5

Phenomena and Concepts

e The prerequisite for studying this chapter is that you are willing to think,
and are able, or at least wish to think abstractly.

e The aims are to introduce basic principles and techniques for “discover-
ing” phenomena that need conceptualisation, in particular, to introduce
those phenomena whose conceptualisation is in terms of entities (infor-
mation, data), functions (and relations), events (asynchronous and syn-
chronous) and behaviours, and to introduce basic principles and techniques
for the description of such phenomena and their underlying concepts.

e The objective is to intellectualise the reader, as necessary, but not yet suf-
ficiently enough for the reader to become an effective professional software
engineer.

e The treatment is from systematic to rigorous.

5.1 Introduction

In this chapter we shall cover a first set of facets of the concept of description:
the problem of identification, that is, of being able to identify or delineate,
(i.1) phenomena and (i.2) concepts, of interest; that is (i.1) physically manifest
things, and (i.2) mental constructions.

We shall try to wrestle with some abstract ideas. They impinge upon what
can be known, and what can be described. As such these abstract ideas border
on philosophy, in particular such philosophical disciplines as epistemology,
and ontology. For this reason we cannot treat these ideas with the kind of
certainty usual in a discourse of mathematics or the natural sciences, but
must be prepared for a certain degree of uncertainty!

5.2 Phenomena and Concepts

In this chapter we shall thread a careful course. We do not wish to establish a
brand new theory of phenomena. We certainly do not wish to entertain such



122 5 Phenomena and Concepts

ideas as object-orientedness, conceptual schemas, or whatever. We simply wish
to go as far as very simple mathematics can support us. By that we mean:
types and values, functions, events and behaviours. No further!

But first we discuss the ideas of phenomena and concepts.

We think it important that the professional software engineer clearly un-
derstand these two notions (that is, metaconcepts), and that they are not
confused.

5.2.1 Physically Manifest Phenomena

In the world there are the physically manifest phenomena. We can sense them:
touch, see, hear, feel, smell and taste them. Or we can measure them: mechan-
ically, electrically/electronically, chemically, etc. Thus we can point to them
and designate them, in one way or another.

5.2.2 Mentally Conceived Concepts

We often abstract a phenomenon into a concept.

Example 5.1 Automobile Phenomenon Versus Car Concept: The specific
phenomenon of “that automobile” is abstracted into the type, the class, the
set of all cars, i.e., the concept car. .

The above example illustrates the concrete value concept (“that automobile”)
versus the abstract type concept (car).

5.2.3 Categories of Phenomena and Concepts

For pragmatic reasons we categorise phenomena and concepts into four cat-
egories: (i) entities — their values, properties and types; (ii) functions over
entities; (iil) events (related to behaviours); and (iv) behaviours (as traces of
events and function applications, i.e., actions). These category names repre-
sent metaconcepts.

Characterisation. By a phenomenon we shall loosely understand some
physical thing that humans can sense or which natural science based tech-
nology can measure, and where a phenomenon is typically a natural thing or
a human-made artifact. .

Characterisation. By a concept we shall loosely understand a mental con-
struction — conceived by people — which, in an abstract manner captures
an essence of usually a class of phenomena or a class of concepts. .



5.2 Phenomena and Concepts 123
5.2.4 Concrete and Abstract Concepts

Phenomena can be pointed to or measured. They are physical. Concepts are
mental constructions. When we “lift” our consideration, for example, from
that specific car over there, i.e., of a phenomenon, to a representative of the
set of cars, then we have abstracted “away” from a specific phenomenon to
the concrete concept of car. When we “lift” our considerations, for example,
from those of dealing with cars, trains, airplanes or ships, that is from a set of
concrete concepts, to consider specimens (i.e., instances) of these as vehicles
(or conveyors), then we consider vehicles (conveyors) as abstract concepts.
And so on.

Characterisation. By a concrete concept we mean an abstraction of a set
of similar phenomena into one concept. .

Given a description of a concrete concept we can speak of its concretisation as
an identification which establishes a relation between the concrete concept and
at least one phenomenon which is intended covered by the concrete concept.

Characterisation. By an abstract concept we mean an abstraction of a set
of similar concepts into one concept. .

Given a description of an abstract concept we can speak of its concretisation
as an identification which establishes a relation between the abstract concept
and at least one concrete concept which is intended covered by the abstract
concept.

Discussion. When we say “a car” we mean, not a specific one, that is, not
a specific phenomenon, but a concrete concept, not a set of cars, but a single
instance (the generic car). If we say “those cars there” we mean a set of
phenomena. And if we say “consider a set of cars” then we mean a set of
concrete concepts — for short: a concrete concept. We can describe a set, s,
of values, a, all of which are of some type A. In that case the set s is a value
of type A-set. .

5.2.5 Categories of Descriptions

Usually we shall be formulating our descriptions in terms of concepts, not
in terms of phenomena. But occasionally it is required that a description in
terms of phenomena is developed and presented.

Characterisation. A description is said to be phenomenological if all of its
entities, functions, events and behaviours are of phenomena. .

Characterisation. A description is said to be conceptual if all of its entities,
functions, events and behaviours are of concepts. .



124 5 Phenomena and Concepts

Characterisation. A description is said to be specific problem-oriented if all
of its entities, functions, events and behaviours are of some mixture of both
phenomena (one or more) and concepts (one or more). .

Discussion. Realistic Descriptions: Most actual domain descriptions are car-
ried out in connection with specific customer domains. Such customer domains
are “almost” instances of a more general, that is, a generic and hence con-
ceptual domain, and hence possibly of a conceptual domain description. But
usually this (or these) conceptual domain description(s) do not exist. And all
the customer is willing to finance, typically for reasons of competitiveness of
the customer enterprise, is the specific problem-oriented description. In such
customer-biased descriptions one is not to conceptualise a number of instances
of phenomena but to keep the phenomena-specific. .

Example 5.2 A Specific Problem-Oriented “Toy” Description: The South
Coast Rail Line regional railway net consists of a single linear route, 7,
made up from six stations, si,Ss,S3, S4, S5, S, and five consecutive lines,
l12, 23,034, 45,56, such that route r can be thought of as a sequence of
alternating stations and lines: (s1, £12, $2, €23, S3, €34, S4, Y45, S5, 56, S¢) Or the
other way around: <86, 655, S5, 645, S4, 634, 83, 623, S2, 612, 81>. More speciﬁcally
line /15 is 17 km long, line f53 is 19 km long, ..., and line f54 is 23 kms
long. Topologically and geodetically line ¢12 runs as follows: ... (etcetera).
Stations s; is named Arlington, so Burlington, ..., and station sg is named
Georgetown. Topologically and geodetically station s; is organised as follows:
... (etcetera). Etcetera. .

5.2.6 What Is a Description?

Finally we are ready to address the crucial issue of what a description is.
What Is a Description?

Characterisation. By a description we mean some text which either des-
ignates a set of phenomena in such a way that the reader of the description
can recognise these phenomena from the description or designates a set
of concepts in such a way that the reader of the description can concretise
these into recognisable phenomena, or it is a text which designates both
recognisable phenomena and recognisable concepts. .

Chapter 7 covers (i) recognisability of descriptions, (ii) the issue of providing
as few phenomena (or actually concrete concept) descriptions as possible (i.e.,
the so-called “narrow bridge”), (iii) the issue of instead relying on definitions
and (iv) the issue of risking refutable descriptions.



5.3 Entities 125

5.3 Entities

One man’s entity is another man’s function!

We hedge the opening of this section by a caveat, and a veiled warning.
When we now shall try to characterise what an entity is, it must be under-
stood as a choice that the developer has to make of whether to consider a
phenomenon or a concept as an entity or as a function. Usually that choice is
an easy one to make. Colloquially speaking: if you think of the phenomena or
concepts as information typically computerisable as data, then the phenom-
ena or concepts are entities. Similar remarks can be made for the possible
relations between entities and behaviours.

