
StarBED2: Testbed for Networked Sensing Systems

Junya NAKATA

Satoshi Uda

Razvan Beuran

Kenji Masui

Toshiyuki Miyachi

Yasuo Tan

Ken-ichi Chinen

Yoichi Shinoda

National Institute of Information and Communications Technology, Ishikawa, Japan

Japan Advanced Institute of Science and Technology, Ishikawa, Japan

Abstract— Nowadays many new technologies are being devel-
oped and introduced for Internet, home networks, and sensor
networks. The new technologies must be evaluated in detail
before deployment. However the above mentioned networks
have a large number of nodes, and a complicated topology. We
developed a large-scale, realistic and real-time network testbed,
StarBED, using hundreds of PCs, and switched networks. We
are now implementing StarBED2, which expands StarBED so
as to be suitable for emulating ubiquitous networks. In this
paper we describe StarBED2, its design policy, architecture,
and additional components, including the custom experiment-
support system, RUNE (Real-time Ubiquitous Network Emu-
lation environment). We then show some experimental results
obtained in this environment with emulated networked sensing
systems.

I. INTRODUCTION

Today various kind of ubiquitous networks, including

sensor networks and home networks, are researched more

and more actively, or are already in use.

The network consisting of the Internet and ubiquitous

networks is large and its behavior cannot be easily foreseen.

In order to introduce new technologies to these networks,

we have to evaluate the same implementations for the real

environment using large-scale topologies, since we have

to know their behavior in the real environment, including

potential bugs. An example of the complex environment that

we intend to investigate through emulation is shown in Fig.

1.

Fig. 1. Town network emulation

We implemented a large-scale network testbed, named

StarBED. The current StarBED, however, cannot satisfy the

requirements for evaluating implementations for ubiquitous

networks, since in sensor networks and home networks the

number of nodes can be huge and the nodes are naturally

heterogeneous. For this purpose we designed StarBED2, by

enhancing StarBED for realizing a large-scale ubiquitous net-

work emulator. It enables emulation of ubiquitous networks

with hundreds of thousands of heterogeneous nodes.

In this paper, we describe the requirements for emulating

ubiquitous networks and existing methods for making exper-

iments, then we explain the current StarBED, and the design

of StarBED2 and its experiment-support software, RUNE.

Next we show some illustrative experimental results.

II. TESTBED OVERVIEW

A. Requirements for Emulating Ubiquitous Networks

Ubiquitous networks have different properties than com-

puter networks in many aspects, such as: high node variability

and network media variety, huge number of nodes and impor-

tance of the interaction with surrounding environment, etc.

The required functionality for ubiquitous network testbeds is

as follows:

1) Support the numerous nodes of ubiquitous networks.

This can pose problems if emulation must be done

under real-time constraints;

2) Emulate the surrounding environment and provide an

interface between emulated nodes and environments;

3) Emulate various architectures of nodes and networks

that form typical heterogeneous networks;

4) Provide an emulation support system that enables exe-

cution of experiments in a controlled manner through

an automated execution mechanism.

B. Existing Methods for Experiments

There are already a number of implementations of em-

ulators and testbeds for ubiquitous networks. TOSSIM [1]

is a TinyOS simulator which aims to simulate TinyOS

applications accurately in virtual environment. ATEMU [2] is

also able to emulate TinyOS applications, and it has a more

flexible architecture to support other platforms. MobiNet

[3] is more a wireless network emulator than a testbed for

ubiquitous networks. Such test environments satisfy only

partially the requirements mentioned in the section II-A.

C. First Generation Testbed - StarBED

In StarBED many nodes are located on the same site. The

environment is dividable and can be manipulated by several

users simultaneously. The physical network of StarBED

connects about 700 actual PCs, and makes it possible to

build large-scale experiment topologies. All PCs have at least

two interfaces connected to different network segments, the

management network and the experiment network, so as to

avoid interferences between management traffic and experi-

ment traffic. To facilitate StarBED usage we designed Sprin-

gOS, a system that supports experiment execution. SpringOS

executes experiments according to the configuration file. The

details of SpringOS are described in [4] and [5].

