

# **Degree Completion Guide**

2015-2016

JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY The official Degree Completion Guide 2015-2016 is in Japanese, of which this is an English translation.

Courses for Working Professionals are not conducted in English, so there are no descriptions for them in the guide for each school in this English version. Please refer to the Japanese-language edition for the information.

# **JAIST Founding Principle and Education Policy**

Japan Advanced Institute of Science and Technology (JAIST) was established in 1990 as the first national university specializing only in graduate studies in Japan. Since then JAIST has been leading the development of graduate education in Japan through positive introduction and continuous improvement of various new education ideas and systems including admissions in Spring and Fall, quarter system, multiple supervisory system, and minor research project. This pioneering education has been recognized by many industries that hire our graduates.

Having more than 20 years passed after our establishment, however, means that many other universities have come to introduce the same systems. Today JAIST needs to introduce new innovative and effective ideas of its own. In order to improve our education further, we have decided to set "respecting students' purposes and intentions as much as possible" as a basic principle. Concretely speaking, hopefully we will allow students to design their course selection by themselves based on their career goal.

When graduating, students receive a transcript showing the list of the courses they have taken and their grades. By selecting courses voluntarily, students will be able to explain their reason for the selection of courses and their relevance to their career goal to their supervisor at JAIST and future employers.

JAIST has recently changed its goal on education. We put more emphasis on what ability students have obtained than on what they have understood. Reflecting this idea, every course evaluates students' performance in terms of the level of ability acquisition. This idea is also shared in the supervision of students in every laboratory.

We hope every student makes the best use of education opportunities at JAIST through their positive commitment in order to prepare for their bright future.

President

Tetsuo Asano

# CONTENTS

# Institute-wide Study Guide

| I. Mission of JAIST                                | 1  |
|----------------------------------------------------|----|
| II. Academic calendar 2015-2016                    | 8  |
| III. Study outline                                 | 10 |
| IV. Matters related to tuition fees and enrollment | 12 |
| V. Educational system                              | 14 |
| VI. Matters related to taking courses              | 16 |
| VII. Matters related to research supervision       | 21 |
| VIII. Matters related to conferment of degree      | 24 |
| IX. Systems in place                               | 26 |
| Lecture room map                                   | 27 |
|                                                    |    |

# Institute of General Education ----- 28

# School of Knowledge Science

| 1 | Outline of the school                                                | 35 |
|---|----------------------------------------------------------------------|----|
| 2 | Faculty profiles                                                     | 37 |
| 3 | Class schedule for 2015-2016                                         | 39 |
| 4 | Curriculum                                                           | 43 |
| 5 | Programs for career plans                                            | 46 |
| 6 | Master's program (M·Ma programs and master's part of the 5D program) | 47 |
| 7 | Doctoral program (3D program and doctoral part of the 5D program)    | 52 |
| 8 | Education program for leaders in data analytics                      | 56 |
| 9 | Courses at other graduate institutions                               | 56 |
|   |                                                                      |    |

# School of Information Science

| 1  | Outline of the school                                                    | 57 |
|----|--------------------------------------------------------------------------|----|
| 2  | Faculty profiles                                                         | 58 |
| 3  | Class schedule for 2015-2016                                             | 61 |
| 4  | Curriculum                                                               | 65 |
| 5  | Guide to program completion                                              | 66 |
| 6  | Master's program                                                         | 72 |
| 7  | Research supervision and schedule for completion of the master's program | 76 |
| 8  | Recommended courses for laboratory                                       | 80 |
| 9  | Doctoral program                                                         | 82 |
| 10 | Research supervision and schedule for completion of the doctoral program | 83 |
| 11 | Courses at other graduate institutions                                   | 85 |

# **School of Materials Science**

| 1 | Outline of the school                                                 | 86  |
|---|-----------------------------------------------------------------------|-----|
| 2 | Faculty profiles                                                      | 87  |
| 3 | Class schedule for 2015-2016                                          | 90  |
| 4 | Curriculum                                                            | 94  |
| 5 | Master's program (M, Ma programs and master's part of the 5D program) | 99  |
| 6 | Doctoral program (3D program and doctoral part of the 5D program)     | 104 |
| 7 | Courses at other graduate institutions                                | 107 |
|   |                                                                       |     |
| N | ano Material Technology Program                                       | 108 |

# Institute-wide Study Guide

# Institute-wide Study Guide

## I. Mission of JAIST

### Mission

JAIST endeavors to foster leaders capable of contributing to the making of a future world by creation of science and technology, through its most advanced education and research in an ideal academic environment.

## Goals

- JAIST develops leaders in society or industry who hold credible expertise in the frontier science and technology, broad perspectives, high level of autonomy and communication ability, through its systematic advanced graduate education.
- JAIST, to contribute to societies with research outcomes, creates a center of excellence for advancement of researches for solving problems of our world and society and develops new fields through a variety of basic researches.
- JAIST fosters active global human resources by promoting faculty and student exchanges with leading institutes overseas and globalizing its education and research.

## The ideal person JAIST strives to educate

JAIST endeavors to foster leaders in society or industry who have credible expertise in the frontiers of science and technology, broad perspectives, a high level of autonomy and communication ability. In the master's program, the focus is on fostering students' ability to understand and apply a variety of fundamental theories in order to solve problems. In the doctoral program, JAIST focuses on cultivating students who have the ability to think from a variety of perspectives, to discover and solve problems and to exercise world-class leadership in the area of advanced science and technology.

### Policies

JAIST has set the following policies for students' educational guidance.

# Curriculum policy

We designed our curriculum to be hierarchical and systematic, encompassing several specialties so that we may nurture future researchers and engineers who not only possess specialist knowledge in the area of advanced science and technology, but who also fully understand fundamental concepts, have the capability to identify and solve problems, and have the ability to acquire a wide range of relevant advanced expertise. We adopt a supervisory system in which a student is supervised by three professors.

In the master's program, we aim to foster the students' ability to understand and apply a variety of fundamental theories in order to solve problems in the area of advanced science and technology without placing undue emphasis on the expertise in their field of specialization. In addition to a particular academic expertise, we also aim to equip students with qualities to be internationally successful such as ethical awareness, global communication skills, and problem-solving skills.

In the doctoral program, we aim to foster students' ability to understand extensive theories and the framework of the area of advanced science and technology, and apply them to identify and solve problems. In addition, we aim to nurture students who have ethical awareness, global communication skills, the ability to think from a variety of perspectives; to present their research and exchange ideas with researchers overseas; to discover and solve problems; and to exercise leadership in the area of advanced science and technology.

## [Institute of General Education]

The mission of the Institute of General Education (IGE) is to equip students with ethical awareness, understanding and receptiveness toward diversified cultures, and the communication skills necessary to be successful internationally. The IGE also aims to help graduates find positions in society based on their individual specialties and strengths.

# [School of Knowledge Science]

The mission of the School of Knowledge Science is to enable students to systematically understand basic academic matters to advanced academic issues and equip them with a solid foundation to contribute toward the development of creating, sharing, and utilizing knowledge through active learning such as group work.

We engage in research into natural, individual, organizational, and societal activities from a viewpoint of knowledge creation. We also conduct education and research to explore the mechanisms of creating, sharing, and utilizing knowledge in an excellent educational and research environment to contribute to the development of the interdisciplinary field of knowledge science. Further, we aim to foster future researchers and technical experts who have a high level of knowledge, applied skills, precise judgment, strong communication skills, the ability to identify and solve problems, and the ability to think from a variety of perspectives in order to lead a knowledge-based society.

# [School of Information Science]

The mission of the School of Information Science is to enable students to systematically understand basic academic matters to advanced academic issues and to equip them with a solid foundation to contribute to the development of cutting-edge technology through active learning.

While engaging in advanced research and education, we aim to foster future researchers and technical experts who have a high level of knowledge, applied skills, precise judgment, strong communication skills, the ability to identify and solve problems, and the ability to think from a variety of perspectives. These qualities will prepare our students to play a key role in the information society in response to the development of the wide-ranging research fields of information science.

## [School of Materials Science]

The mission of the School of Materials Science is to enable students to systematically understand basic academic matters to advanced academic issues and to equip them with a solid foundation to contribute to the development of cutting-edge technology while learning experimental methodology using the latest laboratory equipment.

We engage in advanced education and research in various disciplines integrating physics, chemistry, and biology in a rich academic environment. Furthermore, we aim to foster future researchers and technical experts who have a high level of knowledge, applied skills, precise judgment, strong communication skills, the ability to identify and solve problems, and the ability to think from a variety of perspectives. These qualities will prepare our students to play a key role in supporting the development of materials science.

# Laboratory education policy

### ≪JAIST policy≫

JAIST considers the research education based in the laboratory as an important element of graduate education, similar to coursework. Laboratories give students a versatile educational environment that can enhance various qualities and develop students' potential. This document describes a set of policies pertaining to laboratory education, which has an important role in the process of students' degree completion.

### • Master's program

JAIST provides students adequate research guidance, which can be one-on-one or in a small group according to individual needs. We take time for students to understand basic theories. We help develop their abilities to apply their knowledge to solve problems. We help students acquire further specialized knowledge and necessary abilities to undertake the whole research process including planning and conducting research with surveys on other related areas, and presenting the research findings.

### Doctoral program

JAIST fosters students' abilities to take a macroscopic view, to identify a specific issue in a research field and to discuss the research findings scientifically and logically. We provide students one-on-one research guidance. Students will acquire further specialized knowledge and necessary abilities to undertake the whole research process independently, with a sense of leadership from planning and conducting a research surveys on other related areas, to publicly presenting the research findings.

### «Each school policy»

In addition to the JAIST policy, each school sets their own policy. These are described below.

### [School of Knowledge Science]

### Master's program

We develop students' ability to solve specific problems in the field of knowledge science, with a wide range of interdisciplinary thinking and specialized technologies of knowledge science. Students will experience their research planning and writing academic papers in the emergent environment in laboratories with a diverse group of people of different nationalities, experiences and goals.

We develop students' abilities to identify an important topic in the specific knowledge science field, which should be addressed from an interdisciplinary point of view, to theorize it, to solve it using basic and specialized theories and technologies of knowledge science, and to produce results as academic knowledge. Students will experience collaboration work with a variety of local or international organizations based on the work in the emergent environment in laboratories with a diverse group of people of different nationalities, experiences and goals.

### [School of Information Science]

### Master's program

We produce scientists and engineers with highly advanced technical expertise who are useful to the society by developing students' abilities to solve specific issues in the society based on the basic information science theories and to present the findings publicly to the society. Students will get individual guidance considering their various backgrounds and career goals, and they will learn cooperativeness through laboratory seminars as well.

### Doctoral program

We produce scientists and engineers with highly advanced technical expertise who are useful to the society by developing students' abilities to identify specific problems in the society within the information science field, to solve them based on advanced information science theories, and to present the findings publicly at an international conference or in an international journal. Students will receive individual guidance considering their various backgrounds and career goals. They will learn cooperativeness through laboratory seminars and tutoring master's students.

# [School of Materials Science]

### Master's program

We produce scientists and engineers with highly advanced technical expertise who are useful to the society by developing students' abilities to carry out the whole research process including acquiring specialized knowledge, surveying related researches, planning, experimenting, summarizing and discussing the findings, and presenting the results independently and yet cooperatively with others.

### • Doctoral program

We produce scientists and engineers with highly advanced technical expertise who are useful to the society by developing students' advanced abilities to be a leader and carry out the whole research process including acquiring specialized knowledge, surveying related researches, planning, experimenting, and discussing the results, and publicly presenting the research findings.

# Policy for awarding of M.Sc. and Ph.D. degrees

# • Master's program

We award the degree of Masters of Science to students who have:

- acquired the required number of credits
- completed the master's program within the specified number of years
- · passed their oral defense and final examinations for a master's thesis or a project report
- global communication skills and ethical awareness
- an understanding of a wide range of basic theories in the field of advanced science and technology
- the ability to apply basic theories to solve problems

# [School of Knowledge Science]

Students awarded a master's degree are expected to have acquired the basic theories of the new academic discipline of knowledge science and to understand the mechanisms of creating, sharing, and utilizing knowledge. They should also have the ability to conduct academically and socially meaningful research in a specific area of knowledge science and to have gained substantial specialized knowledge and technical expertise.

# [School of Information Science]

Students awarded a master's degree are expected to have acquired a substantial understanding of a wide range of basic theories of information science and have detailed knowledge of relevant information science techniques. They should also possess the ability to conduct research in a specific area of information science in order to contribute to the academic field and society, and have a high degree of specialized knowledge and technical expertise.

# [School of Materials Science]

Students awarded a master's degree are expected to realize the importance of, and understand the basic theories and framework of materials science. While exploring the latest developments in related research areas, they should also have developed the ability to solve many challenging problems in materials science, and to possess specialized knowledge and technical expertise.

# Doctoral program

We award the degree of Doctor of Philosophy to students who have:

- acquired the specified number of credits
- · completed the doctoral program in the specified number of years
- · passed their oral dissertation defense and final examinations
- · the ability to think from a variety of perspectives
- · global communication skills and ethical awareness
- an understanding of the framework and a wide range of theories in the field of advanced science and technology
- the ability to apply the framework and theories to identify and solve problems
- · the ability to be leaders in the field of advanced science and technology

# [School of Knowledge Science]

Students awarded a doctoral degree are expected to have acquired the framework and command of a wide variety of theories of the new academic discipline of knowledge science and understand the mechanisms of creating, sharing, and utilizing knowledge. They should also have conducted world-class research in a specific area of knowledge science and possess highly specialized knowledge and technical expertise.

# [School of Information Science]

Students awarded a doctoral degree are expected to have acquired the framework and command of a wide range of theories of information science, have detailed knowledge of relevant theories of

information science, and have the ability to formulate and solve problems. Furthermore, they should have conducted world-class research in a specific area of information science to contribute to the society and possess highly specialized knowledge and technical expertise.

# [School of Materials Science]

Students awarded a doctoral degree are expected to have understood the basic knowledge and the framework of materials science. With a focus on the relevant areas for the future, they should also have conducted world-class research in a specific area of materials science, and possess highly specialized knowledge and technical expertise.