Characterisation. By an entity we shall loosely understand something
fixed, immobile or static. Although that thing may move, after it has moved
it is essentially the same thing, an entity. .

From a pragmatic point of view, entities are the “things” that, if implemented
inside computers, could typically be represented as data.

Example 5.3 Entities: We give some examples: a (specific) pencil, a (spe-
cific) chocolate bar, a (specific) pail of paint, a (specific) person, a (specific)
railway net, a (specific) train or a (specific) transport industry. .

We make the distinction between atomic entities and composed (i.e., compos-
ite) entities.

5.3.1 Atomic Entities

Characterisation. By an atomic entity we shall understand an entity which
cannot be understood as composed from other entities. .

Example 5.4 Atomic Entities: We give a few examples: a (specific) pencil,
a (specific) chocolate bar, a (specific) person or a (specific) timetable. .

If T take the pencil apart, say into its lead core and wooden frame, then these
parts are not really proper entities. The taking apart may, for one, have broken
the lead core or damaged the wooden frame, and, in any case, the two parts
serve no function other than entering into an atomic whole. Similarly for a
person: Considering the head, limbs, etc., of a person as separate entities may
only make sense in surgery (organ transplantation, etc.), but would render
our concept of a whole person somewhat at risk. But this last example is
actually well chosen, as one of deciding whether some entity is atomic or not:
the decision seems, as here, to depend on the viewpoint on — the context in
which we view — the entity.



126 5 Phenomena and Concepts
5.3.2 Composite Entities

Characterisation. By a composite entity e we shall understand an entity
which can best be understood as composed from other entities, called the
subentities, eq, e, ..., e,, of entity e. .

Example 5.5 Composed Entities: We give a few examples: a (specific) rail-
way net (as composed from lines and stations), a (specific, say passenger)
train (as composed from passenger cars and engines (locomotives)) or a (spe-
cific) transport industry (as composed from the transport net, the transport
vehicles, and so on). .

5.3.3 Subentities

Characterisation. By a subentity we shall understand an entity which is a
component of another entity. .

Example 5.6 Subentities: We give a few examples: the lines and stations of
a (specific) railway net, the locomotive(s) and cars of a (specific) train, the
railway net of a (specific) railway system. .

5.3.4 Values, Mereology and Attributes

Examples 5.4-5.6 designated certain entities. For each of them we can speak
of a value of that entity. And for each of them we can speak of zero, one
or more attributes of that entity. A concept of mereology is associated only
with composite entities and then expresses how the entity is composed from
subentities.

Characterisation. By a value v, of an entity we shall loosely understand
the following: If the entity is an atomic entity, then the entire set of identified
attributes, ai_,as,,...,an,, of the entity. If the entity is a composite entity
(thus consisting, say, of subentities, e1, es,...,€,,) then there are three parts
to the entity value: how it is composed — its mereology m, the entire set
of identified attributes, ai,,as9,,...,an,, of the entity, and (inductively) the
identified values, ve, , Ve, , - - - , Ve, , Of Tespective subentities (e1,€ez,...,€y). =

Characterisation. By an attribute of an entity we shall loosely understand
a quality which cannot be separated from the entity. .

Example 5.7 Attributes and Values: The following are some of the attributes
of an atomic pencil entity: the physical length of the pencil, the materials
from which it is made, the colour of the (lead) pen in the pencil, all the other



5.3 Entities 127

attributes associated with the appearance of the pen (wear and tear), its
purchase price, etc. The value of the atomic pencil is thus the (mereological)
fact that it is an atomic entity, and the sum total of all the above (including
“etc.”) attributes. .

5.3.5 Entity Mereology

By mereology we understand a theory of part-hood relations. That is, of the
relations of part to whole and the relations of part to part within a whole.

Characterisation. By the mereology of an entity we shall loosely under-
stand whether it is atomic, or, when it is composite, then how it is made
composite (i.e., from which kind of subentities it is composed). .

Please note our attempt to distinguish between entities, entity values, entity
attributes and entity mereologies. Note that we use the term attempt. You
may rightfully claim that an entity, as observed, is equal, i.e., synonymous,
with its value.

Example 5.8 Mereology Facets of a Railway Net: The mereology of a railway
net transpires from the italicized terms. A net is composed from, and hence
decomposable into a collection of lines and a collection of stations. Any line
links exactly two distinct stations. Any station is linked to one or more distinct
lines. A rail line is composed from linear rail units. The connectors of a rail
unit are (here considered) inseparable from the pairs of rails (and the ties
and their nails, etc.) making up the main part of rail units. We have not said
anything above about how the collections form nets. But such formation rules
are part of the mereology. .

There is no end to the kind of attributes and the form of mereology one
may eventually associate with an entity. And for that matter, one can also
associate attributes and mereologies with functions and behaviours, as we shall
see. It is not productive, we strongly believe, to try enumerate all the possible
categories of mereologies and attributes — and hence information — that one
may associate with entities (functions and behaviours). One easily becomes
lost in philosophical discourse, cf. [340]. Our job is mainly constrained by
putting whatever we domain-analyse inside the computer. Hence, in the final
analysis we need just resort to what can be described in terms of abstractions
of computer data, i.e., values and types, computing routines (algorithms) and
computing processes. Thus we shall mainly focus on such mereologies which
can be informally, but precisely described, in natural English and which can
be mathematically described, or, further constraining the issue of mereologies,
which can be represented inside the computer.



128 5 Phenomena and Concepts
5.3.6 Mereologies and Attributes

So an entity e value v, is made up, in a loose sense, of (i) its mereology — (i.a)

whether atomic or (i.b) composed from subentities, and then how — (ii) entity

attributes, ai,,as9,,...,an,,, and (iii), when the entity, e, is composite, then

(inductively) the values, ve,, Ve, - . -, Ve, , Of these entities (eq, ea,...,em).
We shall model all this information as values of appropriate types.

5.3.7 Model-Oriented Mereologies

Volumes 1 and 2 of this series of volumes focused on property- and model-
oriented ways of specifying mereologies and attributes. In those volumes, ex-
cept in Chap. 2 in Vol. 2 (hierarchies and composition), we did not single out
the concept of mereology. But the model-oriented means of modelling compos-
ite entities as sets, Cartesians, lists, maps and functions had that intention.

5.3.8 Model-Oriented Attributes — An Aside
Atomic Types and Values

We could consider the constraints that might be put on a model-oriented
mereology for some entity either as a property of the mereology or as an
attribute of the entity. In addition to this, there are the end types of the
atomic entities that eventually make up any entity. The actual values of these
atomic types, in our view, constitute the attributes of the entity.

Other Attributes

But, as amply shown in, for example, Vol. 2, there are seemingly composite
types that model what we should like to classify as attributes rather than as
mereologies: functions that model temporal progression, e.g., traffic, functions
that model denotations, and so on. We shall therefore have to resign, for this
volume, and say: for a treatment of the proper modelling facets of entities we
must refer to the entirety of both Vols. 1 and 2 of this series.

5.3.9 Entity Properties

So an entity value is made up, roughly speaking, of its mereology, its attributes
and (if composite) the values of all subentities. We shall, for convenience, lump
the two facets, mereologies and attributes, into one concept: properties.



5.3 Entities 129
General

To repeat: physically manifest things have values. That is, we take some val-
ues to be values of physically manifest things. Physically manifest things, in
addition, have mereologies: the value of a physically manifest thing is the sum
total of its mereology and all its attributes. Properties (mereology and at-
tributes), like values (in general), are of types and are expressed in terms of
(usually nonthing) values.

