 24.3), and
software design (Sect. 30.3).

Characterisation. By documentation requirements we mean requirements
of any of the software documents that together make up software (cf. the
very first part of Section 1.2.4): (i) not only code that may be the basis for
executions by a computer, (ii) but also its full development documentation:
(ii.1) the stages and steps of application domain description, (ii.2) the stages
and steps of requirements prescription, and (ii.3) the stages and steps of soft-
ware design prior to code, with all of the above including all validation and
verification (incl., test) documents. In addition, as part of our wider con-
cept of software, we also include (iii) a comprehensive collection of supporting
documents: (iii.1) training manuals, (iii.2) installation manuals, (iii.3) user
manuals, (iii.4) maintenance manuals, and (iii.5–6) development and main-
tenance logbooks.

We do not attempt, in our characterisation, to detail what such documentation
requirements could be. Such requirements could cover a spectrum from the
simple presence, as a delivery, of specific ones, to detailed directions as to their
contents, informal or formal.

19.6.9 Discussion: Machine Requirements

We have — at long last — ended an extensive enumeration, explication and,
in many, but not all cases, exemplification, of machine requirements. When
examples were left out it was because the reader should, by now, be able to
easily conjure up such examples.

The enumeration is not claimed exhaustive. But, we think, it is rather
representative. It is good enough to serve as a basis for professional software
engineering. And it is better, by far, than what we have seen in “standard”
software engineering textbooks.
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19.7 Composition of Requirements Models

19.7.1 General

In Sects. 19.3.4 (X = BPR), 19.4.2 (X = Domain Requirements), 19.5.3 (X
= Interface Requirements), and 19.6.2 (X = Machine Requirements) we have
briefly mentioned the topic of “X and the Requirements Document”.

We shall remind the reader to review these four subsections. They tell you
a lot about how to document the requirements, as basically a set of four more
or less separate subdocuments, whether informally, as a narrative, or formally,
as an annotated formal definition.

19.7.2 Collating Requirements Facet Prescriptions

Sections 11.10 and 11.10.1 have titles similar to this overall section and the
present section. We have done so in order to remind the reader that to analyse
requirements and to prescribe these is a bit also of an art. You are kindly
asked to review Sect. 11.10.1 and to carry forward its message to requirements
modelling.

19.8 Discussion: Requirements Facets

19.8.1 General

We have covered the three main facets of requirements models: domain re-
quirements, interface requirements and machine requirements. The reader
who studies this volume on the basis of emphasising the formal techniques
will have noted that there were rather few, if any, formalised examples. This
was especially true for the machine requirements.

This does not mean that one could not furnish such examples. We have
chosen not to show such examples for three reasons: First, the examples would
be somewhat long. Second, such examples have already been shown e.g., in
Vol. 2, Chap. 15. But, more important, we still, as of 2006, lack appropriate
formal techniques and tools. But we observe, today, steady and impressive
progress in formal techniques and tools for expressing machine requirements.

19.8.2 Principles, Techniques and Tools

Principle. Requirements Facets: “Divide and Conquer”: Adopt a “separation
of concerns” principle; hence model domain, interface and machine require-
ments separately, as near so as possible.
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Techniques. Requirements Facets: The techniques fall, as usual, into two
classes: the informal techniques, which cover all the so-far-covered informal
techniques of rough-sketching, terminologisation and narration; and the for-
mal techniques, which. likewise, cover all the so-far-covered formal techniques
of formal abstraction and modelling.

Tools. Requirements Facets: The tools, like the techniques, fall, as usual, into
two classes: the informal tools, which include ordinary text-processing tools
with extensive cross-referencing and database storage facilities; and the formal
tools, which include all the ones ordinarily used in connection with formal
specification: syntax editors, type checkers, verification, model checking and
test tools, and so on.

19.9 Bibliographical Notes

Section 19.3.1 relied almost exclusively on [139, 140, 176, 186]. Section 19.6.4
similarly relied almost exclusively on the delightful [287] and [212]. Sec-
tion 19.6.5 is a mere editing of Chap. 4 of the splendid [141].

19.10 Exercises

19.10.1 A Preamble

We refer to Sect. 1.7.1 for the list of 15 running domain (requirements and soft-
ware design) examples. We refer also to the introductory remarks of Sect. 1.7.2
concerning the use of the term “selected topic”.

19.10.2 The Exercises

The use of the term ‘describe’ means to rough sketch and/or terminologise,
and to narrate. If you are studying this volume in its formal version, then the
term describe additionally means formalise.

Exercises 19.4–19.6 relate to the special topic that you are expected to have
chosen, and can be solved either informally or formally. Exercises 19.12–19.13
are expected to be solved formally.

Exercise 19.1 An Incomplete Container Terminal Terminology. We refer to
Example 19.3. There are two versions of this exercise: an informal version and
a formal version.

• Informal version: Please define all sorts, that is, the abstract types, and
please state signatures of all functions mentioned in Example 19.3. Then
rephrase a selection of some 10 terms.
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• Formal version: First, solve the above informal version exercise. Then,
formalise the chosen selection of terms.