# II .Academic Calendar 2015-2016

| er 30)              | April 1 (Wed.) - April 5 (Sun.)<br>April 6 (Mon.)<br>April 4 (Sat.) PM<br>April 7 (Tue.)<br>April 8 (Wed.) - June 5 (Fri.) <b>NOTE*</b>                                                       |                                                                                                                                         | Spring Break<br>Entrance Ceremony<br>Orientation at Tokyo Satellite<br>Orientation at Ishikawa Campus<br>Term 1-1                                             |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| April 1 - Septembe  | June<br>June<br>June<br>June                                                                                                                                                                  | e 8 (Mon.)<br>e 9 (Tue.)<br>e 10 (Wed.) - August 3 (Mon.)<br>e 24 (Wed.)                                                                | Safty Guidance<br>No Class Day<br>Term 1-2<br>Degree Conferment Ceremony                                                                                      |  |
| t Semester          | Aug<br>Aug<br>Aug<br>Sep                                                                                                                                                                      | ust 4 (Tue.) - September 30 (Wed.)<br>ust 4 (Tue.) - August 31 (Mon.)<br>ust 12 (Wed.) - August 14 (Fri.)<br>tember 24 (Thu.)           | Summer Intensive<br>Summer Break<br>School Office Closed (Summer Break)<br>Degree Conferment Ceremony                                                         |  |
| Firs                | NOTE* The first class of B101 (in Japanese) is held on April 8. All courses<br>except B101 start on April 9 and the day follws the WEDNESDAY schedule.<br>June 5 follows the MONDAY shcedule. |                                                                                                                                         | se) is held on April 8. All courses<br>follws the WEDNESDAY schedule.                                                                                         |  |
| - March 31)         | Octo<br>Octo<br>Octo<br>Octo<br>Octo                                                                                                                                                          | ober 1 (Thu.)<br>ober 2 (Fri.)<br>ober 3 (Sat.) PM<br>ober 5 (Mon.)<br>ober 6 (Tue.)<br>ober 7 (Wed.) - December 2 (Wed.) <b>NOTE**</b> | School Office Closed (JAIST Anniversary)<br>Entrance Ceremony<br>Orientation at Tokyo Satellite<br>Orientation at Ishikawa Campus<br>No Class Day<br>Term 2-1 |  |
| mester (October 1 - | December 3 (Thu.)<br>December 4 (Fri.) - February 8 (Mon.) <b>NOTE</b> ***<br>December 24 (Thu.)<br>December 25 (Fri.) - January 4 (Mon.)<br>December 29 (Tue.) - January 3 (Sun.)            |                                                                                                                                         | No Class Day<br>Term 2-2<br>Degree Conferment Ceremony<br>Winter Break<br>School Office Closed (Winter Break)                                                 |  |
| cond Se             | February 9 (Tue.) - March 31 (Thu.)<br>March 24 (Thu.)                                                                                                                                        |                                                                                                                                         | Winter Intensive<br>Degree Conferment Ceremony                                                                                                                |  |
| Se                  | NOTE** October 7 follws the MONDAY schedule.                                                                                                                                                  |                                                                                                                                         |                                                                                                                                                               |  |
|                     | NOTE*** December 4 follows the WEDNESDAY shcedule.                                                                                                                                            |                                                                                                                                         |                                                                                                                                                               |  |

# Period for Registration and Change of Courses at Ishikawa Campus

| Terms    | Period for Rregistration and Course Change |
|----------|--------------------------------------------|
| Term 1-1 | April 8 (Wed.) - April 21 (Tue.)           |
| Term 1-2 | June 10 (Wed.) - June 23 (Tue.)            |
| Term 2-1 | October 7 (Wed.) - October 20 (Tue.)       |
| Term 2-2 | December 4 (Fri.) - December 17 (Thu.)     |

#### The terms at Tokyo Satellite

| April - June:       | Term I   |
|---------------------|----------|
| July - September:   | Term II  |
| October - December: | Term III |
| January - March:    | Term IV  |

Check the web <http://www.jaist.ac.jp/satellite/sate/facility/> for the Tokyo Satellite operating hours since it occasionally varies.

## Period for Registration and Change of Courses at Tokyo Satellite

| Terms   | Period for Rregistration and Course Change                              |  |
|---------|-------------------------------------------------------------------------|--|
| Torm    | April 8 (Wed.) - April 21 (Tue.)                                        |  |
| Territ  | NOTE: April 8 (Wed.) - April 14 (Tue.) for courses begin in April       |  |
| Term II | June 10 (Wed.) - June 23 (Tue.)                                         |  |
|         | October 7 (Wed.) - October 20 (Tue.)                                    |  |
| Termin  | NOTE: October 7 (Wed.) - October 13 (Tue.) for courses begin in October |  |
| Term IV | December 4 (Fri.) - December 17 (Thu.)                                  |  |

## III. Study outline

## 1 Campus

JAIST's campus is in Nomi City, Ishikawa Prefecture. Courses for Working Professionals are offered at Tokyo Satellite (Minato-ku, Tokyo).

## 2 Schools and programs

JAIST includes the School of Knowledge Science (KS school), the School of Information Science (IS school), and the School of Materials Science (MS school), each of which has a doctoral program divided into an initial two-year program and a subsequent three-year program. The initial two-year program is called the master's program and the subsequent three-year program is called the doctoral program.

## 3 Academic calendar

JAIST academic calendar shows the dates of classes, vacations, institute-wide activities, course registration periods, and so on. Students must check the academic calendar which is displayed on the notice board next to the automatic certificate issuing machine and is published on JAIST's website (Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Academic Calendar).

## 4 Semesters and class periods

Semesters and class terms/periods at JAIST are shown in the Table 1 bellow. Each class is 90 minute long, and there will be as a general rule 15 classes for a 2-credit course. Refer to the syllabus for details of each course. One credit (in a 2-credit course) is awarded for the study amounts of 45 hours in self-study periods in addition to class periods (for Seminar and Research, one credit is awarded for the study amounts in accordance with the necessary workload for appropriate results as defined by the supervisor). Students are expected to plan their coursework and keep their study record, accordingly using a study/plan record under the guidance of their supervisor so that they can have sufficient time for their efficient academic work toward a degree acquisition.

At the Ishikawa Campus, 2 classes per week are held for each course, with the exception of intensive courses. The KS/IS/MS school courses are held in the mornings (1st and 2nd periods), with the 3rd period used as the office hour for the class in the 1st period of the day (this is a time for students to ask questions or discuss matters with the class instructor, and can be used for exercises, exams, and so on as well). The afternoon (4th and 5th periods) is used for classes of the Institute of General Education (IGE) courses.

At the Tokyo Satellite, classes are in the evenings on weekdays and in the weekends (including public holidays) for each course and as a rule office hours are not provided.

The class schedule can be checked on each school's page. The class schedule of the courses with the assigned lecture rooms will be displayed on the notice board next to the automatic certificate issuing machine and be able to be checked on JAIST website (Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Class Schedule) before the start of classes each term. Note that the class information for the KS school courses held at the Tokyo Satellite will be displayed outside the lecture rooms.

| Location              | Class Terms                                | Class Periods                         |
|-----------------------|--------------------------------------------|---------------------------------------|
| Ishikawa              | First Semester:                            |                                       |
|                       | Term 1-1, Term 1-2 (8 weeks each)          |                                       |
|                       | Summer Intensive (August, September)       |                                       |
|                       | Second Semester:                           |                                       |
|                       | Term 2-1, Term 2-2 (8 weeks each)          | 1st Period 9:20 - 10:50               |
|                       | Winter Intensive (February, March)         | 2nd Period 11:00 - 12:30              |
| Tokyo First Semester: |                                            | 3rd Period 13:30 - 15:00              |
|                       | Term I (classes starting in April to June) | 4th Period 15:10 - 16:40              |
|                       | Term II                                    | 5th Period 16:50 - 18:20              |
|                       | (classes starting in July to September)    | 6th Period 18:30 - 20:00 (Tokyo only) |
|                       | Second Semester:                           | 7th Period 20:10 - 21:40 (Tokyo only) |
|                       | Term III                                   |                                       |
|                       | (classes starting in October to December)  |                                       |
|                       | Term IV                                    |                                       |
|                       | (classes starting in January to March)     |                                       |

Table 1: Semesters and class periods

# 5 Class structure

# 5.1 Courses in the KS/IS/MS schools

The KS/IS/MS school courses include the following courses; the Introductory courses (K1xx /I1xx /M1xx) that aim at providing a selected education at the post-graduate level mainly for students who have come into the JAIST from different majors, the Basic courses (K2xx /I2xx /M2xx) that aim at providing a thorough grasp of the basic concepts and methodologies, the Technical courses (K4xx /I4xx /M4xx) that aim at imparting specialist knowledge, and the Advanced courses (K6xx /I6xx /M6xx) that target mainly at students in the doctoral program. JAIST requires students to obtain credits accordingly so as to prevent from focusing on one specific area of study but to gain deeper knowledge from a wide range of research areas.

In addition, at the Ishikawa Campus some courses are offered twice a year, once in English and once in Japanese. Courses for Working Professionals at Tokyo Satellite are offered for specialist education aimed at professionals already at the forefront of research or business.

Please note that the courses offered in English are shown in the class schedules and syllabi with "E" after their course number (KxxxE/IxxxE/MxxxE).

# 5.2 Courses in the Institute of General Education (IGE)

Courses in the IGE are designed to educate people to be able to make full use of their leadership abilities on the international stage, with a wide, birds-eye view of the field. These courses are offered in the following three groups: Liberal Arts courses, to provide a high level of sophistication, high ethical standards, and an understanding of diverse cultures; Communication courses, to improve communication skills, including language abilities; and Career-Enhancing courses, aimed at positioning students' specializations as a part of society. Please note that courses in the IGE are not offered at Tokyo Satellite.

# IV. Matters related to tuition fees and enrollment

### 1 Tuition fees

Tuition fees are collected separately for the full amount for each semester (first semester: April 1st - September 30th, second semester: October 1st - March 31st), and as a rule are to be paid by bank transfer (see details in *HANDBOOK for Students*). Please note that if the tuition fees are revised while in school, the new fees will be applied upon the revision.

## 2 Leaves of absence

When students are not able to progress in their study for more than 2 consecutive months due to illness or other special reasons, they may apply for a leave of absence. The maximum period of leave in total for each of the programs, the master's and the doctoral, is 12 months. Please note that as the leave of absence is not counted in the total period required to complete a degree, study progression including course registration and research mentoring will not be recognized during the leave of absence, but there are no restrictions on use of the JAIST library or intra-school email.

The first of each month shall be the start date of a leave of absence, and it will not be permitted midway through a month. Students applying for a leave of absence must collect an Application for Leave of Absence from the Educational Service Section (hereafter, Kyoumu) and get approval from the dean of their school and from their supervisor, and submit the application to the president (via Kyoumu) with a doctor's statement if leave of absence is due to bad health no later than one month before the desired start of the leave of absence.

Please note that if the tuition payment is not completed before the desired leave of absence start date, the application will not be accepted.

In addition, if students wish to have a leave of absence partway through either semester, and they submit an application by April 10th (for the first semester) or October 10th (for the second semester), tuition will not be charged for the leave of absence. If the application is made after these dates, the full amount of tuition must be paid before the application is accepted. Check details of tuition fee payment during leaves of absence on the JAIST website (Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Absence and Withdrawal: Important Notes for Leave of Absence).

### 3 Returning

Students who wish to return to school before the end of their leave of absence should collect an Application for Returning at Kyoumu and submit it to the president (via Kyoumu) at least one month before their proposed month of returning. Students must promptly report their return to the president (via Kyoumu) by submitting a Notification of Returning available at Kyoumu to Kyoumu. Returning status starts on the first day of the month.

# 4 Withdrawal

A date for withdrawal shall be the last day of the month, and withdrawal halfway through the month is not permitted. Students who wish to withdraw must collect an Application for Withdrawal from Kyoumu and obtain comments from their supervisor, second supervisor and advisor for Minor Research Project/Internship and approval from the dean of their school, and submit the application to the president (via Kyoumu) no later than one month before the proposed start of the withdrawal.

Regardless of the date of withdrawal, if the tuition and other fee payments required by JAIST are not completed, the application will not be accepted.

# 5 Disenrollment (loss of student status)

Students falling under any of the following categories will result in the loss of student status:

(1) Those who have remained enrolled beyond the permitted maximum periods (4 years for the master's program, 6 years for the doctoral program)

\*Students wishing to withdraw must complete the withdrawal procedures.

(2) Those whose leave of absence exceeds the period specified in Paragraph 4, Article 27, of the JAIST School Regulations (2 years).

- (3) Those who have not paid their admission fee by the specified date and fall into one of the categories below:
  - Students who have not been granted an entrance fee reduction or deferment.
  - Students who have not been granted a half entrance fee reduction or deferment.
  - Students whose entrance fee reduction or deferment has been revoked.

(4) Those who have neglected to pay their tuition fees and have not paid even following demands. Note that if those who fall under either (3) or (4) have credits earned during the period in which the tuition was unpaid, the credits will also be cancelled.

### 6 Transferring between schools within JAIST

The times when students may transfer from the one school they are currently enrolled in to another are the beginning of April and of October. Students wishing to transfer to another school in April must contact Kyoumu by the end of January, and those wishing to do so in October, by the end of July. The materials to submit and the selection method will be presented to applicants.

## 7 Supplemental student status

Doctoral students may be allowed to keep student status after completed all of the academic requirements for their degree except their dissertation (K601, I601, M601) for a maximum period of 2 years, if the dean approves that the student will be ready to apply with the help of necessary research guidance from the supervisor for a degree conferment within 2 years. Duration of student status cannot be more than 6 years in total including the period spent in the doctoral program and this additional period. Supplemental student status can start only on April 1, July 1, October 1 or January 1. It cannot start subsequently right after leave of absence. Students wishing to get this supplemental status must contact Kyoumu at least one month before the proposed starting day of the status. This status does not allow students to conduct any academic work on campus, and thus, JAIST does not sponsor students to issue/extend/renew their student visa for the period.

### 8 Name changes

If students have changed their name, they will need to submit evidential documents attesting the change (e.g. a new resident's registration) and a Notification of Change of Name to the president (via Kyoumu). All certificates and documents issued by JAIST following acceptance of the notification will be with their new name. Certificates will be issued only with the name registered in JAIST records.

# V. Educational system

JAIST provides a detailed, unique educational system that adjusts to students' ambitions, experiences, and abilities, with the goal of helping each student realize their career targets.

### 1 Educational programs

We offer five different educational programs to choose for each individual's career goals. Students will choose one of the educational programs below and take courses accordingly. However, students who take courses for Working Professionals in the master's program will be in the M program and those in the doctoral will be in the 3D. Check the each school page for the treatment of selection periods and degree completion requirements for each educational program.

# **1.1** Types of educational programs

(1) SD program (master's program, doctoral program)

This educational program is designed to identify students with top-level abilities at an early stage and to train scientists who can tackle new research challenges and open up new fields from a global perspective through a consistent doctoral education. Only those who have been admitted through the entrance examination for scholarship students for the SD program can take this program.

The SD program students are given guidance by faculty groups organized by specialist area, and aim to complete the master's program in 1.5 years and the doctoral program in 2.5 years, completing the entire program in 4 years. They may be recommended to change to another educational program if their grades are suffering.

## (2) 5D program (master's program, doctoral program)

This educational program provides a consistent five-year doctoral education through the master's program and the doctoral program.

### (3) 3D program (doctoral program)

This educational program provides a three-year doctoral education in the doctoral program.