“Thing” Properties

If it helps, you may divide the world of properties into two kinds: (i) thing
mereologies: a property of a usually composite manifest phenomenon, that it
is a manifest atomic or composite phenomenon itself; and (ii) attributes: a
property of a manifest phenomenon, which is not a manifest phenomenon. It
is more like a property. Both kinds of properties are represented by a type
and a value.

Example 5.9 “Thing” Properties: A particular railway net is a manifest phe-
nomenon. Any line or station, and, for that matter, any smallest rail unit and
many things in between, like platform or siding tracks, are also manifest phe-
nomena, and are thus thing properties of the net phenomenon. The curvature
of a rail unit, we may claim, is an attribute (i.e., also a property, a concept)
of that rail unit. The curvature itself cannot be taken apart from the rail
unit and manifested as such. Other examples of railway net attributes are:
the length of a line; that a unit of a line is closed for traffic; and that a line,
when open, can ever only be open in one direction (an up line, as opposed to
a down line, for lines connected to a station [into, respectively out from|). =

5.3.10 Real Examples and Our Type System

For those readers who have not studied previous volumes of this series we bring
in some formal examples of model-oriented type (and value) specifications.

Set Compounds

Example 5.10 Communities and Community Networks: Intra and Inter:
First an informal description: A community, C, consists of a finite set of one
or more people, P. A society, S, consists of a finite set of one or more disjoint
communities. An intracommunity network, Intra, consists of a finite set of one
or more people within a community. An intercommunity network, Inter, con-
sists of a finite set of one or more people, exactly one from each of a subset
of communities of a society.



130 5 Phenomena and Concepts

Then, we give a formal description.

Formal Presentation: Communities and Community Networks

type P
C = P-set
S = C-set

such that for any two distinct elements c;, ¢;
of some s in S they share no people in common
V s:S ¢ V ci,cj:C » {ci,cj}Cs A ciej = cincj = {}
Intra = P-set
such that for any ¢ in Intra there exists a com-
munity ¢ of some s in S of which 7 is a subset
V i:Intra e 3s:Se3Jdc:Ceces=iCc

Inter = P-set
such that for any ¢ in Inter of n elements there exist n
distinct communities ¢y, ¢a, ..., ¢, of some s in S such

that each member of ¢ = exactly a member of a respective ¢y,
V i:Inter  card i = n =
3 s,c8:S ¢ ¢sCs A card cs = n A unique(i,cs)
value
unique: Inter x S — Bool
unique(i,cs) =
I p:Pe:Cep €iAcé€csAunique(i\ {p}cs\ {c})
pre card i = card cs

Let suitably subscripted p’s designate distinct persons, then:

(1) {{p1,p2,p3},{p4,p5},{p6}}
(2) {p1,p2}, {p5}, {p6}
(3) {p1,p4}

Respectively designate a possible: (1) society, (2) three intracommunity net-

works and (3) an intercommunity network.

The mereology of the community, society, intracommunity and inter-
community concepts transpire from the above use of the powerset operator
(-set) and the “such that” constraints. The attributes of the community,
society, intracommunity and intercommunity concepts amounts to the car-

dinality of the involved sets.




5.3 Entities

We may thus use the following pseudo RSL-notation:

type
A
S = A-set

value
a,b,...,c:A
{19
{a,b,...,c}:S
set1Uset2:S
set1Nset2:S
set1Cset2:Bool
e € set:Bool

type designates type definitons
A is a sort, i.e., abstract type
S is a concrete type of sets of A elements

value designates value definitions

a,b,...,c are elements of A

empty set is in S

set of a,b,...,cisin S

set of elements, in S, of setl or set2 or both
set of elements, in S, of both setl and set2
set setl is a subset of set set2

element e is a member of set

131

The set operators can be “pronounced” as U: union, N: intersection, C (and
C): subset (proper subset), and €: is a member of.

Cartesian Compounds

Next we give an example illustrating Cartesian compounds.

in valve

height se/nsor

c
capacity 0 | e___________ .
pactty = Container
§ <--------- overflow pipe
777777777777777 Fluid
content f
| =" Valves
S\ N
1 | w =--*Intake/Outtake
I
—_—1 -
} . out
out valve

Fig. 5.1. A boxlike fluid container system



132 5 Phenomena and Concepts

Example 5.11 A Fluid Container Configuration: We illustrate a boxlike fluid
tank in Fig. 5.1. We have the physically manifest phenomena: The whole tank,
as illustrated, is a physically manifest phenomenon. We can, and will, claim
that so are the in(take), overflow and out(take) valves, the height sensor, and
the liquid (if any) in the tank. And there are the attributes: The height (of
the liquid) is an attribute, and so are the open/closed status of the in(take)
and out(take) valves.

We can speak of the “value” of the entire fluid container system as com-
posed from context and state components. The context components are the
fixed (valued) attributes of the physical fluid container: the width, depth and
overall height, i.e., the physical (volume) measurements, the height, over the
bottom of the container, of the in(take) valve, the height, over the bottom of
the container, of the out(take) valve, and the height, over the bottom of the
container, of the overflow pipe. The state components are the variable (val-
ued) attributes of the physical fluid container: the height, over the bottom of
the container, of the liquid level, and the open/closed states of the two valves.

We can formalise this:

Formal Presentation: A Fluid Container Configuration

type
LCS = CONTEXT x STATE

The fixed-valued context can be modelled as:

type
CONTEXT = VOL x VALS x OFLOW
VOL = wdth:Real x dpth:Real x hght:Real
VALS = in_ valve:(RealxDIAM) X out_valve:(Realx DIAM)
OFLOW = Real x Diam
DIAM = Real

Here we have “decorated” some type names with lowercase (selector) names,
like field identifiers of record (structures). Chosen properly, these names can
help us remember the relation between the formula and the actual phe-
nomenon, the system identification problem. The pairs RealxDiam desig-
nate the height of the centre of the (assumed) round valve or pipe above
bottom level, respectively its diameter. The variable-valued state can be
modelled as:

type
STATE = liquid:LEVEL x input_valve:OC x output_valve:OC
LEVEL = Real
OC == open | closed




5.3 Entities 133

OC stands for the open/close state of a valve. open and closed are atomic
tokens, i.e., identifiers. By being different they denote different “values”.
Let the various numerals below designate reals (of unit centimeters), then:

les: (ctx,sta)

ctx: (vol,vvs,ofw)

vol: (100.0,100.0,300.0)
vvs: ((250.0,5.0),(10.0,5.0))
ofw: (255.0,5.0)

sta: (221.0,(open,closed))

i.e., (((100.0,100.0,300.0),((250.0,5.0),(10.0,5.0)),(255.0,5.0)),(221.0,(open,closed)))
exemplifies a configuration.

We thus consider the fluid container system to be an atomic entity. The
attributes of the fluid container system amount to container width, depth and
height, to valve height positions and diameters, to the open or closed state of
the input and output valves, and to the height of the fluid. .

List Compounds

The next example illustrates the list compound.

Example 5.12 Train Journeys: A train journey is an ordered list of two or
more station visits. A station visit is a grouping of arrival time, station and
platform names, and departure time.

We can formalise this:

Formal Presentation: Train Journeys

type
Time, Sn, Pn
Journey = Sta_ Visit*
Sta_ Visit = arrival:Timexsta_name:Snxpla_name:Pnxdept:Time

Time, Sn and Pn are further unexplained sort names (i.e., abstract type
names).

The list (and Cartesian) expression:
< (a1,s1,p1,d1), (az, 52,2, d2), (as, $3,p3, d3), (a4, 4,pa, ds) >

where suitably subscripted a,s,p and d stand for, respectively, arrival times,
station names, platform numbers (or names), and arrival times, designate a
journey starting at time d1, ending at time a4, from station sl via station s2
and s3, in that order, and ending at station s4.