D. Next Generation Testbed - StarBED2

In order to implement a testbed for ubiquitous networks

that satisfies the requirements mentioned in section II-A, we

are currently working on the implementation of StarBED2,

a testbed for ubiquitous networks based on StarBED. The

major aim of StarBED2 is to create an emulation environment

in which various kind of nodes, networks, and environments

can be emulated under real-time constraints.

StarBED2 is being constructed with StarBED architecture

as basis. On top of StarBED, an instruction level emulation

layer, a system call level emulation layer, and a middleware

level emulation layer are being added. A layer is a sort of

virtual machine within which various kinds of nodes with

different architectures can work together during an emulation.

Obviously this physical architecture itself is insufficient

for emulating ubiquitous networks. Therefore StarBED2 has

a logical architecture as well. The main idea of the logical

architecture of StarBED2 is a “space” and “conduit” struc-

ture. The elements of ubiquitous networks such as nodes, net-

works, and environments are described as spaces. Depending

on what is implemented in a space, the space is classified into

three categories: node space, network space, and environment

space. The spaces interact with each other through conduits,

executing their own process autonomously. The conduit is a

communication channel which is set up between two spaces.

Implementing spaces does not differ significantly from the

development of usual programs, except that the StarBED2

API has to be used for conduit communication and real-time

execution.

III. IMPLEMENTATION DETAILS

In order to implement StarBED2, an experiment support

software, RUNE, has been developed. The fundamental goal

of RUNE is to implement an experiment environment in

which a number of spaces that emulate each experiment

target can work on either single or multiple nodes. RUNE

provides a reasonably abstracted APIs for implementing

spaces without much concern about the interaction between

emulation nodes.

In RUNE architecture, “RUNE master” and “RUNE man-

ager” play essential roles. RUNE master controls the progress

of the experiment. The execution of all spaces deployed on

multiple nodes is initiated by RUNE master. RUNE manager

is deployed on every emulation node and mediates communi-

cation between them. Spaces implementing emulation targets

exist on emulation nodes in the form of shared objects, loaded

dynamically by RUNE manager using the operating system

dynamic loading mechanism. Accordingly a space itself does

not have context, but the RUNE manager instance on each

node does. In RUNE architecture the shared objects that

implement spaces are called space objects. Each function of

space objects are invoked by RUNE manager when needed.

RUNE manager is in charge of operations such as load-

ing space objects, calling entry points in spaces, relaying

communication via conduits. In RUNE architecture, every

space is required to have five entry points in it, since

typical emulation can be broken into five parts: initialization,

execution step, finalization, read and write.

The emulation process performed by RUNE is described

next. First, RUNE manager loads the object. Then RUNE

manager notifies RUNE master of completion of the attach

process after that RUNE master indicates the initialize pro-

cess of all spaces to RUNE managers on each node. A

space allocates its work area which is permanently needed

for the execution of emulation, and returns its pointer to

RUNE manager. A space does not use stack area, but the

work area allocated by itself for execution of emulation.

This structure contributes to an efficient usage of memory

because each space object can emulate multiple instances

while sharing the binary code. This structure also ensures that

spaces are thread-safe since they don’t have any static data.

RUNE master starts iterated invocation of the “step” symbol

after the initialization of all spaces is finished. Iterations last

until one of the spaces in experiment returns something else

than normal status. When RUNE master receives the status,

it starts finalization by notifying the end of experiment to

all nodes. Spaces release then the work area allocated in the

initialization process.

IV. EXPERIMENTAL RESULTS

In this section we show some illustrative results that we

obtained using the experiment support software RUNE and

QOMET (Quality Of transforMing Environments Testbed) to

emulate the WLAN communication environment [6].