Points common to both the 5D and 3D programs (only for Ishikawa Campus students): Doctoral students must choose one of two career tracks in order to provide themselves with opportunities to consider their future desired careers. The tracks are; type S, for those who wish to become creative scientists who can plan and implement advanced research at education and research institutes, or to become university professors; and type E, for those who wish to become advanced specialist engineers who can lead and manage the latest research and development at companies.. See the each school page for the selection timing and other details. Students in any programs have equal opportunities for the Grant System for Off-campus Activity (see *HANDBOOK for Students* for details) or for taking courses. JAIST recommends that students in both 5D and 3D programs take E413 Scientific Discussions 2 and B411 Advanced Project Management, participate in research activities at other research institutes in Japan or overseas, and try out long-term advanced internships in companies in accordance with their choice of career paths.

(4) M program (master's program)

This educational program is designed to provide a master's-level education for 2 years in the master's program to train practical specialist engineers who can play a leading role in companies or other areas based on specialist knowledge and technology.

### (5) Mα program (master's program)

This educational program is designed to provide a master's-level education in the same way as the M program for between 2 and 3 years, aimed at those students who wish to learn properly from the basics or who have changed their major since obtaining their bachelor's degree. Enrollments longer than 2 years in this program will qualify for reductions in tuition fees.

However, the reduction period is limited to a maximum of one year.

### **1.2 Changing educational programs**

It is possible to change to another educational program if you need to for approved educational reasons following the decision. However, change will not be permitted in the following circumstances.

- Changing from another educational program to the SD program
- Changing from another educational program to the  $\mbox{M}\alpha$  program
- Changing from the M $\alpha$  program to the M program (however, the M $\alpha$  program study period may be shortened to 2 years)

Note that the program will be changed as soon as it is recognized that completing the SD program or the 5D program cannot be done in the allotted time including following cases:

- -when a student does not submit a research proposal by the designated submission due date in the master's program
- -when a student does not submit a dissertation outline by the designated submission due date in the doctoral program

Changing the programs will disqualify the SD/5D scholarship at the same time.

### 2 Specialized courses

We provide the specialized courses for our curriculum in Table 2, classified by content. Students will be granted a certificate of completion if they complete all the necessary courses for the program completion.

| Specialized  |          | Specializ                          | zed Courses                           |
|--------------|----------|------------------------------------|---------------------------------------|
|              |          | School of Knowledge Science        | School of Information Science         |
|              |          |                                    | -Highly-Dependable and Smart Embedded |
| labilianua   | Master's |                                    | Systems Track                         |
| Ishikawa     | Program  |                                    | -Information Security Track           |
| Campus       |          |                                    | -Fostering ICT Global Leader Track    |
| Students     | Doctoral |                                    | -Fostering ICT Global Leader Track    |
|              | program  |                                    |                                       |
|              |          | -Innovation Management of Service  | -Innovation Management of Service and |
|              | Maataria | and Technology Course              | Technology Course                     |
| Working      | Drogram  | >Management of Technology Field    | >Management of Service Field          |
| Professional | Program  | >Management of Service Field       | -Advanced Information Technologies    |
| Students     |          | >Medical Service Science Field     | Science Course                        |
|              | Doctoral | -Advanced Knowledge Science Course | -Advanced Information Science Course  |
|              | program  |                                    | -Advanced Software Engineering Course |

Table 2: Specialized courses

The Center for Nano Materials and Technology (CNMT) at the Ishikawa Campus offers the Nano Materials Technology Program. See the program page for details at the end of this booklet.

# VI. Matters related to taking courses

# **1** Degree completion requirements

In addition to the requirements shown below, requirements for credits obtained and courses taken are set in each school. See the school page for details. Note that students are responsible for reviewing and checking to meet all the requirements for completion.

# 1.1 Degree completion requirements for the master's program

- (1) In principle, students are required to spend a minimum of 2 years in the master's program. It may be approved to complete in less than 2 years in accordance with Article 36 of the JAIST School Regulations, however, if a prior application for fast-track degree completion is made, granted and the plan for a degree completion in a shorter period (1 year minimum) is carried out with the academic grades deemed sufficiently high by faculty. Information on fast-track degree completion will be provided at enrollment.
- (2) As JAIST Course Regulations stipulate, students are required to obtain a minimum of 30 course credits. IS students who are in the Fostering ICT Global Leader Track, are required to obtain 32 or more credits.
- (3) Students must submit a master's thesis or research project report after sufficient research supervision and guidance, and pass the defense and the final examination.

IS students who are in the Fostering ICT Global Leader Track may be required to take a designated exam (Ph.D. qualifying examination) in place of a master's thesis or research project report.

# 1.1.2 Requirements for progression within JAIST to the doctoral program for 5D program students

5D program students who wish to progress to the doctoral program are required to meet the requirements set by each school, including taking KS/IS/MS school courses and IGE courses and to have sufficient English proficiency in addition to meeting the degree completion requirements in the section 1.1. Check the page for each school for details.

# 1.2 Degree completion requirements for the doctoral program

- (1) In principle, students are required to spend a minimum of 5 years in graduate school (including the time spent in the master's program). It may be approved to complete in less than 5 years in accordance with Article 36 of the JAIST School Regulations, however, if a prior application is made by a specified time, granted and the plan for a degree completion in a shorter period (3 years minimum including the time spent in the master's program) is carried out with the academic grades deemed sufficiently high by faculty.. See the section VIII.2.1 for details on fast-track degree completion.
- (2) A minimum of 20 credits are to be obtained from KS/IS/MS school courses.
- (3) Students must submit a doctoral dissertation and pass the defense and the final examination after sufficient research supervision and guidance.

# 1.3 Handling of courses in the Institute of General Education

Credits from the IGE courses except for E1xx and J1xx can be included in the degree completion requirements for the master's program.

Note that E413 Scientific Discussions 2 and B411 Advanced Project Management in the IGE courses can be counted for the degree completion requirements as each school's Technical course without any area assigned for both the master's and the doctoral programs.

# 2 Course-related procedures

# 2.1 The Gakumu system (Academic Affairs System) and lecture syllabi

# 2.1.1 The Gakumu system (Academic Affairs System)

JAIST uses the Gakumu system for all procedures related to course registration, grade checking, and so on. Ensure that you fully understand how to use the system, and have no problems with registration or other actions. If there are any points you are unclear about, check with the manual

first, and then ask Kyoumu.

Check how to login the Gakumu system:

<JAIST top page → Education & Student Life: School Information and Academic Procedures → Gakumu System (Academic Affairs System) > (<u>https://gakumu.jaist.ac.jp/hcampus</u>/) (On-Campus Use Only) Note that User ID is assigned to students at enrollment. Password is the same as one for JAIST Mail.

# 2.1.2 Lecture syllabi

Lecture syllabi can be viewed on the Gakumu system and on the JAIST website (JAIST top page  $\rightarrow$  Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Syllabi). Copies of the syllabus booklet are not available.

# 2.2 Study Plan/Record and course registration

# 2.2.1 Study Plan/Record

A Study Plan/Record refers the plans and records of student's academic work from enrollment to completion. Students are expected to record the details of supervision from their supervisor for later reviewing their academic work. The entries should be checked carefully and be kept updated. Note that the Study Plan/Record is managed entirely through the Gakumu System. See the section "Study Plan/Record" in *HANDBOOK for Students*.

# 2.2.2 Course registration

Refer to the class schedule and the syllabus to make sure your course registration is properly planned. JAIST does not permit double registration of two courses that have overlapping times, even if only partially, nor will allow repeating courses for credits you have already obtained. Please note that the Ishikawa Campus students must take courses held at the Ishikawa Campus, and the Working Professional students must take courses held at the Tokyo Satellite. The non-credit courses like credited ones must be registered in order to attend.

Course registration should be done through the website (Gakumu System). Check the system manual how to register for courses online (JAIST top page  $\rightarrow$  Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Gakumu System (Academic Affairs System)  $\rightarrow$  student manual  $\rightarrow$  Course Registration  $\checkmark$  Grades).

(1) Course registration for KS/IS/MS school courses

Students must plan their coursework after a consultation with their supervisor. The course registration must be done online in the Gakumu system during the designated period for each term. It is the student's responsibility to check if all the courses they wish to take are successfully registered. Adding, changing, or deleting courses can be done as many times as you wish only during the designated registration period. Check the course registration period for each term on the academic calendar. Students will be notified regarding intensive courses and other irregular courses once the schedules have been set.

(2) Course registration for courses in the IGE

The registration for the IGE courses should be done in the same way as those for the KS/IS/MS school courses. Note that the Japanese language courses in the Communication courses are offered only to international students. If it is determined that inappropriate course registrations have been made, the course registration (and the earned credits) will be removed even if the course has already been completed.

# 2.3 Repeating course in the same year

Repeating courses in the same academic year is permitted for students who have spent longer than the standard enrollment period, for both the courses for each school and IGE courses. The following conditions apply for students who have not yet exceeded the standard enrollment period. (1) KS/IS/MS school courses:

Permitted only when the school approves of an application from students.

(2) IGE courses:

Permitted only when the school approves of an application from students. There are no restrictions for repeating non-credit courses.

Please note that for both (1) and (2), applications for repeating courses will require the seal of approval from both course instructors of the first and second time if the students had received "0" score for the course the first time.

Students wishing to repeat courses must submit an Application for Repeating Courses (JAIST top page  $\rightarrow$  Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Course Registration (On-campus use only)) within one week of the start of the course registration period for the term when the course they wish to repeat will be held, and submit it to Kyoumu. Course registration for the course to repeat will be done by Kyoumu. Please note that there is no need to apply to repeat non-credit courses. Students wishing to do so can register in the Gakumu system during the course registration period. Note that taking a course with the same course number but in a different language (e.g. K211 and K211E) is considered repeating a course and requires submission of an application form by the registration deadline.

# 2.4 Taking courses from other schools (Major Crossovers)

Credits obtained through a Major Crossover up to 4 credits can be included in the number of credits required for a degree completion.

Note that students in the KS school cannot take I112 Computer Systems in the IS school and students in the IS cannot take K119 Introduction to Computer Programming in the KS.

Students who wish to take a course from another school should submit an Application for Taking Courses from Other Schools (JAIST top page  $\rightarrow$  Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Course Registration (On-campus use only)) within one week of the start of the course registration period for the semester when the course they wish to take will be offered, and submit it to Kyoumu after obtaining approval of their supervisor. Course registration will be done by Kyoumu.

The Ishikawa Campus students are able to count 2 credits (1 course) from the completed courses of any of the Basic, Technical, or Advanced courses through a Major Crossover in the specified credits for the Global Human Resource Development Program. For the master's program students, 1 course (2 credits) from the finished Major Crossover courses will be recognized as one (2 credits) of the requirement of "at least 8 credits (4 courses) from IGE courses". For the doctoral program students, one course (2 credits) of the finished Major Crossover courses will be recognized as one course (1 department, 2 credits) of the requirement of "at least 8 credits (4 courses, 3 departments) from IGE courses".

# 3 Global Human Resource Development Program

In order to educate students to be able to make full use of their leadership abilities on the international stage, with a wide, birds-eye view, students are encouraged to take courses in the IGE. A certificate of completion will be granted to those who obtain the specified number of credits.

# 3.1 Master's program

The Global Human Resource Development Program Completion Certificate (master's program) will be awarded on completion of the master's program to those who have obtained at least 8 credits (4 courses) from the Institute of General Education and who have completed E211 Intermediate Technical Communications or higher level courses or are deemed to have the equivalent ability.

# 3.2 Doctoral program

The Global Human Resource Development Program Completion Certificate (doctoral program) will be awarded on completion of the doctoral program to those who have obtained credits indicated below. However, courses in the IGE taken (except for E413 and B411) during the master's program by those who enrolled in the master's program at JAIST will need to be retaken because the credits obtained before entering the doctoral program are not recognized. IGE courses: At least 8 credits (4 courses) from all 3 departments, and meeting the following requirements.

- At least 4 credits (2 courses) from Liberal Arts Education Department
- At least 2 credits (1 course) from Global Communication Education Department
- At least 2 credits (1 course) from Career Education Department

### 4 Examinations, grade assessments, etc.

- (1) A final exam will generally be given to complete a course. When exams are difficult to be implemented, research reports or similar tasks will be assigned instead.
- (2) Grades will be assessed by the result of a final examination and student's achievement. Grades are a percentage point scale based on the view point, method, and criteria listed in the syllabus, with 60% being the passing score. Courses which are difficult to score as percentages will be either "Pass" or "Fail." The specified credits will be awarded to those who have been given passing grades.
- (3) Credits that have already been obtained cannot be deleted or changed.
- (4) Grades can be checked using the Gakumu System, starting around 2 weeks following each term for the Ishikawa Campus students, and once the notification for the grade reports has been received from Kyoumu for the Working Professional students. Please note that any questions regarding the grade assessments should be directed to Kyoumu.
- (5) If there are any improprieties in taking classes or examinations, all credits for that semester will be withdrawn.
- (6) JAIST may calculate an academic performance index based on (1) and (2) so that it can be used for certain procedures JAIST approves necessary.

### 5 Course evaluations

To help improve class quality, JAIST asks that students to provide an evaluation for each course through a questionnaire midterm and the following end of courses. The results of the midterm questionnaire will be reported to the course instructors to help improve the second half of the courses. The results from the end-of-term questionnaire will be notified to the instructors after the submission of grade reports.

### 6 Recognition of credits obtained prior to admission

Students who wish to have the credits they obtained before admission recognized must submit an application form available on the JAIST website (JAIST top page  $\rightarrow$ Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Course Registration  $\rightarrow$  Course Registration (On-Campus Use Only)) to the president (via Kyoumu) after obtaining the approval of their supervisor within 2 weeks of enrollment. If students apply for credit transfer for courses taken at other graduate schools, the official transcript and a syllabus that show the details of the courses must also be submitted.

The assessment for courses that are recognized will be as "Transferred." By taking the courses at JAIST, the "transferred" status will be renewed by a score as percentages. These recognized courses can be included in the degree completion requirements. Once recognized, it cannot be changed. The following are the details:

(1) Credits obtained at other graduate institutes

The maximum number of credits that can be allowed to transfer is 8 credits which will be equivalent to KS/IS/MS school courses taken at JAIST after evaluation by the faculty. No credits will be recognized for the Introductory courses for the doctoral program.

(2) Credits obtained in the master's program at JAIST

You can only transfer credits exceeding 10 credits you have obtained. The maximum number of transferable credits is 8 which maybe recognized as the Advanced courses. Note that credits from the Introductory courses, the Seminars (major research project) and Research (minor research project) are not transferable. E.g. If you have obtained 16 credits (except those of the Introductory courses, the seminar and the research), you may transfer 6 credits. The IS school has its own requirements, which should be checked on its page.

(3) Credits obtained as a JAIST non-degree seeking student

All obtained credits will be recognized (except for those of the Introductory for the doctoral program).