134 5 Phenomena and Concepts

The mereology of the train journey concept transpires from the above use
of the list and Cartesian type constructors (*, x). We thus consider the train
journey concept to be a composite entity whose atomic subentities are station
visits. We consider only one attribute of a train journey, namely its number of
station visits. The attributes of atomic station visits are arrival time, station
name, platform number and departure time. .

Some list notation may be in order:

type

[1] A, fL = A* iL = A¥

value

[2] a,b,c:A, £:AL

[3] (a,b,c):fL

[4] (a)™¢, £~ (a), hd {, t1/, elems/, len?, inds ¢

expresses [1] the sort A and the definition of the concrete types of finite,
respectively possibly infinite lists over A elements; [2] that a, b, and ¢ are
arbitrary A elements, and that £ is an arbitrary fL. element; [3] the enumer-
ation of a simple list; and [4] the operations: the concatenation to the front,
respectively to the end of a list, the head of a nonempty list (its first element),
the tail of a nonempty list (the list of all its remaining elements, if any), the
set of all distinct list elements, the length of a list and the (possibly empty)
set of integer indices into a list. If nonempty, then the index set integers goes
from 1 to n, where n is the length of the list.

Map Compounds

We give an example illustrating map compounds.

Example 5.13 Computer File Directories: This example is a “classic”. A
directory consists of zero, one or more uniquely named files, and zero, one
or more uniquely named directories. So directories map file names into files
and directory names into directories. Files, file names and directory names
are further unexplained entities.

We can formalise this:

Formal Presentation: Computer File Directories

type
File, Fn, Dn
DIR = (Fn + File) x (Dn + DIR)

Here A + B denotes a map from unique A’s to not necessarily unique B’s. A
map is like a function: Given a map m (say in A » B) and an a in A, such
that a is in the definition set of m, then m(a) (m applied to a) is some b.




5.3 Entities 135

Example directories are:

L)
fn—file],[])

({

({

([fn—file],[dn—([],[])])

([fnl—filel,fnl—filel ],[dnl—([],[]),dn2—([fn—file],[])])
([fnl—filel,fnl—filel |,[dnl—([],[]),dn2—([fo—file],[dn—([],[]) ]) ])

Here fn, fnl and fn2 are file names; file, filel and file2 are files and
dn, dnl and dn2 are directory names. The general map expression
[al—bl,a2—b2,...,an—bn ], where all al, a2, ... and an are distinct, denotes
a map from ai to bi.

The mereology of the directory concept transpires from the above use
of the map and Cartesian type constructors (7, x). The attributes of a
directory is the number and name of files and the number and names of
subdirectories.

Some map notation may be in order:

type

[1] A, B

[2] M=A » B

value

[3] a:A, b:B

[4] m U[a—b]: M, mfla—b]: M, m\{a} : M

The above expresses: [1] abstract types A and B; [2] concrete type M as a
set of maps from A into B; [3] arbitrary naming of an element, a, of A and
an element, b, of B; [4] the joining of a new mapping [a—b] to a map m;
the replacement of some mapping, say [a—b’] in m by the mapping [a—b],
where it is assumed that b is different from b’; and the removal of a mapping
[a—b] from a map m (for any b). The U operator is commutative: mUm’ =
m’Um. The operators can be “pronounced” as U: merge, 1: override, and \:
restrict.

5.3.11 A Type System

Thus we can summarise the type notation that we shall be asking the reader
to use. There are simple type names (i.e., type expressions):

type expressions:
Bool, Int, Nat, Real, Char
Tn_1,Tn_2, ..., Tn_m



136 5 Phenomena and Concepts

Here TN_i are user-chosen identifiers (that do not coincide with other iden-
tifiers). Bool, Int, Nat, Real and Char denote the classes of Boolean truth
values, integers, natural numbers, reals and character (symbol)s.

There are composite types names (i.e., type expressions):

type expressions: meaning
A-set, A-infset finite, resp. possibly infinite, sets
AxB Cartesians
A*, A¥ finite, resp. possibly infinite, lists
A = B finite maps (from A into B)
A—-BASB total, resp. partial, function spaces
A|B union type of either A or B

Here A and B are any user-chosen identifiers. A-infset includes finite sets,
i.e., A-set. A¥ includes finite lists, i.e., A*.
And there are type definitions:

type definitions: annotation:
A B, C, .. sorts
D = A-set, E = A-infset D (E): (also in)finite sets
F=AxBxC F: (triple) Cartesians
G=A » B G: maps
H=A-B,J=AZSB H (J): total (partial) functions
K == alpha | beta | ... | omega discriminated union of tokens

5.3.12 Type Constraints

In Example 5.10 the informal text lines between the formula lines illustrate
the idea of a type constraint. These type constraints can be considered part
of the mereology of the entities modelled.

Characterisation. By a type constraint we shall loosely understand some
text which delimits a prior type description to not contain all the values
otherwise allowed just by that prior type description. .

Example 5.14 Type Constraints: We will illustrate some type constraints
that should have been expressed in earlier examples:

Liquid container system: (Example 5.11.) The in(take) valve must be
placed higher than the out(take) valve. The liquid height cannot be lower
than the level of the out(take) valve minus the diameter of that valve. The
liquid height cannot be higher than the level of the overflow pipe plus/minus
the diameter of that pipe. The diameter of the out(take) valve should stand
in the following relation to the diameter of the in(take) valve: ... (etc.!).

Train journeys: (Example 5.12.) Arrival times should be before departure
times at any one station, and their difference should be a minimum of ¢,



5.3 Entities 137

minutes and a maximum of ¢p; minutes, possibly depending on which station
these times relate to. Departure times at one station should be before arrival
times at any next station, and their difference should be commensurate with
the normal travel time between such stations. The sequence of station names
must be commensurate with a route through the railway net.! No station
name can occur more than once. (That is, no cycles.)

Computer directories: (Example 5.13.) One might envisage some strictly
not necessary constraints on directories: At any level of a directory, file names
(at that level) must be distinct from directory names (at that level). Given a
directory A = (f,9), let a valid path p of directory names (of that directory
A) be a nonempty sequence (i.e., a list) of directory names such that the first
directory name, d, of path p, say p=(d)"p’, is indeed the name of a directory
(A7) of §, and such that if the path p is of length two or more, the remaining
path p’ is a valid path of A’. .

As the last example shows, it may sometimes be useful to express the con-
straints by a bit of set, Cartesian, list, map, and, as we shall soon see, function
notation. Hence we presented some of that set, Cartesian, list and map nota-
tion above.

5.3.13 Summary: Principles, Techniques and Tools

Principles. The principle of analysing and modelling entities is as follows:
First decide whether an entity, that is, whether values of a class, i.e., type,
of entities are atomic or composite. Then, for atomic entities decide on which
one or more attributes these atomic entities have. And, for composite entities,
decide on which of the following two aspects these composite entities have:
their mereology, i.e., their compositional attributes and their subentities. =

Recall that the attributes of a composite entity have two facets: there are the
attributes which indicate how the composite entity is composed; and there
are other, we could call them the auxiliary attributes. The compositional
attributes are expressed by saying that the composite entity consists of a
set or a Cartesian or a list or a set of uniquely identified, that is, a map of
subentities. The auxiliary attributes of a composite entity are very much like
the attributes of atomic entities: they characterise the values of the entities
as such, less their possible subentities.

Techniques. Entities are modelled as follows: Atomic entities by stating an
arbitrary aggregation of possibly constrained types (say sorts), and composite
entities by stating two things: an arbitrary aggregation of possibly constrained
types (the auxiliary attributes, e.g., sorts), and a specific set, Cartesian, list,
map (or function) composition of types (the compositional attributes). .

! That is: Station names must name stations of the rail net, and the journey route
must be a route of that net.



138 5 Phenomena and Concepts

Tools. Models of entities are, for example, expressed using the RSL abstract
type (sort) or concrete type concept. .