The emulated topology is presented in Fig. 2. In this emu-

lated home environment the air conditioner is wire-connected

to a home controller, and works according to the information

sent from the heat sensor. The temperature information is sent

from the heat sensor to the home controller using WLAN, and

then communicated to the air conditioner. An access point

located in the house ensures WLAN access. The same access

point is used by a human user and for simplicity reasons we

assumed this user is performing a file transfer for the duration

of the experiment. In a home environment there are many

sources of interference with WLAN communication, such as

microwave ovens or cordless phones. We assumed that during

4m

1.5m

1
.
5
m

Server

Room 3Room 4

Access Point

4m
4
m

1
m

1
.
5
m

1.5m1m

User PC

Room 1

4
m

Heat Sensor

Air Conditioner

Room 2

Fig. 2. Experiment topology

the experiment such interference will occur one minute, and

then again three minutes after the experiment is started, and

last each time for one minute. The interferences are with a

noise level of −70 dBm and −60 dBm respectively.

In the experiment we used QOMET to emulate WLAN

communication. QOMET emulates WLAN technology by

calculating how network quality degradation depends first

on the physical layer conditions. Then QOMET computes

data link layer characteristics such as packet loss, effective

bandwidth, delay and jitter by taking into account the 802.11

MAC layer behavior. QOMET also emulates the change of

encoding method and operating rate that may be performed

by the WLAN interface. Network quality degradation is

derived in QOMET from models, such as those for radio

wave propagation that use the parameters α (attenuation) and

σ (standard deviation of the shadowing effect), as well as

noise level. This derivation is the first stage of the WLAN

emulation process. In the following step actual network qual-

ity degradation is enforced using dummynet [8] and applying

the characteristics calculated in the previous stage. This takes

place in real time on the testbed. The emulated WLAN

environment used in our experiment had the properties shown

in Table I.

The space allocation of the experiment is shown in Fig. 3.

The spaces corresponding to each equipment (air condi-

tioner, heat sensor, user PC, and WLAN access point) work

on separate nodes. In addition, a space that emulates heat

transfer in the room is also deployed on a dedicated node.

QOMET does not appear as one space but multiple spaces

distributed on every node on which WLAN equipments

are emulated. The spaces are called dnconf (DummyNet

CONFiguration) space, and configure the dummynet pipe

dynamically.

As mentioned before, each node in StarBED has at least

TABLE I

WLAN PROPERTIES

parameter duration [s] value

α 0 – 300 4.02

σ 0 – 300 7.36

normal noise level 0 – 60
120 – 180 −100 dBm
240 – 300

interference noise level 60 – 120 −70 dBm

interference noise level 180 – 240 −60 dBm

Heat Sensor
→ Air Conditioner 0 – 300 64 bytes
Heat Sensor

packet → Air Conditioner 0 – 300 64 bytes
size User PC

→ Server PC 0 – 300 1500 bytes
Server PC
→ User PC 0 – 300 64 bytes

Management Network

Experiment Network

dnconf dnconf dnconf dnconf

Rune
Manager

Rune
Manager

Rune
Manager

Rune
Manager

Rune
Manager

Heat
Sensor

Air
Conditioner

User PC Thermal
Field

Node 1 Node 2 Node 3 Node 4 Node 5

Rune
Master

Node 6

Access
Point

Fig. 3. Space allocation

two interfaces connected to different network segments. In

the experiment, the management network is used for com-

munication between RUNE master and RUNE managers, all

of the experiment network for communication through the

emulated WLAN.

In the experiment each space behaves as follows:

1) The Heat Sensor space obtains the temperature of a

certain coordinate of the room from the thermal space,

and sends the value to the air conditioner space every

second.

2) The Air Conditioner space heats up the ambient air

if the temperature sent from the heat sensor space

is below the desired temperature (25 degree Celsius),

otherwise stops heating. If the information is lost on the

way from the heat sensor space for some reason, the

air conditioner space keeps its current operation status.

We assume that the heat source of the air conditioner

is 120 degrees Celsius steam.

3) The User PC space generates bulk traffic which mimics

a file transfer through the access point space. For this

purpose netperf is used [7].