(4) Other

Inquire at Kyoumu about transferring credits for transfer students or readmitted students.

# 7 Taking courses at other graduate institutes through the course interchange agreement

To promote exchanges and cooperation with the graduate institutes listed in Table 3 below and to enhance our educational content, JAIST operates course interchange whereby students can take courses at other graduate institutes. After checking the syllabi of our Partner Institutes, students who wish to take courses there should discuss this with their supervisor and follow the procedures (see (3) below). When applying, they should check the class schedule so that they only select courses they are surely able to attend.

(1) Application fee, admission fee, tuition fee

Students will be classified as "non-degree seeking students from a partner institute" and thus will not have to pay any application fees, admission fees, or tuition fees, except the School of Graduate Studies at the Open University of Japan will charge the tuition fees.

(2) Courses and credits

Courses that can be taken at Partner Institutes (except for the Open University of Japan) must be the ones that are effective for research and that do not cover topics already provided by JAIST. See the table below. During their period of enrollment at JAIST, students can take a maximum of 10 credits 5 courses including the recognized credits obtained previously at other graduate institute.

Permission for taking courses, whether the courses taken will be counted as JAIST courses and whether they will be included for the degree completion requirements at JAIST will be determined at a faculty meeting on student's request. Please note that credits for courses obtained at the Open University of Japan will not be recognized as course credits for each school. Note that the IS school does not assign an area to the credits obtained through this agreement.

(3) Application procedures

Students wishing to take courses at a Partner Institute should consult with their supervisor and then carry out the procedures within the specified period once permission is granted. The class schedule, syllabi, and procedures for Partner Institutes will be notified as appropriate.

|                 | Partner Institutes                           | Courses available                           |
|-----------------|----------------------------------------------|---------------------------------------------|
| For Master's    | Graduate School of Natural Science and       | Courses taught by full-time faculty members |
| Program         | Technology, Kanazawa University*             | of the Partner Institutes                   |
| Students        | Graduate School of Engineering,              | (Laboratory work, practices, exercises,     |
|                 | Kanazawa Institute of Technology*            | research projects are not included.)        |
|                 | Graduate School of Arts and Sciences,        | All the graduate school courses             |
|                 | the Open University of Japan                 |                                             |
| For IS students | School of Multidisciplinary Sciences,        | Courses announced by Kyoumu.                |
| only            | the Graduate University for Advanced         |                                             |
|                 | Studies                                      |                                             |
|                 | Graduate School of Global Information and    |                                             |
|                 | Telecommunication Studies, Waseda University |                                             |

 Table 3: Partner Institutes

\*Students are not allowed to take courses at the partner institutes for the first half year after entering JAIST because courses at JAIST are given priority. The IS school students must complete a minimum of 2 IS courses (4 credits) also.

# VII. Matters related to research supervision

## 1 Laboratory assignment

## 1.1 Master's program

All students are provisionally assigned to a laboratory when they enter JAIST. After inquiry about a laboratory of their choice, the final assignment will be made 3 months after enrollment for the IS and MS students, and 4 months for the KS students. Students will be notified regarding applications for final assignment. Please note that the MS school will not make final assignments unless students have obtained the specified number of credits. Check the school's page for details.

# 1.2 Doctoral program

Students in the 5D and SD programs will be assigned to the laboratory which they were assigned in their master's program. For the 3D program students, consultation with their expected supervisor prior to admission to the doctoral program is necessary. Assignments to a laboratory of their choice will be made upon enrollment.

## 1.3 Changing laboratories

If students wish to change their assigned laboratory to another one for any reason, they must contact Kyoumu.

## 2 Study and research supervision

Since its founding, JAIST has used a supervisory system whereby, in addition to a research theme related to their major field of study (Major Research Project), students are required to take on a secondary research theme to give them some fundamental concepts, knowledge, and abilities from different research fields (Minor Research Project).

In addition, in the doctoral program, students can choose to study in other educational or research institutes in Japan or overseas as a part of a major research project, and undertake internships in companies in place of a minor research project, helping them create a career that allows their specialist skills to help society.

### 2.1 Major research project

A major research project is called Seminar A (Master's Thesis for 8 credits or Research Project for 2 credits) and a required course for the master's program. It is called Advanced Seminar B (Doctoral Dissertation for 6 credits) in the doctoral program. For the IS master's students in the Fostering ICT Global Leader Program, Seminar A (Survey for Doctoral Research Plan for 2 credits) is a required course in place of Seminar A. Check the school page for details.

Once students decide a research theme in their research area, they must submit a research proposal. A start of a research period will be at the point when a research proposal has been accepted after vetting by 3 advisors. However, the IS school has different conditions for a start of a research project, which should be checked on the school's page. Please note that if a submission of a research proposal for the master's program is delayed, its completion date will also be delayed. Check the conditions for starting a major research project on the page of each school. Students must also obtain necessary forms from JAIST's website (Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Degree Requirements, Timeline and Procedures).

### 2.2 Minor research project

A minor research project is called Research A (2 credits) in the master's program and Advanced Research B1 (Minor Research Project for 4 credits) in the doctoral program, which is a required course. A research theme for a minor research project for master's students should be one from outside of their research area so as to learn the fundamental concepts, knowledge, abilities, etc. outside of their field. For doctoral students, a research theme should be chosen from a different research area, or a different topic from the same research area of the major research project. Please note that the IS doctoral students must choose a topic from a different field if the topic is from the same as their research area.

Check the conditions for starting a minor research project on the page of each school. Students

must also obtain necessary documents from JAIST's website (Education & Student Life: School Information and Academic Procedures  $\rightarrow$  Minor Research Project).

# 2.3 Internships for doctoral program

An internship is a 4 credit worth course (Advanced Research B2) in the doctoral program which can be substituted for a minor research project by choice. Doctoral students select either a minor research project or an internship within a year of admission. Generally, internships include high-level research and study at a company for more than three months. See each school page for details. For the doctoral Working Professional students Advanced Research B1 (Minor Research Project) is compulsory and Advanced Research B2 (Internship) cannot be selected.

# 3 Multiple supervisory system

JAIST has a multiple supervisory system in which one student has 3 faculty members assigned so that students will receive overall supervision and advice for both academic work and daily life in general with various issues students might face. JAIST faculty members are here to help students to develop characteristics to suit the ideal person JAIST strives to educate.

The system uses a supervisor, a second supervisor, and an advisor for Minor Research Project (or an advisor for Internship in the doctoral program). Each faculty member plays the following roles. (1) Supervisor

- (a) Plays the main role in supervising the students' academic work and research.
- (b) Provides supervision for the research topic (Major Research Project) related to students' research field, and for writing a thesis/dissertation.
- (c) Provides guidance for students' student life, career path and formation.
- (d) Determines how to solve various problems students may face through links with a second supervisor and other related parties.
- (2) Second supervisor
  - (a) Provides guidance for students' academic work and research and advice to students from a different perspective to a supervisor.
  - (b) Provides guidance and advice for students' student life, career path and formation from a different perspective to a supervisor.
  - (c) Works to solve various problems students may face through links with a supervisor as required.
- (3) Advisor for Minor Research Project (Advisor for Internship)
  - (a) In principle, provides supervision for a secondary research topic (Minor Research Project) or an internship as a faculty member from outside students' research field.
  - (b) Provides advice for various academic issues students may have from a different perspective to a supervisor and a second supervisor (including liaising with the internship location).

# 4 Research supervision at other schools or other graduate institutes

- (1) Major Research Project supervision at other schools or other graduate institutions Under supervision of their supervisors, students are free to do a part of their major research project at another school within JAIST or at another graduate institute elsewhere.
- (2) Minor Research Project supervision at other schools or other graduate institutes Students may work on their minor research project at another graduate institute outside JAIST or another school at JAIST (including the Institute of General Education; the KS school will specify which faculty members from the IGE may work on the project with) under supervision of a faculty from their school when the dean of the school recognizes that there will be a synergistic effect for human development in the student's research field within the school. For the KS and IS students, if they decide to work on their minor research at another school in JAIST, they can have a faculty member whom they work with as their advisor for Minor Research Project.
- (3) Research period

The research period at other schools or other graduate institutes shall be no longer than 1

year for the master's program and 18 months for the doctoral program.

(4) Procedures

Students who wish to receive research supervision at another graduate institute outside JAIST must submit a form for Entrustment of Research Guidance outside JAIST at least 2 months prior to the start of research to the vice president via Kyoumu through their supervisor. There are no special procedures required for such entrustment of research supervision in other schools within JAIST.

## VIII. Matters related to conferment of degree

The conferment of degree is done on dates specified by JAIST in the months of March, June, September, and December.

### 1 Degree defense for the master's program

The procedures related to a defense and a final examination are laid out in the "Degree Regulations" and in the "Bylaws Related to the Defense for Granting the Master's Degree," and other arrangements.

### **1.1** Application for conferment of degree

Students who are expected to meet the degree completion requirements (expect for Seminar A) for the master's program and who wish to apply for a degree conferment must read *Application Guide for the Award of Master's Degrees*, get the supervisor's approval and submit an Application for Conferment of Degree and the necessary documents to the president (via Kyoumu). The IS students in the Highly-Dependable and Smart Embedded Systems Track must have completed all the required courses except for Seminar A and one from the Practical Courses, and the rest of the IS students must have completed all except for Seminar A before applying for degree conferment. The deadline for applying for a degree will be 2 months before the scheduled completion date, or 3 months for those wishing to graduate in September (the date will be specified by JAIST).

### 1.2 Submission of master's thesis or research project

Degree applicants must submit their master's thesis or research project report by the date specified by JAIST to the president (via Kyoumu) after gaining the approval of their supervisor, and then distribute copies to the examination committee, including the supervisor. Please note that names of the examination committee will be announced accordingly along with the thesis presentation schedule.

### **1.3 Conferment of degree**

Degree applicants will undergo a private thesis defense and final examination once they have publically presented their thesis. The decision of degree conferment will be made after a deliberation at a faculty meeting. The student number of successful candidates will be announced on the notice board next to the automatic certificate issuing machine (a list of the number of successful candidates will be sent by email to the Working Professional students).

#### 2 Degree defense for the doctoral program

The procedures related to a defense and a final examination are laid out in the "Degree Regulations" and in the "Bylaws Related to the Defense for Granting the Doctoral Degree," and other arrangements.

### 2.1 Dissertation outline

A dissertation outline must be submitted to Kyoumu at least 6 months before an application for a degree after gaining the approval of all 3 advisors. The IS students must have obtained all required credits except for Advanced Seminar B before applying.

Students wishing for fast-track degree completion should first consult with their supervisor and set the earlier outline submission time. Then report to the dean of the school via their supervisor that they plan to apply for fast-track degree completion.

### 2.2 Preliminary defense

Students who have obtained all the required credits other than Advanced Seminar B must submit their request for a preliminary defense of the doctoral dissertation to the dean of the school (via Kyoumu) at least 3 months before their degree application, with the approval of their supervisor. The supervisor will carry out the procedures for holding the preliminary defense based on this request. The student must provide drafts of the degree dissertation to each prospective examination committee member 2 weeks before the preliminary defense meeting. Please note that

the prospective examination committee will be announced accordingly along with the date for the preliminary defense.

## 2.3 Degree application and conferment of degree

Those who pass the preliminary defense should carefully read *Application Guide for the Award of Doctoral Degrees* and, after obtaining approval of all 3 advisors, submit an Application for Conferment of Degree and the necessary documents to the president (via Kyoumu). Degree applicants will first present their work at a formal hearing (open to the public) and then be examined by the examination committee at which time they will provide a defense of the dissertation and have their final examination (not open to the public). Please note that the examination committee will be announced along with the date for the formal hearing.

The decision of degree conferment will be made after a deliberation at a faculty meeting. The student number of successful candidates will be announced on the notice board next to the automatic certificate issuing machine (a list of the number of successful candidates sent by email to the Working Professional students).

Please note that the successful candidates must check the necessary procedures in *Application Guide for the Award of Doctoral Degrees* and must ensure them done by the specified deadline.

# IX. Systems in place

### 1 Extended study period for completion

If students whose study time at JAIST is limited by job conflicts or other issues and finds it difficult to complete the study within the standard enrollment period, they may be allowed to spend a certain additional amount of time to complete. Students who wish to extend their study period must check the JAIST website (Education & Student Life: Other Information  $\rightarrow$  Fast-Track Degree Completion / Extended Study period for Completion) and apply before the designated deadline.

### 2 Progression within JAIST

Those students who complete a master's program at JAIST and wish to continue onto the doctoral program must check the Application Guide and apply for the Internal Entrance Examination.

## 3 Finding employments

- (1) Guidance and supervision for finding employments and other career formation matters will be done at periods set by JAIST-wide and by each school.
- (2) School recommendations will be made only for students who satisfy the recommendation standards set by the school. Check each school's page for details.

## 4 Teaching certificate

Check the details in the relevant pages with the Japanese-language version of *Degree Completion Guide 2015-2016*.

## 5 Study and training benefit plans

Check the details in the relevant pages with the Japanese-language version of *Degree Completion Guide 2015-2016*.

# Lecture room map

OSchool of Information Science, School of Materials Science

Ground floor



First floor



#### OSchool of Knowledge Science

Ground floor





# **Institute of General Education**

# **Institute of General Education**

# 1 Overview of the Institute of General Education

The Institute of General Education (IGE) consists of three Departments: Liberal Arts Education, Global Communication Education, and Career Education. It provides a broad range of subjects to cultivate sophistication and knowledge, greater ethical awareness, and excellent communication skills. It also aims to equip students with language competency, an understanding and receptiveness toward diverse cultures, and career education to assist graduates find positions in society based on their individual specialties and strengths.

Japan has become increasingly affected by the global environment. Many corporations now focus on overseas operations. The objectives of postgraduate education today should place great emphasis not only on the fostering of researchers in advanced science and engineers in highly specialized technology, but also on the development of individuals who can exercise leadership on the international scene and who are able to think from a variety of perspectives.

JAIST has established specialized facilities to adapt postgraduate education to the rapidly globalizing society. The Global Communication Center has strengthened students' international communication abilities, while the Career Support Center has supported doctoral students in playing an active role in a corporation in the future. Since its establishment, JAIST has also offered cross-departmental courses, mainly in the areas of advanced liberal arts. The IGE was established to integrate these centers into a single educational organization responsible for cultivating individuals who can play an important role in global society. Each of the three IGE departments aims to foster students' ability necessary to be successful internationally.

## [Liberal Arts Education Department]

The Liberal Arts Education Department offers basic liberal arts education courses to cultivate individuals who will utilize their qualities that are essential for leadership, such as an understanding of mathematical reasoning, philosophical thinking, the global economy.

### [Global Communication Education Department]

The Global Communication Education Department offers systematic training in language and communication skills essential for success in the international arena. Assistance is provided to all students to help them master skills in English for academic or specific purposes; international students are able to acquire academic and business communication skills in Japanese.