5.4 Functions

Characterisation. By a function we shall loosely understand something, a
mathematical quantity (that no one has ever seen), which when applied to
something (else), called an argument of the function, yields something (yet
else), called a result of the function for that argument. If the function is
applied to something which is not a proper argument of the function, then
the totally undefined result, called chaos, is yielded. .

The question, for us, when confronted, as we are, with phenomena of one kind
or another, is to decide which phenomena we should model as functions, and
which we should not.

Example 5.15 Functions: We give some rough sketches of examples:

(i) To deposit savings in a savings account can be viewed as a function:
the deposit function is applied to two arguments, the deposit amount and the
account balance. The function yields a new balance.

The above is an appropriate choice of argument and result types if we
consider only the account balance (and the amount deposited). If, however,
we consider the entire bank (and the amount deposited), then the deposit
function is more appropriately applied to the following arguments, the bank,
the client name, the client account number (hence the account balance) and
the deposit amount, and yields a new bank.

If you wish to consider some response to the client, for example that the
deposit transaction succeeded, or did not succeed, depending, for example, on
the validity of client name and account number, then you may wish to add
a further, the response, component to the result, for example, transaction
succeeded or transaction did not succeed.

Another example:

(ii) Inquiring about and actually buying an airplane ticket is abstracted
as a function. For example, this can be viewed as: The purchase function is
applied to three arguments, travel information about from where to where,
on which flight, etc., the airline flight reservations register, and the price (in
terms of monies). This function yields a “paired” result: the ticket, and an
updated flight reservations register.

Another example:

(iii) To unload a ship in harbour at a quay can be considered a function.
For example, viewed as: The unload function is applied to two (composite)
arguments, a ship (loaded with cargo destined for) the quay of a harbour.
This function yields a “paired” result: the ship less its unloaded cargo, and
the quay “plus” the unloaded cargo.



5.4 Functions 139

Yet another example:

(iv) To admit a patient at a hospital can be viewed as a function. For exam-
ple, viewed as, the admission function is applied to a number of arguments,
the patient, the hospital (not registering that patient), the receiving medi-
cal doctor, nurse, etc. This function yields a “composite” result: an updated
hospital (now registering that patient).

A final example:

(v) To land an aircraft can be viewed as a function. For example, viewed
as, the touchdown function is applied to two arguments, the aircraft (which
is in a state of flying), and the runway (which is assumed free for landing,
i.e., reserved for “that” aircraft). This function yields a “composite” result:
the aircraft (which is now in a state of running along the runway), and the
runway (which is occupied by “that” aircraft). .

An important task in describing, prescribing or specifying (domains, require-
ments, respectively software design) is that of identifying all relevant func-
tions, of (i) naming them, their (ii) arguments and (iii) results, and of (iv)
defining what they “compute”. In the above example we have covered (i-iii)
but not (iv).

5.4.1 Function Signatures

Characterisation. By a function signature we shall understand the follow-
ing composite information: The name of the function, a sequence of names
of the types of the arguments and a sequence of names of the types of the
yielded results. .

A function signature is not a definition of the function. But it is a significant
indication of what the function “appears to be about”.

Example 5.16 Function Signatures: The signatures corresponding to the
functions mentioned in Example 5.15, are:

(i) Function name: deposit; argument types: amount and balance; and
result type: balance.

(ii) Function name: ticket_purchase; argument types: travel information,
reservation register and price; and result types: reservation register and ticket.

(iii) Function name: unload; argument types: ship and quay; and result
type: ship, and quay.

(iv) Function name: admission; argument types: patient, hospital and med-
ical staff; and result type: hospital.



140 5 Phenomena and Concepts

(v) Function name: touchdown; argument types: aircraft and runway, and
result types: aircraft and runway.

Formal Presentation: Function Signatures

We formalise the above:

type
Amount, Balance
TravInfo, ReservReg, Price, Ticket
Ship, Quay
Patient, Hospital, MedicalStaff
Aircraft, RunWay
value
deposit: Amount xBalance — Balance
ticket_purch: TravInfoxReservRegxPrice — ReservRegx Ticket
unload: ShipxQuay — Quay x Ship
admission: Patient x Hospital x MedicalStaff — Hospital
touch down: Aircraftx RunWay — Aircraft x RunWay

Observe that there are no “hidden” types. If we had programmed the above,
say in some imperative programming language, then some of the types would
be omitted since the corresponding argument values and/or result component
values would be kept, respectively stored in global variables. .

Once a function is rough-sketch identified the developer can determine, at
least tentatively, the function signatures. To do so does indeed often re-
quire detailed considerations. Delineating the function signatures focuses the
developer’s mind. Many issues surface during this preliminary rough-sketch
step. Writing down, systematically, whether informally only, or also formally,
tends to further focus the development: step-by-step “achievements” can be
recorded!

5.4.2 Function Definition

We have not spent much time or space, above, but we have indeed mentioned
the concept of function definition.

Characterisation. By a function definition we shall understand a descrip-
tion, a prescription, or a specification which defines the relationship between
arguments and results of a function. .

Example 5.17 Function Definition: We exemplify function definitions for
some of the functions of Examples 5.15 and 5.16.



5.4 Functions 141

(i) The deposit function, when applied to an amount (to be deposited)
and a(n account) balance, yields a new balance (of that account) which is the
sum of the original balance and the deposited amount.

(ii) The air ticket purchase function, when applied to some (relevant) travel
information, an airline reservations register, and a(n assumed ticket) price,
yields a new airline reservations register and a ticket such that the ticket
satisfies the travel information and the ticket (i.e., the reservation that it
designates) is properly reflected in the yielded, i.e., new airline reservations
register.

More information must be given about the three entities: travel informa-
tion, airline reservations register and ticket, in order to define what is meant
by “satisfaction” and “proper reflection”.

(iii) The unload ship function, when applied to a ship and a quay, yields
(1) a(n updated) quay which, in addition to the cargo that was already on the
quay before unloading, now also stores that cargo from the ship, which was
destined for that quay, and (2) an updated ship that is less that cargo that
has been unloaded, and only less that cargo!

Formal Presentation: The unload Function Definition

type
Sn, Qn /* Ship and Quay Designators */
C /+ Container */
variable
s_c:C-set
q_c:C-set
value
q:Qn
is_destined: Qn x C — Bool
unload: C-set x C-set — C-set x C-set
unload(scs,qcs) as (scs’,qes’)
post
scs \ scs’ = qes’ \ qes
V c:Cec € scs \ ses’ = is_destined(qn,c) A
~F c:C » ¢ € scs’ A is_destined(qn,c)

The cargo removed from the ship is the cargo added to the quay. Only and
all such cargo was removed from the ship that was destined for that quay. =

We observe that attempts to complete function definitions may be frustrated
by lack of sufficient details about the types and attributes of arguments and
results. Another way of formulating the last sentence above is: Defining func-
tions help us to “discover” the type and attributes of arguments and results,
the possible need for auxiliary functions (viz.: ‘satisfaction’ and ‘proper re-



142 5 Phenomena and Concepts

flection’ in Example 5.17 item (ii)). Often one must be prepared to revise
function signatures when attempting to complete function definitions.

5.4.3 Algorithms

Care must be taken to distinguish between specifying function definitions,
and defining algorithms, including coding programs that implement function
definitions. Function definitions are here thought of as being abstract, as em-
phasising what is to be computed, in contrast to algorithms (and code) which
emphasises how a computation might achieve what the function definitions
specify.

Characterisation. By an algorithm we shall understand a step-by-step spec-
ification which can serve as prescription for computation by a mechanical
device, i.e., a computer, such that that computer computes what a function
definition otherwise has defined. .

Example 5.18 Algorithm: We finally indicate rough sketches for algorithms
for computing the deposit function (item (i)), respectively the ship unload
function (item (iii)), of Example 5.17.