4) The Access Point space bridges the traffic between

Fig. 4. Loss between heat sensor and access point

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 180 210 240

T
em

pe
ra

tu
re

 [d
eg

. C
]

Time [s]

heater (w/o noise)
heater (w/ noise)

sensor output (w/o noise)
sensor output (w/ noise)

Fig. 5. Temperature transition for heater and sensor output

other spaces, and receives netperf traffic from the user

PC space.

5) The Thermal Field space simulates the temperature

transition in the room. For rapid heat transition, we

assumed that room wall temperature is constant and

equal to 10 degrees Celsius.

6) The Dummynet Configuration space applies repeti-

tively the WLAN properties pre-calculated by QOMET.

Fig. 4 shows frame loss rate between the heat sensor and

the access point. As it can be seen, network degradation

occurs when the interference noise level raises. Losses have

of course a significant effect on TCP/IP performance. Fig. 5

shows the variation of the temperature of the heat source and

that observed by the heat sensor, both in the case when no

interference noise is present, and in the case with noise. Since

the differences are small, we show only the graphs for a time

interval where effects are easily visible. The reason for the

small scale of the effects is that packets are only rarely sent

by the heat sensor (one per second). In addition, packet loss

only affects system behavior if it occurs at the moments at

which heat source state should change (from ”on” to ”off”

or vice versa).

V. CONCLUSIONS & FUTURE WORK

Ubiquitous and sensor networks are large and complex,

and it is difficult to predict their behavior. A lot of technolo-

gies for these networks are published and will be made public

in the future. Since the expectations for these technologies’

behavior are hard to assess, it is also difficult to make a

testbed for that.

For this purpose we implemented an experiment support

software, RUNE. RUNE assists executing emulation of ubiq-

uitous network with a large number of PCs on multiple

nodes. In a RUNE architecture, each emulation target is

implemented as space and compiled into a shared object so

that a single shared object can work as multiple instances.

To illustrate the use of the experimental platform we

provided some test results that show the capabilities of

StarBED2 and RUNE. We showed the different effects that

interferences in WLAN environments can have on application

performance, depending on each application characteristics.

Development of StarBED2 is still in progress. A high

priority is given to adding support for processor and mid-

dleware emulation, which will increase the capabilities and

functionality of StarBED2. In order to emulate more complex

sensor networks other environment spaces will be added as

well, such as acoustic environments and optical field for

example. RUNE’s basic functionality is already working, but

more features will be added, such as, for example, more strict

synchronization and mutual exclusion.

REFERENCES

[1] Philip Levis, Nelson Lee, Matt Welsh, and David Culler: TOSSIM:
Accurate and Scalable Simulation of Entire TinyOS Applications.
Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003) (2003)

[2] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk,
John S. Baras: ATEMU: A Fine-grained Sensor Network Simulator
Proceedings of the First IEEE Communications Society Conference
on Sensor and Ad Hoc Communications and Networks (SECON 2004)
(2004)

[3] Priya Mahadevan, Adolfo Rodriguez, David Becker, Amin Vahdat:
MobiNet: A Scalable Emulation Infrastructure for Ad hoc and Wireless
Networks. Proceedings of the International Workshop on Wireless
Traffic Measurements and Modeling (WiTeMe 2005) (2005)

[4] Toshiyuki Miyachi, Ken-ichi Chinen and Yoichi Shinoda: Automatic
Configuration and Execution of Internet Experiments On An Actual
Node-based Testbed. 1st International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Com-
munities(Tridentcom) (2005) 274–282

[5] The StarBED Project: http://www.starbed.org/
[6] R. Beuran, K. Chinen, K.T. Latt, T. Miyachi, J. Nakata, L.T. Nguyen,

Y. Shinoda, Y. Tan, S. Uda, S. Zrelli, ”WLAN Emulation on StarBED”,
IET International Conference on Wireless, Mobile & Multimedia
Networks (ICWMMN) 2006, Hangzhou, China, November 6-9, 2006,
pp. 856-859.

[7] Netperf: A Network Performance Benchmark. http://www.netperf.org/
[8] L. Rizzo: Dummynet: a simple approach to the evaluation of network

protocols. ACM Computer Communication Review 27 (1997) 31–41