### [Career Education Department]

The Career Education Department offers career education intended to provide opportunities for students to find positions in society that match their own area of expertise and to foster their ability to contribute to society based on their acquired knowledge and skills.

# 2 Staff

Director: KAWANISHI, Shungo (Professor)

#### [Liberal Arts Education Department]

Head: KAWANISHI, Shungo (Professor) Associate Professor MIZUMOTO, Masaharu Visiting Professor KUNIFUJI, Susumu Visiting Professor KOBAYASHI, Akiko Part-time Lecturer TAKEUCHI, Fumihide Part-time Lecturer HIGASHIJIMA, Jin Part-time Lecturer MIZUKOSHI, Shin Part-time Lecturer HIRATA, Toru Part-time Lecturer KAWAMURA, Takaya Part-time Lecturer MERKLEJN, Iwona Regina

### [Global Communication Education Department]

Head: KAWANISHI, Shungo (Professor) Professor HOLDEN, William Riley Professor HONDA, Hiroyuki Research Lecturer Blake, John Visiting Professor SHIBUYA, Yoshiho Visiting Professor TSUJI, Toshihide

| Associate Professor                | Part-time Lecturer HORIGUCHI, Etsuko  |
|------------------------------------|---------------------------------------|
| TERRILLON, Jean-Christophe Georges | Part-time Lecturer YAMAGUCHI, Michiyo |
| Research Lecturer                  | Part-time Lecturer TSUTSUI, Masako    |
| Ambassah, Nathanie Ochiengl        |                                       |
| Research Lecturer                  |                                       |
| HINCHEY, Dubhgan Kyle-Arleas       |                                       |
| [Career Education Department]      |                                       |
| Head: KOHDA, Youji (Professor)     | Part-time Lecturer SERYO, Koichi      |
| Visiting Professor TANAKA, Hiroshi | Part-time Lecturer YANAGISHITA, Kazuo |
| Part-time Lecturer HASHIZUME, Toru | Part-time Lecturer MIURA, Susumu      |
|                                    |                                       |

# 3 Lecture schedule

Please see the class schedule page of each graduate school for the Institute of General Education class schedule.

# 4 Liberal Arts Education Department (Liveral arts courses)

The IGE offers courses intended to equip students with ability to think from a variety of perspectives, focusing on three abilities: mathematical understanding, philosophical thinking, and global consciousness.

L211 Logic and Mathematics will provide mathematical preparation necessary to students of all the graduate schools. L212 History and Philosophy of Science will develop students' ability to comprehend philosophical ways of thinking in the field of science. L214 A Methodology for Innovation Design will equip students with methods of creative problem solving in a global context necessary for students of any academic field.

L213 World Economics, L221 Ethical Issues in Science, L222 Introduction to Management of Technology and Intellectual Property Rights, L223 Media Theory and L224 Introduction to Science and Technology in Global Perspective are essential for advanced scientists and highly specialized engineers.

| Course<br>Number        | Course Title                                                                    | Lan-<br>guage<br>* | Class Terms | Instructor(s)       | Notes    |
|-------------------------|---------------------------------------------------------------------------------|--------------------|-------------|---------------------|----------|
| Liberal Arts Courses I  |                                                                                 |                    |             |                     |          |
| L211                    | Logic and Mathematics                                                           | J                  | 1-1         | Preining            |          |
|                         |                                                                                 | E                  | 2-1         |                     |          |
| L212                    | History and Philosophy of<br>Science                                            | E                  | 1-1         | Mizumoto            |          |
|                         |                                                                                 | J                  | 2-1         |                     |          |
| L214                    | A Methodology for Innovation<br>Design                                          | J                  | 1-1         | Kunifuji, etc.      |          |
|                         |                                                                                 | E                  | 2-1         |                     |          |
| Liberal Arts Courses II |                                                                                 |                    |             |                     |          |
| L213                    | World Economics                                                                 | J                  | September   | Takeuchi            |          |
|                         |                                                                                 | E                  | February    |                     |          |
| L221                    | Ethical Issues in Science                                                       | J                  | September   | Higashijima         |          |
|                         |                                                                                 | E                  | February    |                     |          |
| L222                    | Introduction to Management of<br>Technology and Intellectual<br>Property Rights | J                  | September   | Hirata, Kobayashi   |          |
|                         |                                                                                 | E                  | February    | Kawamura, Kobayashi |          |
| L223                    | Media Theory                                                                    | E                  | September   | Merklejn            |          |
|                         |                                                                                 | J                  | February    | Mizukoshi           |          |
| L224                    | Introduction to Science and<br>Technology in Global Perspective                 | J                  | September   | Ebitani, etc.       | 1 credit |

# 4.1 Course listing

\* "J" indicates that the course is offered in Japanese; "E" in English.

# 5 Global Communication Education Department (Communication courses)

Technical communication skills are essential for taking an active role in global society. To develop these skills, the Global Communication Education Department (GCED) offers Technical English Communication Education and Technical Japanese Communication Education Programs that systematically offer courses from basic to advanced levels and courses for intercultural understanding to complement the language education.

The Technical English Communication Education Program consists of 12 courses at 4 levels from Interaction Seminar to Advanced Technical Communication. The Technical Japanese Education Program provides international students with 8 courses at 4 levels from basic to advanced. The courses provide technical Japanese language skills for basic, scientific and technical, and business communications. Moreover, courses such as G211 Global Communication for Collaboration Building, G212 Writing and Presentation Skills in Japanese and G213 Japan Studies are offered to enhance global communication education.

In principle, students are required to take classes corresponding to their levels of language proficiency.

# 5.1 Communication courses (Technical Communication Education Program)

# 5.1.1 System of technical English communication courses

The Technical English Communication Education Program offers language skills courses at 4 levels: five courses at the interaction seminars and basic level aim to improve and enhance basic reading, writing, listening, and speaking skills. Six courses at the intermediate, advanced and scientific discussions levels aim to develop student's technical communication skills by offering training in critical thinking, academic and scientific reading and writing, technical presentations, and discussion in the context of science and technology.

Interaction Seminars: E011 Interaction Seminar 1, E021 Interaction Seminar 2

These courses aim to rebuild foundations of English language by reviewing basics of English grammar and basic skills for reading, writing, listening, and, speaking, thereby stimulating students' motivation to study English further.

Basic Technical Communication courses: E111 Academic Discussion and Debate, E112

Academic Writing and E113 Reading research Documents

These courses help students master essential reading, writing, listening, and speaking skills in the concrete contexts of research and education.

Intermediate Technical Communication courses: E211 Writing Research, E212 Presenting Research

These courses further develop technical communication competence in English by introducing students to scientific writing and technical presentation, and in the context of science and technology.

Advanced Technical Communication courses: E411 Writing Short Research Documents, E412 Writing Extended Research Documents

These courses aim to develop advanced technical communication skills in English for scientists and engineers, by enabling them to write, publish and orally present academic papers.
| 5.1.2 | Course | listing |
|-------|--------|---------|
|       |        | J       |

| Course<br>Number | Course Title                           |     | Class | Terms | 5   | Instructor(s) | Notes                                  |
|------------------|----------------------------------------|-----|-------|-------|-----|---------------|----------------------------------------|
| E011             | Interaction Seminar 1                  | 1-1 | 1-2   | 2-1   | 2-2 | Hinchey       | Non-credit                             |
| E021             | Interaction Seminar 2                  | 1-1 | 1-2   | 2-1   | 2-2 | Hinchey       | Non-credit                             |
| E111             | Basic Technical Communication 1        | 1-1 |       | 2-1   |     | Holden        |                                        |
| E112             | Basic Technical Communication 2        |     | 1-2   |       | 2-2 | Holden        |                                        |
| E113             | Basic Technical Communication 3        | 1-1 | 1-2   | 2-1   | 2-2 | Blake         |                                        |
| E211             | Intermediate Technical Communication 1 | 1-1 | 1-2   | 2-1   | 2-2 | Ambassah      |                                        |
| E212             | Intermediate Technical Communication 2 | 1-1 | 1-2   | 2-1   | 2-2 | Holden        |                                        |
| E213             | Scientific Discussions 1               | 1-1 |       | 2-1   |     | Blake         |                                        |
| E411             | Advanced Technical Communication 1     | 1-1 |       | 2-1   |     | Ambassah      |                                        |
| E412             | Advanced Technical Communication 2     |     | 1-2   |       | 2-2 | Ambasah       |                                        |
| E413             | Scientific Discussions 2               |     | 1-2   |       | 2-2 | Blake         |                                        |
| E422             | Seminar for Practical English          |     |       |       |     |               | 1 credit.<br>Not offered<br>this year. |

**Note 1:** Depending on the number of registering students, some courses may be offered in more than one time slot in the same term.

#### 5.1.3 The goal to be attained by learning technical communication in English

All students are expected to obtain a minimum TOEIC score of 600 by graduation. To that end, students whose TOEIC scores are under 500 are to take E011, E021, and students whose TOEIC scores are between 500 and 599 are supposed to take E111-113. A TOEIC score of 600 or more can be substituted as credits for one course from E211-413 toward earning a certificate from the Global Human Resource Development Program.

#### 5.1.4 TOEIC IP tests

The Global Communication Education Department (GCED) periodically offers TOEIC IP tests to monitor students' improvement in English abilities.

All newly matriculated students in April 2015 or after must take the TOEIC IP test twice during their enrollment. If students enter JAIST in April or in October, they take one on the first day of enrollment and one 18 months later. If students enter JAIST at other times, they take one offered closest to the first day of enrollement and another 18 months later. Students who need to take TOEIC for employment purposes or progression within JAIST (from master's program to doctoral), they can take the test offered in August and February.

Students are expected to get a TOEIC score of 600 or higher by graduation. If they do not achieve this in 18 months, they must take the next TOEIC available after the last one they took.

#### Test schedule

On the Ishikawa Campus

- **1. TOEIC IP** only for students enrolled in April, 2015.
- Monday, April 6 **14:30 ~ 17:00 2. TOEIC IP** Friday August 7 **15: 30 ~ 18:00**

| Friday, August 7 | 15: 30 ~ 18:00 |
|------------------|----------------|
|                  |                |

3. TOEIC IP

Friday, October 2 14:30 ~ 17:00 **4. TOEIC IP** Friday, February 5, 2016 15: 30 ~ 18:00

## 5.2 Communication courses (Technical Japanese Education Program)

#### 5.2.1 System of technical Japanese courses

The Technical Japanese Education Program provides international students Japanese language courses to obtain basic knowledge of Japanese language and skills necessary for daily life and to acquire advanced level of Japanese language necessary for business or academic and research activities. The introductory Technical Japanese courses and Basic Technical Japanese courses aim to provide training to obtain a sufficient level of daily oral communication skills and essential reading skills. International students from countries not using Chinese characters are trained to master Japanese letters including some basic Chinese characters. Intermediate Technical Japanese courses focus on obtaining sentence patterns to understand complex sentences and short articles. Advanced Technical Japanese courses are designed for international students holding a high level of Japanese proficiency to obtain advanced Japanese language skills including business communication, presentation and discussion in the field of science and technology, and writing documents so that they will be able to work or continue research in Japan after graduation from JAIST.

Introductory Technical Japanese courses: J011 System of Japanese Letters and Nominal Sentences, J012 Simple Sentences Using Verbs in Masu-form

These courses provide beginners with the foundations of Japanese language through practices in *Hiragana* and *Katakana*, basic conversation, listening comprehension, and composition, thereby increasing their motivation to study Japanese language further.

Basic Technical Japanese courses: J111 Adjective Sentences and Existential Sentences, J112 Complex Sentences Using the Verbs in Te-form These courses are designed to help students acquire skills to handle a series of easy conversations, use colloquial expressions, comprehend short readings and write short sentences through practices in essential Chinese characters, and introductory level vocabulary, sentence patterns, grammar, and expressions (The goal is the N5/N4 levels of JLPT).

Intermediate Technical Japanese courses: J211 Nai-form of Verbs, Dictionary-form and Basic Function Sentence Patterns, J212 Ordinary Style, Continuous Modification Paragraphs and Practical Function Sentence Patterns

These courses provide skills for conversations appropriate to a variety of situations and human relations, understanding Japanese sentences on familiar topics, and expressing ideas and opinions through practices of intermediate-level Chinese characters and functional expressions necessary for communication (The goal is the N3/N2 level of JLPT).

Advanced Technical Japanese: J411 Reading Comprehension and Conversation, J412 Composition and Presentation

These courses are designed to provide language skills necessary for academic life through practice of advanced-level Chinese characters, reading and writing academic papers or reports, and academic discussions and presentations (The goal is the N2/ N1 level of JLPT).

#### 5.2.2 Course listing

| Course<br>Number | Course Title                      |     | Class | Terms | ;   | Instructor<br>(s) | Notes      |
|------------------|-----------------------------------|-----|-------|-------|-----|-------------------|------------|
| J011             | Introductory Technical Japanese 1 | 1-1 |       | 2-1   |     | Tsutsui           | Non-credit |
| J012             | Introductory Technical Japanese 2 |     | 1-2   |       | 2-2 | Tsutsui           | Non-credit |
| J111             | Basic Technical Japanese 1        | 1-1 |       | 2-1   |     | Yamaguchi         |            |
| J112             | Basic Technical Japanese 2        |     | 1-2   |       | 2-2 | Yamaguchi         |            |
| J211             | Intermediate Technical Japanese 1 | 1-1 |       | 2-1   |     | Horiguchi         |            |
| J212             | Intermediate Technical Japanese 2 |     | 1-2   |       | 2-2 | Horiguchi         |            |
| J411             | Advanced Technical Japanese 1     | 1-1 |       | 2-1   |     | Honda             |            |
| J412             | Advanced Technical Japanese 2     |     | 1-2   |       | 2-2 | Honda             |            |

**Note 1:** Depending on the number of registering students, some courses may be offered in more than one time slot in the same term.

#### 5.3 Other communication courses (language and culture)

G211 Global Communication for Collaboration Building, G212 Writing and Presentation Skills, and G213 Japan Studies are offered to develop students' knowledge and skills necessary to enable students to adapt themselves to living and working in a multi-cultural global society.

#### **Course listing**

| Course<br>Number | Course Title                                       | Lan-<br>guage<br>* | Class Terms |     |     |     | Instructor<br>(s) | Notes |
|------------------|----------------------------------------------------|--------------------|-------------|-----|-----|-----|-------------------|-------|
| G211             | Global Communication for<br>Collaboration Building | E                  |             | 1-2 |     | 2-2 | Kawanishi         |       |
| G212             | Writing and Presentation Skills                    | J                  | 1-1         |     | 2-1 |     | Tsuji             |       |
| G213             | Japan Studies                                      | E                  | 1-1         |     | 2-1 |     | Kawanishi         |       |

\* "J" indicates that the course is offered in Japanese; "E" in English.