(i) A deposit algorithm:

Let the amount to be deposited be held in a variable vy, and let the initial
contents of vy be d.

Let the balance of the account into which a deposit is to take place be
held in a variable v, and let the initial contents of v, be b.

Now add the contents d of vy to the contents b of vy, yielding d + b as the
new contents of variable vy.

Nothing is said about the final contents of vg.

(iii) An unload algorithm:

Let the cargo area of ship s be represented by a variable s.. The contents
of s is assumed to be a set of containers {s.,, S¢,, - - - ; Sc,, }-

Let the cargo area of the quay, ¢, at which the ship is docked be represented
by a variable g.. The contents of ¢. is assumed to be a set of containers
{8e1scsr- -+ > Gem }-

Let an auxiliary predicate function is destined apply to a quay designator
g and ship container s.,, and let it yield true if that container is destined for
quay ¢, false otherwise.

Now, for every ship s container s, of s. for which ¢(q, s.;) holds, remove
S¢; from s. and add s.; to gc.

Formal Presentation: An unload Algorithm

type
Sn, Qn /* Ship and Quay Designators x/
C /+ Container */



5.4 Functions 143

variable
s_c:C-set
q_c:C-set
value
q:Qn
is_destined: Qn x C — Bool
unload: C-set x C-set — C-set x C-set
unload(s_c,q_c) =
while 3 ¢:Cec € s_c A is_destined(qn,c) do
let c:Cec € s_c A is_destined(qn,c) in
s c:=s c\{c} g c:=q cU{c}
end end

As long as there exists a container ¢ in s, destined for quay q in parallel, at
the same time, remove (\) ¢ from s. and join (U) ¢ to g..

Our informal algorithm presentation could have been presented in the form
of a pseudo-program:

action:
name: unload
global variables:
q: Quay_name,
s_cs: Ship_ containers,
q_cs: Quay_ containers.
pseudo-program:
while there exists containers in s_cs destined for quay q
do
let ¢ be a container in s_cs destined for g:
remove ¢ from s_ cs;
add c to q cs
end

Pseudo-programs can be expressed in a rich variety of forms. .

We leave it to the reader to examine the three definitions, that of the unload
function, that of the unload algorithm and that of the unload pseudo-program.
We believe that the difference between those definitions shows aspects of the
difference, in general, between function definitions and algorithm specifica-
tions.



144 5 Phenomena and Concepts

5.5 Events and Behaviours

To properly explain the concepts of events and behaviours we first, very briefly,
review the concepts of states and actions.

5.5.1 States, Actions, Events and Behaviours

We need to characterise a number of concepts. These concepts are concepts
of domain, of requirements and of computing.

Characterisation. By a state we shall loosely understand a collection of one
or more entities whose value may change. .

Characterisation. By an action we shall loosely understand something
which changes a state. .

Characterisation. By an event we shall loosely understand the occurrence
of something that may either trigger an action, or is triggered by an action,
or alter the course of a behaviour, or a combination of these. .

Characterisation. By a behaviour we shall loosely understand a sequence
of actions and events. .

Example 5.19 States, Actions, Events and Behaviours: We show some ex-
amples where the four concepts “intermingle”. The below examples relate to
subexamples (i, ii, iii) of Examples 5.15-5.18.

(i) Clients and bank accounts:

The balance of some client’s bank account forms a state.
Carrying out the functions of depositing (and withdrawing) monies into
(respectively from) the account amounts to actions.

e The decisions by a client to make deposits and withdrawals amount to
events that trigger respective actions. Assuming that there is a lower credit
limit, the situation where a withdrawal action results in a bank account
balance that exceeds the credit limit amounts to an event. That event may
or may not trigger an action, or may do so in a delayed fashion.

e The sequence of a specific series of deposit and withdrawal events and
actions forms a behaviour. For any given client and bank account many
such behaviours are possible.

(ii) Airline ticket purchase:

e The airline seat reservation register forms a state.
e Carrying out the functions of actually buying a (or cancelling an already
bought) ticket amounts to actions.



5.5 Events and Behaviours 145

The decisions to buy (reserve without paying, or actually reserve and pay),
respectively cancel, a ticket are events that trigger respective actions. Hav-
ing reserved, without actually paying for a ticket, and then not paying for
the ticket before a certain date, amounts to an event, which may, or may
not trigger an action.

The sequence of a specific series of one or more ticket purchases and zero,
one or more ticket cancellation events and actions forms a behaviour. For
any given airline reservation system and potential passengers many such
interleave and/or concurrent behaviours are possible.

(iii) Ship unloading and quay loadings:

The ship cargo and the quay cargo storage can be considered either as a
combined state, or, respectively, as the states, of a ship and a quay.
Carrying out the function of unloading a ship amounts to an action.

The decision to start unloading amounts to an event that triggers the

unload action. The phenomenon that there is no more cargo to unload

amounts to an event, which may or may not trigger an action.

Behaviours:

* The quay behaviour: Seen from the point of view of a quay, the se-
quence of a specific series of unload events and actions, with respect to
possibly different ships, forms a behaviour. For any given quay many
such behaviours are possible.

* The ship behaviour: Seen from the point of view of a ship, the sequence
of a specific series of unload events and actions, with respect to possi-
bly different quays, forms a behaviour. For any given ship many such
behaviours are possible.

* The combined quay/ship behaviour: Any set of pairs of commensurate
quay and ship behaviours forms a behaviour.

By a pair of commensurate behaviours we mean one in which corresponding
pairs of unloads from ships and loads onto quays are matched. .

5.5.2 Synchronisation and Communication

From the above we observe two closely related phenomena: That behaviours
may communicate, and that the communications may take place synchronously,
or asynchronously.

Characterisation. By communication we loosely mean the exchange of en-
tities between behaviours, from one to the other, or both ways. .

A communication may involve one “sender”, i.e., output, and one or more
“receivers”, i.e., inputs.



146 5 Phenomena and Concepts

Characterisation. By synchronous communication we loosely mean the si-
multaneous communication between behaviours of one entity from one sender
to one or more receivers. .

Characterisation. By a shared event we mean the simultaneous occurrence
of one output event in one sender behaviour with its one or more synchronously
communicating input events in one or more receiver behaviours. .

Thus synchronous communication can be said to be via a zero-capacity buffer
between the sending and the receiving behaviours. Whether the synchronous
communication is between one sender and one receiver, or several receivers
is not stated here — but any description (prescription, specification) must
state that, as it must state how the identification of the sending and receiving
behaviours is accomplished. The sender behaviour is thus expected to be “held
up” from the moment it wishes to synchronously communicate till the moment
all communications have been accomplished.

Characterisation. By asynchronous communication we shall loosely under-
stand the possibly delayed, e.g., buffered, communication between behaviours
of one entity from one sender to one or more receivers. .

Thus asynchronous communication can be said to be via a non-zero-capacity
buffer between the sending and the receiving behaviours. Whether the buffer
acts like a queue or like a heap we do not specify here — but any description
(prescription, specification) must state that, as it must state how the identi-
fication of the sending and receiving behaviours is accomplished. The sender
behaviour is thus expected to be able to proceed with its “own” actions once
it has placed its asynchronous communication.

Characterisation. By synchronisation we shall loosely understand the ex-
plicitly expressed (i.e., controlled) simultaneous occurrence of an event in two
or more behaviours. .

Thus we consider the output communication in (i.e., from) one sender be-
haviour to designate the same event as the simultaneous input communica-
tion(s) in one (or more) receiver behaviour(s).

We say that synchronisation reflects shared events.

Example 5.20 Communications: We continue our line of examples with
subexamples (i, iii, v) of Examples 5.15-5.19.

(i) When the bank account holder, i.e., the client, hands over the monies
to be deposited to the bank teller, then we say that an output/input event
has occurred, that the monies are being communicated and that the commu-
nication is synchronous.