Exercise 19.2 Domain Instantiation: Local Regional Railway Nets. We re-
fer to Example 19.15. Please read that example carefully. The problem is to
formalise that example’s description of a simple railway net. We ask for a
solution which simply takes the railway net formalisations shown in Vol. 2,
Chaps. 2 and 10, and imposes further, constraining axioms.

Exercise 19.3 Domain Requirements: Fitting. We refer to Example 19.18.
Please provide formal models of the domain, the two original requirements,
and the 2+1 revised original + shared domain requirements outlined in Ex-
ample 19.18.

Exercise 19.4 Domain Requirements. For the fixed topic, selected by you,
you are to suggest some two to three distinct domain requirements. Outline
(informally, and/or formally) for each of the distinct domain requirements
how they are projected, and/or made more deterministic, and/or instantiated,
and/or extended, and/or fitted (the latter with some other requirements that
you have to postulate) with respect to your narrative domain description given
earlier (as answers to Exercises 11.1–11.7.)

Exercise 19.5 Interface Requirements. For the fixed topic, selected by you,
and for the domain requirements that you have established in Exercise 19.4,
identify shared phenomena and shared concepts, and suggest at least four dis-
tinct interface requirements, one each from the possible set of six possibilities
covered in Sects. 19.5.4–19.5.9.

Exercise 19.6 Machine Requirements. For the fixed topic, selected by you,,
and for the domain requirements that you have established in Exercise 19.4,
suggest at least one machine requirement from each of the five kinds out-
lined in Sects. 19.6.3–19.6.4 and 19.6.6–19.6.8 (performance, dependability,
maintenance, platform and documentation, respectively).

Exercise 19.7 Container Terminals: A Preliminary (Flat) Formal Domain
Model. We refer to Example 19.1. Based on what is described in the referenced
example, please propose a formal model of container terminals. You may wish
to formulate the solution in flat RSL, i.e., without the use of the scheme,
class and object constructs of RSL. See Exercise 19.9.

Exercise 19.8 Container Terminals: A Preliminary (Flat) Formal Require-
ments Model. We refer to Example 19.2. Based on what is described in the
referenced example, please propose a formal model of indicated requirements
for software for ship container loading plans. If you chose to formulate the
solution to Exercise 19.7 in flat RSL, i.e., without the use of the scheme,
class and object constructs of RSL, then you may choose to do likewise for
the present exercise. (See Exercise 19.10.)
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Exercise 19.9 Container Terminals: Modular Formal Domain Model. We
refer to Exercise 19.7. If you already expressed the solution to that exercise
using the scheme, class and object constructs of RSL, then that could be a
solution to the present exercise. Otherwise, please rephrase your solution to
Exercise 19.7 using these modular constructs of RSL.

Exercise 19.10 Container Terminals: Modular Formal Requirements Model.
We refer to Exercise 19.8. If you already expressed the solution to that exercise
using the scheme, class and object constructs of RSL, then that could be a
solution to the present exercise. Otherwise, please rephrase your solution to
Exercise 19.8, based on your solution to Exercise 19.9, by, preferably, using
the schema calculus constructs of extension (with), hiding (hide), etc., of
RSL.

Exercise 19.11 Rail Net and Unit Data Structure Initialisation. We refer to
Example 19.22. Please read that example carefully. Suggest a context in which
the initialisation takes place: Awareness of the geography, through some car-
tographic and/or geodetic map representation. Then complete the narrative
and formalise what is indicated in Example 19.22.

Exercise 19.12 Rail Net and Unit Data Structure Refreshment. We refer
to Example 19.23. Please read that example carefully. Suggest a context in
which the refreshment takes place: awareness of the geography, through some
cartographic and/or geodetic map representation — as well as some already
existing state. Then complete the narrative and formalise what is indicated
in Example 19.23.

Exercise 19.13 Banking Script Language. We refer to Example 19.9 — and
all of the examples referenced initially in Example 19.9. Redefine, as suggested
there, the banking script language to allow such transactions as: (i) merge
two mortgage accounts, (ii) transfer money between accounts in two different
banks, (iii) pay monthly and quarterly credit card bills, (iv) send and receive
funds from stockbrokers, etc.

Exercise 19.14 Computational Data and Control Interface. We refer to Ex-
ample 19.24. You are to sketch, using RSL/CSP, a formalisation of that exam-
ple in terms of two processes: the user and the referenced software package. By
sketching we mean that basically only (i) the type of messages sent between
these processes, and (ii) the RSL/CSP input/output clauses that outline the
interaction, are defined. What leads the computation (based on the software
package) to decide when and where to interact with the user is not to be
specified, only that the interaction occurs.

Exercise 19.15 A 24-hour Crane Behaviour. We refer to Example 19.1. You
are to come up with a rough sketch, a description and a prescription of what
you can logically think of as a factual, respectively a desirable 24-hour be-
haviour of a ship/shore (i.e., quay) container crane.
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Exercise 19.16 A 24-hour Container Truck/Chassis Behaviour. We refer to
Example 19.1. You are to come up with a rough sketch, a description and
a prescription of what you can logically think of as a factual, respectively a
desirable 24-hour behaviour of a container truck/chassis.