#### 6 Career Education Department (career-enhancing courses)

The Career Education Department offers career-enhancing courses for students to assist them to become professionally and socially independent. While respecting students' knowledge and skills in their specialized areas, we cultivate their perspectives and practical ability to utilize their specialist knowledge and skills in society. We also encourage students to acquire the habit of thinking for the future relationship between themselves and the society while pursuing scientific and technological excellence in their areas of specialization. We also seek to develop their abilities to present their research to people in various fields and to understand and discuss issues outside their own field in their own ways. Through our courses, we hope that students will rebuild their concept of values for research and development in a social value chain. The targets of career-enhancing courses are to nurture creative technologists, who are able to learn and apply knowledge and skills in their own fields, communicate with people in various fields, and open the future by using those abilities.

## 6.1 Course listing

| Course<br>Number | Course Title                  | Lan-<br>guage<br>* | Class Terms  | Instructor(s) | Notes    |
|------------------|-------------------------------|--------------------|--------------|---------------|----------|
| Career De        | evelopment Courses            |                    |              |               |          |
| B101             | 01 Career Development Basic** |                    | 1-2          | Kohda, etc.   |          |
| D201             | Caroor Dovelopment Expansive  | J                  | September    | Hashizume     | 1 credit |
| B201             | Career Development Expansive  | E                  | February     | Seryo         | 1 credit |
| Career Pr        | actical Skill Courses         |                    |              |               |          |
| D211             | Business Management &         | J                  | September    | Vanagishita   |          |
| DZTT             | Entrepreneurship              | E                  | February     | fallagistika  |          |
| D010             | Pacia Project Management      | J                  | September    | Miuro         |          |
| DZIZ             | Basic Project Management      | E                  | February     | IVIIUI a      |          |
| P212             | Career Awareness Development  |                    | Offered      | Kobda otc     | 1 crodit |
| DZIJ             |                               | J                  | as necessary | KUHUA, ELC.   | i creuit |
| ₽/11             | Advanced Project Management   | E                  | September    | Tanaka        |          |
| D411             | Auvanceu Project Management   | J                  | February     | ΤάΠάκα        |          |

\* "J" indicates that the course is offered in Japanese; "E" in English.

\*\* The first class of B101 is held on Wednesday, April 8.

School of Knowledge Science

# School of Knowledge Science

#### 1 Outline of the school

The educational and research system of School of Knowledge Science (KS school) has been developed through the restructuring and integration of disciplines in the fields of systems science, natural science, information science, cognitive science, social science, and humanities. The school engages in research into individual, organizational, societal, and natural activities from the perspective of "knowledge creation", and explores the issues, "What is knowledge?" and "How is knowledge created?"

The school also aims to nurture human resources, pioneers of the knowledge society in the 21st century capable of identifying and solving problems, and designing and implementing technological, organizational, and social innovation.

The research objectives are as follows:

- Knowledge Structure; Knowledge Representation; Scientific Knowledge; Social Knowledge; Policy Knowledge; Traditional Knowledge (Wisdom); Tacit Knowledge
- Knowledge Management in Organization and Society; Knowledge-based Management of Technology; Knowledge-based Project Management; Technological, Organizational, and Social Innovation as Knowledge Creation; Knowledge Economy; Knowledge Society
- Human Cognition, Intelligence and Creativity; Embodied Knowledge; Individual Knowledge Creation; Knowledge Technology; Knowledge Systems; Data Mining; Knowledge Creative Technologies; Design as Knowledge Creation
- Complex Phenomena such as Networking and Evolution in Society, Technology and Nature; Systems Methodologies; Modeling and Simulation; Constructive Approach; Systems Analysis for Environmental Issues; Systems Analysis for Regional Issues
- Service Innovation; Service Management; Service Value Creation; Service Marketing; Medical Service

These objectives cover a wide range of academic fields that surpass conventional academic frameworks and enable students to freely set their research themes from any viewpoint of knowledge.

We use intellectual techniques and technologies, group creation technology, and modeling & simulation in our research, and place great importance on field work, the gathering and analysis of data and knowledge creation in the field. We conduct both theoretical research to establish theoretical models for the explanation of phenomena, and practical research to resolve real and actual issues. We also encourage collaboration on research activities with regional and overseas organizations.

With this type of research as a backdrop, we have integrated various bases of knowledge from systems science, natural science, cognitive science, information science, social science, and humanities. We nurture managers and engineers with advanced expertise, managers with expertise in technology and engineers with expertise in management, and knowledge scientists, scientists with research prowess in the field of knowledge science as a graduate school that develops advanced science and technology in accordance with the needs of a rapidly changing society.

Research subjects of the KS school are concentrated mainly in the following four (three fundamental and one applied) areas in accordance with students' research interests and the expertise of our faculty members.

#### ♦ Social knowledge

Within this area, research is conducted on the processes of creating, sharing, and utilizing knowledge in groups, organizations, and society. Also, this area educates knowledge managers who have academic knowledge and practical skill in knowledge management and management

of technology (MOT) in business, government, NPOs, and regional communities, thereby producing technological, organizational, and social innovations.

#### ♦ Knowledge media

Within this area, research is conducted on human capabilities for discovering and representing items of knowledge. This area also allows students to systematically acquire knowledge and skills to develop knowledge-intensive systems with digital media and knowledge-base. Students are expected to play leading roles in creating a knowledge society by applying their knowledge and skills to the advancing frontiers of information and communication technologies.

#### ♦ Systems knowledge

Within this area, research is conducted on the processes of creating, sharing, and utilizing knowledge in complex phenomena in natural and social systems based on systems science using systems methodologies, modeling and simulation. Research activities in this area nurture knowledge workers capable of contributing to the analysis and solution of problems and issues in these domains.

#### ♦ Service knowledge

Within this area, research is conducted on the processes of service value creation, the sharing and utilization of service knowledge in enterprise or organizations. This area also allows service knowledge managers to achieve technical, organizational, and social innovation by providing them with practical know-how, skills and techniques for service management in enterprise and organizations.

#### Dean: Professor Yukari Nagai

#### Number of students

|                                 | Master's program | Doctoral program |
|---------------------------------|------------------|------------------|
| Department of Knowledge Science | 86               | 28               |

#### 2 Faculty profiles

#### School of Knowledge Science

| Name                              | Position                        | Specialization                                                                                                                          |
|-----------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Social Knowledge                  |                                 |                                                                                                                                         |
| IKAWA, Yasuo <sup>*4</sup>        | Research Professor              | Technology Management, R&D Management, Technology Strategy, Electronics and Semiconductor<br>Industry Strategy, Innovation Management   |
| UCHIHIRA, Naoshi                  | Professor                       | R&D Management, Service Design Methodology, Software Engineering                                                                        |
| UMEMOTO, Katsuhiro                | Professor                       | Knowledge Management                                                                                                                    |
| OKUWADA, Kumi                     | Visiting Professor              | Science and Technology Policy, Innovation Policy, Science and Technology Foresight, Nanotechnology and<br>Material Process Technology   |
| KONDOU, Shuuji                    | Visiting Professor              | Management Consulting, Innovation Management, New Industries Creation & Human Development                                               |
| TANAKA, Hiroshi                   | Visiting Professor              | Project Manegement                                                                                                                      |
| TOYAMA, Ryoko                     | Visiting Professor              | Corporate Strategy, Innovation Theory                                                                                                   |
| NAGATA, Akiya                     | Visiting Professor              | Sceience and Technology Policy, Economics of Industrial Innovation                                                                      |
| ITO, Yasunobu                     | Associate Professor             | Cultural Anthropology, Sociology of Knowledge, Ethnography                                                                              |
| PELTOKORPI, Vesa Matti            | Associate Professor             | Knowledge Management, International Human Resource Management, Transactive Memory Systems                                               |
| MIZUMOTO, Masaharu*3              | Associate Professor             | Analytic Philosophy, Wittgenstein, Epistemology, Philosophy of Mind                                                                     |
| SASAKI, Yasuo                     | Assistant Professor             | Decision Systems Science                                                                                                                |
| Knowledge Media                   |                                 |                                                                                                                                         |
| KUNIFUJI, Susumu                  | Visiting Professor              | Creativity Support Systems, Groupwares, Knowledge-based Systems                                                                         |
| NAGAI, Yukari                     | Professor                       | Design Creativity, Design Knowledge, Design Thinking, Communication Design                                                              |
| NISHIMOTO, Kazushi <sup>*1</sup>  | Professor                       | Creativity Support, Media Interaction, Informal Communications, Musical Information Processing                                          |
| FUJINAMI, Tsutomu                 | Professor                       | Skill Science, Embodied Cognitive Science, Information and Communication Technologies (ICT) for<br>Dementia Care                        |
| HO, Bao Tu                        | Professor                       | Machine Learning, Knowledge Discovery and Data Mining, Text Mining, Computational Science                                               |
| MIYATA, Kazunori                  | Professor                       | Computer Graphic, Media Integration, Procedural Modeling, Material Rendering                                                            |
| DAM, Hieu Chi                     | Associate Professor             | Computational Science, Knowledge Discovery and Data Mining                                                                              |
| YAMASHITA, Kunihiro <sup>*1</sup> | Associate Professor             | Software Engineering, Software Development Environment                                                                                  |
| YUIZONO, Takaya                   | Associate Professor             | Groupware for Knowledge Creation, Computer-Supported Cooperative Work, Cross Cultural Collaboration                                     |
| URA, Masahiro                     | Assistant Professor             | Art and Science, Teaching and Learning Support, Regional Activation                                                                     |
| ZELAYA ZAMORA, Jader Enrique      | Assistant Professor             | Knowledge Management, Design Management                                                                                                 |
| HIDAKA, Shohei                    | Assistant Professor             | Cognitive Science, Language Development, Behavioral Time Series Analysis                                                                |
| LE, Tu Ngoc                       | Assistant Professor             | Data Mining, Knowledge Discovery from Data, Bioinformatics                                                                              |
| Systems Knowledge                 |                                 |                                                                                                                                         |
| NAKAMORI, Yoshiteru               | Visiting Professor              | Systems Methodology, Decision Analysis, Kansei Engineering                                                                              |
| HASHIMOTO, Takashi                | Professor                       | Complex Systems, Evolutionary Linguistics, Evolutionary Economics, Artificial Life                                                      |
| YOSHIDA, Taketoshi                | Professor                       | Systems Methodology, Knowledge Management, Tacit Knowing                                                                                |
| HAYASHI, Yukio                    | Associate Professor             | Complex Network Science, Ad Hoc Wireless Communication, Self-organization, Distributed Computing                                        |
| HUYNH, Nam Van                    | Associate Professor             | Decision Analysis, Computational Intelligence, Knowledge Modelling                                                                      |
| KOBAYASHI, Shigeto                | Assistant Professor             | Evolutionary Economics, Institutional Design, Social Simulation, Gaming                                                                 |
| KONNO, Takeshi                    | Research<br>Assistant Professor | Cognitive Science, Cognitive Developmental Robotics, Evolutionary Linguistics                                                           |
| Service Knowledge                 | A53131011110103501              |                                                                                                                                         |
| IKEDA, Mitsuru                    | Professor                       | Knowledge Engineering, Ontology Engneering, Medical Service Science, Educational Technology,<br>e-Learning, Knowledge Management System |
| KOHDA, Youji                      | Professor                       | Internet Service, Service Science, Business Innovation                                                                                  |
| KOSAKA, Michitaka                 | Professor                       | Innovation Process, Research and Development Management, Business Information System, Stochastic<br>Control System                      |
| MIZOGUCHI, Riichiro*2             | Research Professor              | Ontological Engineering, Artificial Inteligence, Intelligent Learning Support System                                                    |
| KANAI, Hideaki <sup>*1</sup>      | Associate Professor             | Social computing, Persuasive technology, Pervasive Healthcare, Semantic Web                                                             |
| SHIRAHADA, Kunio                  | Associate Professor             | Service marketing, Organization management, Technology management                                                                       |
| TANAKA, Koji                      | Assistant Professor             | Cognitive psychology, Disaster Information, Educational Technology                                                                      |
| MASUDA, Hisashi                   | Assistant Professor             | Service Science, Service Marketing, Applied Microeconomics, Knowledge Engineering                                                       |
| SUMI, Tadao                       | Visiting Professor              | Developing Management Skills in Engineers and Researchers, Service Business in the Manufacturing<br>Industry                            |
| Maekawa, Masami                   | Research Associate              | Interface Design, Kansei Engineering                                                                                                    |
|                                   | Professor                       |                                                                                                                                         |

\*1 The instructor belongs to the Research Center for Innovative Lifestyle Design and concurrently works as a faculty member for the KS school.
 \*2 The instructor belongs to the Research Center for Service Science and concurrently works as a faculty member for the KS school.
 \*3 The instructor belongs to the Institute of General Education and concurrently works as a faculty member for the KS school.
 \*4 The instructor belongs to the Center for Advanced Education for Working Professionals and concurrently works as a faculty member for the KS school.