5.5 Events and Behaviours 147

(iii) When a ship unloads a (piece of) cargo (i.e., a container) onto a quay,
then we say that an output/input event has occurred, that the cargo is being
communicated and that the communication is synchronous.

(v) When a landing aircraft touches the ground, then we say that an out-
put/input event has occurred, that the concept “touchdown” is being com-
municated and that the communication is synchronous. .

5.5.3 Processes

Characterisation. By a process we shall loosely understand the same as a
behaviour. .

We shall, at times, make a pragmatic distinction: behaviours are what we
observe, in the domain, while processes are what computers facilitate. We may
implement a few, many, or all observable actions and events of behaviours in
terms of computer processes.

Example 5.21 Processes: We continue subexample (iii) of Examples 5.15—
5.20.

We focus just on the ship unloading example: We now consider the un-
loading as that of the interaction between two behaviours, two processes: ship
and quay. The ship recurrently examines all its cargo. For every cargo des-
tined for a designated quay, that cargo is removed from the ship’s cargo, and
communicated to the quay. When it contains no more such cargo, the ship
“goes on to do other business” — which is not specified. The quay recurrently
accepts all communications of cargo, from whichever ship. And it keeps doing
that “ad infinitum”!

— Formal Presentation: Ship Unloading and Quay Loading Processes

type
C, Qn
channel
sq:C
value
qn:Qn

is_ destined: Qn x C — Bool

ship: C-set — out sq Unit
quay: C-set — in sq Unit

ship(cs) =
if 3 c:C « ¢ € cs A is_destined(qn,c)




148 5 Phenomena and Concepts

then
let c:C » ¢ € cs A is_destined(qn,c) in
sq!lc;
ship(cs\{c}) end
else skip
end

quay(cs) = let ¢ = sq ? in quay(cs U {c}) end

Please observe the close correspondence between the informal and the formal
explication above. ]

5.5.4 Traces

Characterisation. By a trace we shall loosely understand almost the same
as a behaviour: a sequence of actions (usually action identifications) and (usu-
ally action identifications) events of a single process.

Since, say, the parallel composition of two or more behaviours also forms
a behaviour, hence a process, we need to clarify the notion of trace for such
composite behaviours. Either, in a trace, we focus on the events shared be-
tween two or more behaviours, or we also include the actions of each of these
behaviours. .

Example 5.22 Traces: We continue subexample (iii) of Examples 5.15-5.21.

The event trace of a ship in harbour, more precisely, during unloading,
is a finite sequence of zero, one or more unload events. The event trace of a
harbour quay, with respect to ship unloadings, is an indefinite length sequence
of zero, one or more unload events. .

5.5.5 Process Definition Languages

The formal part of Example 5.21 illustrated textual (RSL/CSP) definitions of
processes [168,301,311]. RSL/CSP was introduced in Vol 1, Chap. 21, and was
used extensively in Vol. 2.

There are also a number of two-dimensional, diagrammatic ways of “ren-
dering” the progress and interaction of two or more processes. These were
covered extensively in Vol. 2’s Chaps. 12-14: Various forms of Petri nets (con-
dition event nets, place transition nets, and coloured Petri nets) [196, 273,
293-295], message [182-184] and live sequence charts [73,149,203] (MSCs
and LCSs) and statecharts [144, 145,147,148, 150]. Variations of these dia-
grammatic forms are currently embodied in UML [44,193, 264, 303].



5.6 Choice on Modelling Phenomena and Concepts 149

5.6 Choice on Modelling Phenomena and Concepts

On one hand, we have a universe of discourse conceived of in terms of phe-
nomena and concepts. On the other hand, we have some principles, techniques
and tools for modelling phenomena and concepts.

Sections 5.3-5.5 have covered the model concepts of entities, functions,
events, and behaviours. Confronted with a description (prescription, speci-
fication) task there are a number of modelling questions. Some we covered
in earlier volumes of this series of software engineering textbooks. Some of
these will be covered in this section. Others will be covered in several of the
remaining chapters of the present volume.

5.6.1 Qualitative Characteristics

In which order do we describe (prescribe, specify) phenomena and concepts?
Do we model them according to whether they are modelled as entities, or
functions, or events or behaviours? The answer to these questions is relatively
simple: It depends on which phenomena and concepts that best “characterise”
the universe of discourse being described (prescribed, specified)!

5.6.2 Quantitative Characteristics

Thus the describer (prescriber, specifier), i.e., the software engineer, is con-
fronted with another question: What does it mean that a phenomenon or con-
cept characterises a universe of discourse “better” than another phenomenon
or concept? The answer is, basically, a matter of style and of taste. But we
shall try formulate some guidelines.

To do so we introduce a notion of universe of discourse “intensity”.

The background for our “intensity” notion is the qualitative characterisa-
tion of a phenomena or a concept as being (modelled as):

an entity

a function
an event

a behaviour

Correspondingly we postulate that one can quantitatively characterise a phe-
nomenon or a concept as one or more of:

information-intensive
function-intensive
event-intensive
process-intensive

Usually it only makes sense to speak of intensity if a phenomenon or a concept
is predominantly one of the above, or, at the very most, two. If it is three, or
all, then we would claim that it has no intensity!



150 5 Phenomena and Concepts
Information-Intensive Universe of Discourse

Characterisation. By a universe of discourse being said to be information-
intensive we roughly mean that entities, their number and type play a central
role in understanding that universe of discourse. .

Example 5.23 Information-Intensive Phenomena:

An insurance system, with its records of insurances, claims and decisions
(wrt. claims), can be said to be an information-intensive system.

A cadastral and cartographic system, with its many maps on properties
and geographical areas, can be said to be an information-intensive system.

The military intelligence agency of a country, with its many reports on
supposed (military strengths and weaknesses, strategies and tactics, etc., of)
enemies, can be said to be an information-intensive system. .

Information-intensive systems — when partly (or wholly) computerised —
typically give rise to information management systems based on extensive
data base systems, document-handling systems and data communication.

Function-Intensive Universe of Discourse

Characterisation. By a universe of discourse being said to be function-
intensive we roughly mean that functions, their definition, their application
and their composition, play a central role in understanding that universe of
discourse. .

Example 5.24 Function-Intensive Phenomena: Most resource planning,
scheduling and allocation, and rescheduling systems (say, for production and
for transport) can be said to be function-intensive. .

Function-intensive systems — when partly (or wholly) computerised — typi-
cally give rise to operations research-based optimisation software.

Event-Intensive Universe of Discourse

Characterisation. By a universe of discourse being said to be event-intensive
we roughly mean that events, that is, the synchronous or asynchronous ex-
change of entities between behaviours, play a central role in understanding
that universe of discourse. .

Example 5.25 Event-Intensive Phenomena:
A railway train traffic system with its movement of trains, their arrival
and departure from stations, their reaching intermediate positions along a



5.6 Choice on Modelling Phenomena and Concepts 151

line, and the attendant rail-point interlocking and signal settings, can be said
to be an event-intensive system.

Similarly for air traffic systems: The arrival and departure of aircraft, in
and out of ground, approach and regional monitoring and control zones, can
be said to be event-intensive systems.

Telephone exchange systems, with the handling of single- and multiple-
party telephone calls, hang-ups, simple service-oriented inquiries, etc., can be
said to be event-intensive systems. .

Event-intensive systems — when partly (or wholly) computerised — typically
give rise to real-time, often embedded and safety-critical software systems.

Process Intensive Universe of Discourse

Characterisation. By a universe of discourse being said to be process-
intensive we roughly mean that behaviours play a central role in understand-
ing that universe of discourse. .

Example 5.26 Behaviour-Intensive Phenomena:

Freight logistics systems with their handling and actual flow of freight by
senders and logistics firms, and from senders via logistics firms, transport hubs,
and transport conveyors to receivers, can be said to be behaviour-intensive
systems.