#### ♦ Chairs operated jointly with research institutes and/or companies

| Name                    | Position                        | Specialization                                                                                                                           |
|-------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Industrial Policy Syste | ems (Mitsubishi Resea           | rch Institute, Inc.)                                                                                                                     |
| OKUDA, Akinobu          | Visiting Professor              | Technology Policy and Technology Strategy, R&D Strategy and Technology Evaluation, Automobile and<br>Aerospace Business Strategy         |
| Noro, Yoshihisa         | Visiting Professor              | Research and Consulting of Marketing/ Product Development, Industrial Organization, Competitive Strategy                                 |
| Corporate Strategy Sy   | stems (Nomura Rese              | arch Institute, Ltd.)                                                                                                                    |
| IKEZAWA, Naoki          | Visiting Professor              | Theory of Technology Strategies, Theory of Project Strategies, Knowledge Management                                                      |
| NITTO, Hiroyuki         | Visiting Professor              | Marketing, Consumer Behavior Analysis, Theory of Project Strategies                                                                      |
| Knowledge Business (    | Creation (Fujitsu, Ltd.         | )                                                                                                                                        |
| TAKADA, Yuji            | Visiting Professor              | Service Oriented Architecture, Cloud Computing, SaaS/PaaS                                                                                |
| ARIMA, Jun              | Visiting Professor              | Change Manegement, Knowledge Management                                                                                                  |
| YAGI, Ryuhei            | Visiting<br>Associate Professor | Social Design, Qualitative Research, Psychometric                                                                                        |
| Intelligent Production  | <b>Systems</b> (Hitachi, Lt     | td)                                                                                                                                      |
| AKATSU, Masaharu        | Visiting Professor              | Information System, Service Management, R&D Management                                                                                   |
| NAGASAKA, Akio          | Visiting Professor              | Intelligent Graphic Handling, Video Image Processing, Multimedia Processing                                                              |
| Management of Indus     | try-Academy Collab              | poration (Ministry of Economy, Trade and Industry)                                                                                       |
| YASUNAGA, Yuko          | Visiting Professor              | Theory of Innovation, Technology Roadmapping, R&D Management, Theory of Semiconductor Business,<br>Theory of Resource Policy             |
| Intelligent Media (Adv  | anced Telecommunica             | tions Research Institute International)                                                                                                  |
| MIYASHITA, Takahiro     | Visiting Professor              | Robotics, Control Engineering, Sensor Network, Human-Robot Interaction, Ambient Intelligence,<br>Tactile Sensing, Tactile Communications |
| KOIZUMI, Satoshi        | Visiting<br>Associate Professor | Intelligent Robot, Human-Robot Interaction, Hyper Omni Vision, Sensor Network                                                            |
| Knowledge Science Ch    | nair Cooperated wit             | h Vietnam FIVE Institutes*                                                                                                               |
| CAO, Tru Hoang          | Visiting Professor              | Automatic reasoning, Conceptual Graph and Fuzzy Logic, Semantic Web, Text Mining, Machine Learning                                       |
| Service Technology (A   | dvanced Industrial Sci          | ience and Technology)                                                                                                                    |
| IZUMI, Noriaki          | Visiting<br>Associate Professor | Artificial Intelligence, Knowledge Engineering, Service System Development                                                               |
| MORI, Akira             | Visiting<br>Associate Professor | Fundamental Software Engineering, Network Security, Ubiquitous Computing, Service Engineering                                            |
| Medical Service Knowl   | edge Science (Miyaz             | aki University, Juntendo University)                                                                                                     |
| SATO, Nobuhiro          | Visiting Professor              | Internal Medicine, Medical Education, Medical Service Science                                                                            |
| ARAKI, Kenji            | Visiting Professor              | Medical Infomatics, Hospital Management, Artificial Organ, Medical Service Science                                                       |
| SUZUKI, Muneo           | Visiting<br>Associate Professor | Medical Infomatics, Hematology, Medical Service Science                                                                                  |
| Technology Manageme     | ent (University of Cam          | ıbridge)                                                                                                                                 |
| PROBERT, David Rhys     | Visiting Professor              | Technology and innovation strategy, Technology management process, Make or Buy strategy, Industrial<br>sustainability                    |
| PHAAL, Robert           | Visiting Professor              | Strategic technology management, Strategic technology roadmapping                                                                        |
| Thai Knowledge Science  | ce (Thammasart Unive            | ersity, NECTEC)                                                                                                                          |
| UDOMVITID, Kalaya       | Visiting Professor              | Technology management, Service innovation                                                                                                |
| SUPNITHI, Thepchai      | Visiting Professor              | Knowledge engineering, Natural language processing, Educational engineering, Service engineering                                         |
| KONGPRAWECHNON, Waree   | Visiting<br>Associate Professor | Control engineering, Biomedical signal/image processing                                                                                  |

\* FIVE Institutes indicate University of Science, Vietnam National University-Ho Chi Minh City (HCMUS), University of Technology, Vietnam National University-Ho Chi Minh City (HCMUT), Institute of Information Technology, Vietnamese Academy of Science and Technology (IOIT, VAST), Hanoi University of Science and Technology (HUST), Vietnam National University, University of Engineering and Technology (VNU-UET).

# 3 Class schedule for 2015-2016

| Term 1-1 ( April |               |                                                                                                               |                |                                                                                                               |                              |                                                                | June 5)                                                                                                                                                                                                                       | School of Knowledge Science                    |                                                                                                                                                         |  |
|------------------|---------------|---------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Γ                |               | 1                                                                                                             |                | 2                                                                                                             | 3                            |                                                                | 4                                                                                                                                                                                                                             |                                                | 5                                                                                                                                                       |  |
|                  |               | 9:20-10:50                                                                                                    |                | 11:00-12:30                                                                                                   |                              |                                                                | 15:10-16:40                                                                                                                                                                                                                   |                                                | 16:50-18:20                                                                                                                                             |  |
| Mon.             | K470<br>K613E | Introduction to<br>Knowledge Creation<br>(Kunifuji•Yamaura)<br>Social-Technical Complex<br>Systems<br>(Huynh) | K228           | Introduction to<br>Knowledge Science 1<br>(Hashimoto•Dam, etc.)                                               |                              | G212<br>G213E                                                  | Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                                    | L211<br>L212E<br>L214                          | Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science<br>(Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.) |  |
| Tue.             | K213<br>K471  | Methodology for<br>Systems Science<br>(Nakamori)<br>Media Creation<br>(Miyata+Ura)                            | к112еј<br>К469 | Basic Mathematics for<br>Data Analytics<br>(Ho•Dam)<br>Knowledge Creation<br>Support Systems<br>(Nishimoto)   |                              | E011<br>E111<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1<br>Advanced Technical Japanese 1 | E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1            |  |
| Wed.             | K119<br>K211  | Introduction to Computer<br>Programming<br>(Kobayashi)<br>Methodology for the<br>Social Sciences<br>(Ito)     | K470<br>K613E  | Introduction to<br>Knowledge Creation<br>(Kunifuji•Yamaura)<br>Social-Technical Complex<br>Systems<br>(Huynh) | Office Hours (13:30 ~ 15:00) | G212<br>G213E                                                  | Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                                    | L211<br>L212E<br>L214                          | Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science<br>(Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.) |  |
| Thu.             | K228          | Introduction to<br>Knowledge Science 1<br>(Hashimoto•Dam, etc.)                                               | K213<br>K471   | Methodology for<br>Systems Science<br>(Nakamori)<br>Media Creation<br>(Miyata•Ura)                            |                              | E011<br>E111<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1<br>Advanced Technical Japanese 1 | E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1            |  |
| Fri.             | K112EJ        | Basic Mathematics for<br>Data Analytics<br>(Ho•Dam)<br>Knowledge Creation<br>Support Systems<br>(Nishimoto)   | K119<br>K211   | Introduction to Computer<br>Programming<br>(Kobayashi)<br>Methodology for the<br>Social Sciences<br>(Ito)     |                              |                                                                |                                                                                                                                                                                                                               |                                                |                                                                                                                                                         |  |

NOTE:

• The first class of B101 will be held on Wednesday, April 8. The second and subsequent classes of B101 will be held in Term 1-2.

· All lectures except B101 in this term will start on Thursday, April 9 and the day will follow the WEDNESDAY schedule.

• Friday, June 5 will follow the MONDAY schedule.

• The course number with EJ indicates they are offered in both English and Japanese.

|      | -                            |                                                                                                                                                                |                              | Terri 1-2 (Ju                                                                                                                                              |                              | 10 -                                                           | August 5 )                                                                                                                                                                                                                 | 301100                                                 | of the Kilowiedge Science                                                                                                                                             |
|------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                              | 1                                                                                                                                                              |                              | 2                                                                                                                                                          | 3                            |                                                                | 4                                                                                                                                                                                                                          |                                                        | 5                                                                                                                                                                     |
|      |                              | 9:20-10:50                                                                                                                                                     |                              | 11:00-12:30                                                                                                                                                |                              |                                                                | 15:10-16:40                                                                                                                                                                                                                |                                                        | 16:50-18:20                                                                                                                                                           |
| Mon. | K121<br>K214<br>K421E        | Introduction to<br>Cognitive Science<br>(S.Hidaka)<br>Methodology for<br>Knowledge Media<br>(Yuizono)<br>Essence of System<br>Methodologies<br>(T.Yoshida)     | К114<br>к417еј<br>К444       | Introduction to Social<br>Research Methods<br>(Masuda)<br>Data Analytics<br>(Ho•Dam)<br>Design Cognition<br>(Nagai)                                        |                              | N008<br>B101<br>G211E                                          | Nano Quantum Device<br>Materials (*)<br>Career Development<br>Basic <b>(Kohda, etc.)</b><br>Global Communication<br>for Collaboration Building<br><b>(Kawanishi)</b>                                                       | N008<br>B101                                           | Nano Quantum Device<br>Materials (*)<br>Career Development<br>Basic <b>(Kohda, etc.)</b>                                                                              |
| Tue. | K229                         | Introduction to<br>Knowledge Science 2<br>(Yuizono•Ito, etc.)                                                                                                  | К123<br>Re<br>к236EJ<br>К412 | A Basic Study on<br>ealWorld Oriented Interface<br>(K.Yamashita)<br>Basis of Data Analytics<br>(Ho•Dam)<br>The Knowledge Society<br>(Ito)                  |                              | N006<br>E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412 | Nano IT Materials (*)<br>Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2 | N006<br>E021<br>E113<br>E212<br>E412<br>J012B<br>J112B | Nano IT Materials (*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2 |
| Wed. | K472<br>K473<br>E413         | Media Interaction<br>(Nishimoto)<br>Management of<br>Innovation<br>(Uchihira)<br>Scientific Discussions 2<br>(Blake)                                           | K121<br>K214<br>K421E        | Introduction to<br>Cognitive Science<br>(S.Hidaka)<br>Methodology for<br>Knowledge Media<br>(Yuizono)<br>Essence of System<br>Methodologies<br>(T.Yoshida) | Office Hours (13:30 ~ 15:00) | N007<br>G211E                                                  | Nano Biodevice Materials (*)<br>Global Communication<br>for Collaboration Building<br>(Kawanishi)                                                                                                                          | N007                                                   | Nano Biodevice Materials (*)                                                                                                                                          |
| Thu. | K114<br>K417EJ<br>K444       | Introduction to Social<br>Research Methods<br>(Masuda)<br>Data Analytics<br>(Ho•Dam)<br>Design Cognition<br>(Nagai)                                            | K229                         | Introduction to<br>Knowledge Science 2<br>(Yuizono•Ito, etc.)                                                                                              |                              | E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412         | Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2                          | E021<br>E113<br>E212<br>E412<br>J012B<br>J112B         | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2                          |
| Fri. | K123<br>Re<br>K236EJ<br>K412 | A Basic Study on<br>ealWorld Oriented Interface<br><b>(K.Yamashita)</b><br>Basis of Data Analytics<br><b>(Ho•Dam)</b><br>The Knowledge Society<br><b>(Ito)</b> | K472<br>K473<br>E413         | Media Interaction<br>(Nishimoto)<br>Management of<br>Innovation<br>(Uchihira)<br>Scientific Discussions 2<br>(Blake)                                       |                              |                                                                |                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                       |

#### Term 1.2 ( lune 10 - August 3 )

School of Knowledge Science

NOTE:

The lectures with EJ indicates they are offered in both English and Japanese.
\* NO0x courses will be offered by the faculty of Center for Nano Materials and Technology and School of Materials Science.

|      | -                     |                                                                                                                                                          |                       |                                                                                                                                                          |                              |                                                                | 200000000000000000000000000000000000000                                                                                                                                                                                                                                |                                                        | 3                                                                                                                                                                                                                      |
|------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                       | 1<br>9:20-10:50                                                                                                                                          |                       | 2<br>11:00-12:30                                                                                                                                         | 3                            |                                                                | 4<br>15:10-16:40                                                                                                                                                                                                                                                       |                                                        | 5<br>16:50-18:20                                                                                                                                                                                                       |
| Mon. | K411E<br>K411<br>K418 | Theory of Knowledge<br>Management<br>(Peltokorpi)<br>Theory of Knowledge<br>Management<br>(Hirata•T.Hayashi)<br>Representation of<br>Knowledge (Yuizono) | K228E                 | Introduction to<br>Knowledge Science 1<br>(Hashimoto-Dam, etc.)<br>Essence of System<br>Methodologies<br>(T.Yoshida)                                     |                              | N001<br>G212<br>G213E                                          | Fabrication of Nano-Devices<br>with Training Course(*)<br>Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                   | N001<br>L211E<br>L212<br>L214E                         | Fabrication of Nano-Devices<br>with Training Course(*)<br>Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science (Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.)         |
| Tue. | K119<br>K481          | Introduction to<br>Computer Programming<br>(Ura)<br>Next-Generation Management<br>of Technology<br>(Umemoto·Kohda, etc.)                                 | K211E<br>K479         | Methodology for the<br>Social Sciences<br>(Umemoto)<br>Service Management<br>(Shirahada)                                                                 |                              | N002<br>E011<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Study on Nanobiotechnology<br>with Training Course(*)<br>Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1                  | N002<br>E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Study on Nanobiotechnology<br>with Training Course(*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1                  |
| Wed. | K414<br>K433          | Complex Systems Analysis<br>(Hashimoto)<br>Practice of MOT<br>Innovations (Kondou)                                                                       | K411E<br>K411<br>K418 | Theory of Knowledge<br>Management<br>(Peltokorpi)<br>Theory of Knowledge<br>Management<br>(Hirata•T.Hayashi)<br>Representation of<br>Knowledge (Yuizono) | Office Hours (13:30 ~ 15:00) | N003<br>G212<br>G213E                                          | Analysis of Nano Materials<br>with Training Course(*)<br>Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                    | N003<br>L211E<br>L212<br>L214E                         | Analysis of Nano Materials<br>with Training Course(*)<br>Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science (Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.)          |
| Thu. | K228E<br>K421         | Introduction to<br>Knowledge Science 1<br>(Hashimoto•Dam, etc.)<br>Essence of System<br>Methodologies<br>(T.Yoshida)                                     | K119<br>K481          | Introduction to<br>Computer Programming<br>(Ura)<br>Next-Generation Management<br>of Technology<br>(Umemoto·Kohda, etc.)                                 |                              | N004<br>E011<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Structural Analysis of Solids on<br>Nano-Scale with Training Course(*)<br>Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1 | N004<br>E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Structural Analysis of Solids on<br>Nano-Scale with Training Course(*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1 |
| Fri. | К211E<br>К479         | Methodology for the<br>Social Sciences<br>(Umemoto)<br>Service Management<br>(Shirahada)                                                                 | K414<br>K433          | Complex Systems Analysis<br>(Hashimoto)<br>Practice of MOT<br>Innovations (Kondou)                                                                       |                              |                                                                |                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                        |

#### Term 2-1 (October 7 – December 2) School of Knowledge Science

NOTE:

• Wedensday, October 7 will follow the MONDAY schedule.