Healthcare systems, with their flow of people (patients and staff), material
(medicine, etc.), information (patient medical records), and control, can be
said to be behaviour-intensive systems.

Harbours, railway stations and airports, with their handling of ship, train
and aircraft arrivals and departures, assignment to quays, platforms and gates,
unloading and loading, and servicing of a multitude of kinds: baggage, cater-
ing, fuel, cleaning, etc., can be said to be behaviour-intensive systems. .

Process-intensive systems — when partly (or wholly) computerised — typi-
cally give rise to distributed systems.

Discussion. Since events and behaviours are closely related, we shall find
that both event- and behaviour-intensive systems give rise to implementations
in terms of processes. .

5.6.3 Principles, Techniques and Tools

We close this chapter by basically presenting the methodological consequences
of what we have covered and how we covered it! We shall use the term describ-
ing, in this section, synonymously with the terms prescribing and specifying;
likewise for the terms derivable from description.



152 5 Phenomena and Concepts

Principles. When describing a universe of discourse focus on identifying and
describing phenomena and concepts. .

Discussion. If what you think is a phenomenon, i.e., a physically observable
“thing”, but you find that it does not fit in “any way, shape or form” into
the entity, function, event and behaviour “mold” set out in this chapter, then
what you have identified may not be a proper phenomenon, and similarly for
concepts. .

Techniques. Analyse the identified phenomenon or concept and decide
whether to model as an entity, including as a set (i.e., type) of entities, or
as a function, or as an event, or as a behaviour. Then use the elsewhere given
techniques (and tools) for respectively modelling entities, functions, events
and behaviours. .

Discussion. There are some dualities. An entity can possibly be modelled as
a function, or an entity can possibly be modelled as a behaviour, etc.

We can hint at this as follows.

Entity as function: you may consider the phenomenon, p, for example,
modelled as an integer, as an entity, i,, or as the function, f,. As an entity
ip denotes a value. As a function f, is to be applied to an empty argument,
fp(), and then yields the value.

Entity as behaviour: you may consider the phenomenon, p, for example,
modelled as an integer, as an entity, i,, or as the behaviour, b,. As an entity i,
denotes a value. As a behaviour by, is a behaviour composed, in parallel, with
that of the phenomenon, i.e., an inquiring behaviour, g,,, which wishes to know,
to use, the value of the integer phenomenon. This is modelled as follows: There
are two behaviours, the inquiring behaviour ¢,, and the integer behaviour b,,.
To ascertain the value of p behaviour ¢, synchronises and communicates with
by, by requesting the value of the integer phenomenon and obtaining, in return,
that value.

Thus, whether we model a phenomenon, that appears to be an entity, as an
entity, or as a function, or as a behaviour, is not always that straightforward.
If the phenomenon is otherwise simple, i.e., is not subject to the constraints
listed for the next two alternatives, then model it as an entity. If instead the
phenomenon is shared among many behavioural phenomena then model it as
a behaviour. .

Example 5.27 Shared Documents: A (perhaps even information-intensive)
phenomenon can be thought of as a large collection of uniquely identified doc-
uments. Users of these documents may wish to read, copy or edit some doc-
ument(s). We consider these users as a set of many behavioural phenomena,
hence we model the document collection as a behaviour. This document col-
lection behaviour is centred around an internal entity: the document storage.
User behaviours now communicate with the document collection behaviour, by



5.7 Discussion 153

requesting copies of documents for reading, and hence no return, by request-
ing copies of documents for copying, and hence no return, or by requesting
original documents for editing, and hence for subsequent return. Requests are
communicated from a user behaviour to the document collection behaviour.
Responses are communicated from the document behaviour to the requesting
user behaviour. Document returns are communicated from a user behaviour
to the document collection behaviour. .

Tools. The tools for modelling entities are those of sorts and concrete types,
as well as axioms, i.e., constraints over these. The tools for modelling func-
tions are those of function signatures and function definitions, whether by
explicit (i.e., function body) definition, or by pre/postconditions, or by ax-
ioms. The tools for modelling behaviours are either textual or diagrammatic,
or a combination of these. Typically the textual tool is, as in these volumes,
the RSL/CSP specification language. The diagrammatic tools are either one
or more of various forms of Petri nets (condition event nets, place transition
nets, and coloured Petri nets), cf. Vol. 2, Chap. 12 [196,273,293-295], mes-
sage [182-184] and live sequence charts, cf. Vol. 2, Chap. 13 [73,149,203] and
statecharts, cf. Vol. 2, Chap. 14 [144,145,147,148,150]. .

5.7 Discussion

5.7.1 Entities, Functions, Events and Behaviours

We have postulated that the concepts of entities, functions, events and be-
haviours offer a suitable complement of choices when modelling phenomena
and concepts.

How do we know that? From where do we know that?

Well, pragmatics, i.e., experience, has shown that they suffice, to a large
extent. And the four notions each fit into nicely complementing theories: of
data types, of recursive function theory and of process algebras. But, as shown
in Vols. 1 and 2 of this series, and as also shown in several chapters of the
present volume, there is much, much more to modelling phenomena and con-
cepts than just shown in the present chapter.

5.7.2 Intensity and Problem Frames

The notion of intensity is very much a part of that of Michael Jackson’s idea
of problem frame [189,191]. We consider the notion of intensity to form one
dimension along which the broader notion of problem frames can be charac-
terised. In the above intensity classes we did not, for example, distinguish be-
tween the types of entities, within an entity-intensive phenomenon or within
any of the other intensity phenomena. Once we add that dimension to our
categorisation, then we start moving closer to Michael Jackson’s notion of
problem frames. We shall take a deeper look at problem frames in Chap. 28.



154 5 Phenomena and Concepts

5.8 Bibliographical Notes

We refer to Michael Jackson’s delightful book [189]: Software Requirements €
Specifications: a Lexicon of Practice, Principles and Prejudices.

5.9 Exercises

5.9.1 A Preamble

We refer to Sect. 1.7.1 for the list of 15 running domain (requirements and soft-
ware design) examples; and we refer to the introductory remarks of Sect. 1.7.2
concerning the use of the term “selected topic”.

5.9.2 The Exercises

If you are studying this volume on the basis of informal treatment only, then
informal answers should suffice. Otherwise you are expected to suggest formal-
isations in addition to narrative texts or annotations of formulas.Subsequent
exercises, in remaining chapters of this volume, will repeat, somehow these ex-
ercises, but then in more elaborate forms. Do not, at this early stage, shy away
from attempting to solve these exercises. Admittedly, solving these exercises
at this early stage, and given the genericity of the question (for your cho-
sen topic), to answer the exercises requires some creative imagination. Later
chapters will bring in more material and will thus enable you to embark on
more meaningful, more satisfying solutions.

Exercise 5.1 Entities. For the fixed topic, selected by you, identify some 10—
12 entities. Describe their types, i.e., whether simple (atomic) or composite.
Try list some attributes of atomic entities and some properties of composite
entities.

Exercise 5.2 Functions. For the fixed topic, selected by you, identify some
5-7 functions. Describe their signature. Describe their functionality, that is,
what results they yield when applied to arguments — where arguments and
results are entities.

Exercise 5.3 Events. For the fixed topic, selected by you, identify some 4—6
events. Describe these loosely (say in terms of entities being expressed during
the event, i.e., being communicated).

Exercise 5.4 Behaviours. For the fixed topic, selected by you, identify some
4—6 behaviours. Describe these loosely — in terms of entities, functions and
events, that is, in terms also of interactions with other behaviours.

Exercise 5.5 For your suggested solutions — to Exercises 5.1-5.4 — which
entities, functions, etc., designate physically manifest phenomena, and which
designate concepts?