• \* N00x courses will be offered by the faculty of Center for Nano Materials and Technology and School of Materials Science.

| School of | Knowledge | Science |
|-----------|-----------|---------|
|           |           |         |

## Term 2-2 (December 4 – February 8)

|      | 1                                                                                                                               | 2                                                                                                                               | 3                            |                                                        | 4                                                                                                                                                                                                 |                                                | 5                                                                                                                                            |
|------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|      | 9:20-10:50                                                                                                                      | 11:00-12:30                                                                                                                     |                              |                                                        | 15:10-16:40                                                                                                                                                                                       |                                                | 16:50-18:20                                                                                                                                  |
| Mon. | K115 Introduction to Logic<br>(Kujifuji)<br>K611E Next-Generation Management<br>of Technology<br>(Kohda)                        | K213E Methodology for<br>Systems Science<br>(Nakamori+Huynh)                                                                    |                              | G211E                                                  | Global Communication<br>for Collaboration Building<br>(Kawanishi)                                                                                                                                 |                                                |                                                                                                                                              |
| Tue. | K111 Introduction to<br>Business Management<br>(Shirahada)<br>K214E Methodology for<br>Knowledge Media<br>(Kanai)               | K230E Introduction to<br>Knowledge Science 3<br>(Huynh•Fujinami, etc.)<br>K420 Research &<br>Development Management<br>(Kosaka) |                              | E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412 | Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2 | E021<br>E113<br>E212<br>E412<br>J012B<br>J112B | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2 |
| Wed. | K464EJ Cognitive Science<br>(Fujinami)<br>E413 Scientific Discussions 2<br>(Blake)                                              | K115 Introduction to Logic<br>(Kujifuji)<br>K611E Next-Generation Management<br>of Technology<br>(Kohda)                        | Office Hours (13:30 ~ 15:00) | G211E                                                  | Global Communication<br>for Collaboration Building<br>(Kawanishi)                                                                                                                                 |                                                |                                                                                                                                              |
| Thu. | K213E Methodology for<br>Systems Science<br>(Nakamori+Huynh)                                                                    | K111 Introduction to<br>Business Management<br>(Shirahada)<br>K214E Methodology for<br>Knowledge Media<br>(Kanai)               |                              | E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412 | Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2 | E021<br>E113<br>E212<br>E412<br>J012B<br>J112B | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2 |
| Fri. | K230E Introduction to<br>Knowledge Science 3<br>(Huynh-Fujinami, etc.)<br>K420 Research &<br>Development Management<br>(Kosaka) | K464EJ Cognitive Science<br>(Fujinami)<br>E413 Scientific Discussions 2<br>(Blake)                                              |                              |                                                        |                                                                                                                                                                                                   |                                                |                                                                                                                                              |

NOTE:

• Friday, December 4 will follow the WEDNESDAY schedule.

• The lectures with EJ indicates they are offered in both English and Japanese.

## 4 Curriculum

Students in the KS school must read both parts of the Institute-wide Study Guide and this guide for the KS students carefully and thoroughly.

#### 4.1 Outline of the curriculum

Based on JAIST's mission statement, the curriculum of the KS school is designed to help students systematically progress from the basics of knowledge science to its cutting-edge frontiers while acquiring fundamental academic skills that will enable them to make significant contributions to the development of state-of-the-art technologies and the resolution of current and future problems faced by society.

It is insufficient for students merely to take lectures with a passive attitude. To acquire abilities that will benefit them in the future, students are required to actively sow and nurture the seeds of social, organizational, or technical innovation of the next era by themselves toward a thorough understanding of advanced science and technology, and social and organizational problems through their learning process.

#### 4.2 The courses in the school of Knowledge Science (KS school courses/Kxxx series)

The KS school courses are classified into following 4 groups; Introductory, Basic, Technical, and Advanced Courses.

| Introductory courses (K1xx):                          | are designed to provide foundations of knowledge science at a graduate level education mainly for beginners to knowledge science.                                               |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic courses (K2xx):                                 | are designed to provide students with essential knowledge, ways<br>of thinking, research methodologies, and an awareness of the<br>issues related to knowledge science.         |
| Technical courses (K4xx):<br>Advanced courses (K6xx): | offer highly specialized content in the various fields of knowledge.<br>offer more highly specialized content to students in the doctoral<br>program and are taught in English. |

#### 4.3 KS school courses for students at the Ishikawa campus

The tables below list courses, credits, terms, and instructors.

- (1) The J, E, EJ codes in the language row of the table indicate the language of instruction: J indicates that the course is offered in Japanese; E indicates that the course is offered in English; and EJ indicates that the course is offered both in English and Japanese, making it possible for both Japanese and English speakers to take the course.
- (2) The KS school courses are classified into 3 broad areas, Social Knowledge (A), Knowledge Media (B) and Systems Knowledge (C). Students must take courses in more than one area in order to acquire the ability to think from a variety of perspectives and multifaceted viewpoints.

| Course<br>number | Course title                               | Lan-<br>guage | Course<br>term | Instructor(s)     | Note | Area(s) |
|------------------|--------------------------------------------|---------------|----------------|-------------------|------|---------|
| K111             | Introduction to<br>Business Management     | J             | 2-2            | Shirahada         |      | А       |
| K112             | Basic Mathematics for Data<br>Analytics*   | EJ            | 1-1            | Ho∙Dam            |      | A, B, C |
| K114             | Introduction to Social<br>Research Methods | J             | 1-2            | Masuda            |      | A, C    |
| K115             | Introduction to Logic                      | J             | 2-2            | Kunifuji          |      | A, B, C |
| K119             | Introduction to Computer<br>Programming    | J             | 1-1<br>2-1     | Kobayashi,<br>Ura |      | B, C    |
| K121             | Introduction to Cognitive Science          | J             | 1-2            | S.Hidaka          |      | В, С    |

#### 4.3.1 Introductory courses

|--|

\* If students have completed K116, they cannot take K112.

#### 4.3.2 Basic courses

Master's students must take at least 1 course in each of the 3 fundamental areas of Social Knowledge (A), Knowledge Media (B) and Systems Knowledge (C) as electives.

| Course<br>number | Course title                           | Lan-<br>guage | Course<br>term | Instructor(s)           | Note | Areas   |
|------------------|----------------------------------------|---------------|----------------|-------------------------|------|---------|
| K011             | Methodology for the                    | J             | 1-1            | Ito                     |      | ٨       |
| KZ11             | Social Sciences                        | Е             | 2-1            | Umemoto                 |      | A       |
| K010             | Methodology for                        | J             | 1-1            | Nakamori                |      | C       |
| K213             | Systems Science                        | Е             | 2-2            | Nakamori·Huynh          |      | ر<br>د  |
| K014             | Methodology for<br>Knowledge Media*    | J             | 1-2            | Yuizono                 |      | D       |
| K214             |                                        | Е             | 2-2            | Kanai                   |      | Б       |
| Kaan             | Introduction to<br>Knowledge Science 1 | J             | 1-1            | Hashimoto. Dam, etc.    |      |         |
| K228             |                                        | Е             | 2-1            | Hashimoto. Dam, etc.    |      | А, В, С |
| K229             | Introduction to<br>Knowledge Science 2 | J             | 1-2            | Yuizono•Ito, etc.       |      | A, B, C |
| K230             | Introduction to<br>Knowledge Science 3 | E             | 2-2            | Huynh•Fujinami,<br>etc. |      | A, B, C |
| K236             | Basis of Data Analytics                | EJ            | 1-2            | Ho•Dam                  |      | В       |

\* If students have completed K225, they cannot take K214.

#### 4.3.3 Technical courses

| Course<br>number | Course title                                   | Lan-<br>guage | Course<br>term      | Instructor(s)      | Notes                        | Areas |
|------------------|------------------------------------------------|---------------|---------------------|--------------------|------------------------------|-------|
| 1/ 11 1          | Theory of Knowledge                            | J             | 2-1                 | Hirata • T.Hayashi |                              | ٥     |
| K411             | Management                                     | Е             | 2-1                 | Peltokorpi         |                              | A     |
| K412             | The Knowledge Society                          | J             | 1-2                 | Ito                |                              | А     |
| K413             | Comparative Study of<br>Knowledge Institutions | J             | Intensive<br>Course | Nagata             | Offered in alternate years   | А     |
| K414             | Complex Systems Analysis                       | J             | 2-1                 | Hashimoto          |                              | С     |
| K417             | Data Analytics                                 | EJ            | 1-2                 | Ho•Dam             |                              | В     |
| K418             | Representation of<br>Knowledge                 | J             | 2-1                 | Yuizono            |                              | В     |
| K420             | Research & Development<br>Management           | J             | 2-2                 | Kosaka             |                              | А     |
| K401             | Essence of System<br>Methodologies             | Е             | 1-2                 | T. Vachida         |                              |       |
| K4Z I            |                                                | J             | 2-1                 | T. YUSHIQA         |                              | А, С  |
| K427             | Theory on Creative<br>Process in Design        | J             |                     | Nagai              | Offered in alternate years * | В     |
| K433             | Practice of MOT Innovations                    | J             | 2-1                 | Kondou             |                              | А     |
| K444             | Design Cognition                               | J             | 1-2                 | Nagai              | Offered in alternate years   | В     |
| K464             | Cognitive Science                              | EJ            | 2-2                 | Fujinami           |                              | В     |
| K469             | Knowledge Creation Support<br>Systems          | J             | 1-1                 | Nishimoto          |                              | В     |

| K470 | Introduction to Knowledge<br>Creation                                    | J | 1-1                 | Kunifuji∙<br>Yamaura           |            | A, B, C |
|------|--------------------------------------------------------------------------|---|---------------------|--------------------------------|------------|---------|
| K471 | Media Creation                                                           | J | 1-1                 | Miyata∙Ura                     |            | В       |
| K472 | Media Interaction                                                        | J | 1-2                 | Nishimoto                      |            | В       |
| K473 | Management of Innovation                                                 | J | 1-2                 | Uchihira                       |            | А       |
| K479 | Service Management                                                       | J | 2-1                 | Shirahada                      |            | А       |
| K480 | Methodology for Regional Revitalization                                  | J | Intensive<br>Course | Kunifuji∙Yamaura∙<br>Shirahada |            | A, B, C |
| K481 | Innovation Theory and<br>Methodology for Total<br>Capability Development | J | 2-1                 | Umemoto•Kohda,<br>etc.         | Non-credit | A, B, C |

\* The course is not offered in the 2015 academic year.

#### 4.3.4 Advanced courses

If master's students take the Advanced courses, the courses will be considered as the Technical courses and credits from these courses can be used to fulfill the requirements for the master's program.

| Course<br>number | Course title                                | Lan-<br>guage | Course<br>term | Instructor(s)                            | Notes                           | Areas |
|------------------|---------------------------------------------|---------------|----------------|------------------------------------------|---------------------------------|-------|
| K611             | Next-Generation<br>Management of Technology | E             | 2-2            | Kohda                                    | Offered in alternate years      | А     |
| K612             | Next-Generation Knowledge<br>Management     | E             |                | Peltokorpi                               | Offered in<br>alternate years * | А     |
| K613             | Social-Technical Complex<br>Systems         | E             | 1-1            | Huynh                                    | Offered in alternate years      | С     |
| K619             | Advanced Data Analytics                     | E             |                | Ho∙Dam                                   | *                               | В, С  |
| K626             | Advanced Topics in Media<br>Design          | E             |                | Miyata•Nagai•Kanai•<br>Miyashita•Koizumi | Offered in alternate years *    | В     |

\* The course is not offered in the 2015 academic year.

#### 4.4 Seminar and research

Courses for a major research project (seminar) and a minor research project(research) are below. For doctoral students, a minor research project can be substituted for an internship.

#### Master's program

| Course<br>number | Course title                                       | Instructor(s)                         | Notes                                                    |
|------------------|----------------------------------------------------|---------------------------------------|----------------------------------------------------------|
| K201             | Seminar in Knowledge<br>Science A (Thesis)         | Supervisor                            | Research Guidance, 8 credits, compulsory elective course |
| K205             | Seminar in Knowledge<br>Science A (Project Report) | Supervisor                            | Research Guidance, 2 credits, compulsory elective course |
| K202             | Research in Knowledge<br>Science A                 | Advisor for Minor<br>Research Project | Research Guidance, 2 credits, compulsory course          |

#### Doctoral program

| Course<br>number | Course title                                                             | Instructor(s)                         | Notes                                 |
|------------------|--------------------------------------------------------------------------|---------------------------------------|---------------------------------------|
| K601             | Advanced Seminar in<br>Knowledge Science B                               | Supervisor                            | 6 credits; compulsory course          |
| K602             | Advanced Research in<br>Knowledge Science B1<br>(Minor Research Project) | Advisor for Minor<br>Research Project | 4 credits; compulsory elective course |
| K603             | Advanced Research in<br>Knowledge Science B2(Internship)                 | Advisor for<br>Internship             | Choose either K602 or K603.           |

## 5 Programs for career plans

There are four educational programs at JAIST. See the Institute-wide Study Guide, the section V.1 for the detailed information. The purpose of offering multiple programs is to help students realize their career goals by fostering a wide range of specialized knowledge and the ability to apply that knowledge while encouraging student ambition and providing useful experience.

M program Mα program 3D program 5D program

Characteristics of each program are described below. For more information about course enrollment, supervision, and guidance on research in each program, see the sections **6 Master's program** ( $M \cdot M\alpha$  programs and master's part of the 5D program) and **7 Doctoral program** (3D program and doctoral part of the 5D program).

#### 5.1 M program

This program is a regular master's program for students who plan to obtain a master's degree in Knowledge Science in 2 years (standard period). Students who wish to seek employment after this 2-year program are encouraged to take the courses in the Institute of General Education. It is possible for the M program graduates to proceed to the doctoral (3D) program.

#### 5.2 Mα program

This program is designed for students who have a background in other disciplines or wish to study at a slower pace from the basic level and obtain a master's degree in Knowledge Science. These students need to complete more of the Introductory courses and the IGE courses than those for the M program to acquire fundamental knowledge and skills. The students are also required to complete the Technical courses before they begin their research project. Because of this, the period of the M $\alpha$  program is 3 years. However, it is possible to complete this program in a shorter period, such as 2 years and 3 months, 2 years and 6 months, or 2 years and 9 months, according to the students' plans. JAIST regards the chosen period as a standard program period for the student. As long as students complete the program within their approved terms, the tuition will be charged only for 2 years.

Students can also complete the M $\alpha$  program in 2 years, if their research progresses faster than their initial plans. The M $\alpha$  graduates are also eligible to apply for the 3D program.

#### 5.3 3D program

The 3D program is designed for students who completed the M or M $\alpha$  program at JAIST, those who completed a master's program at other universities, or working professionals who possess a master's degree and who wish to obtain a doctoral degree in Knowledge Science. The purpose of this program is to foster highly professional engineers and advanced scientists capable of contributing to society using their practical skill to identify and solve problems through scientific and technological analysis. The standard period of the 3D program is 3 years.

Students must choose one of two tracks; **type E** for future engineers with doctoral degrees in business and **type S** for advanced scientists at universities or research institutions, are offered in this program. The education, research, and guidance systems have been organized according to students' future career goals.

#### 5.4 5D program

The 5D program is for those who plan to obtain a doctoral degree from the start of the master's program through the consecutive course of the master's and doctoral programs at JAIST. The purpose of this program is to foster highly professional engineers and advanced scientists capable of contributing to society using their practical skills to identify and solve problems through scientific and

technological analysis.

Students must choose one of two tracks; type E and type S as explained in 5.3.

#### 6 Master's program (M·Ma programs and master's part of the 5D program)

The following sections indicate general requirements and rules common to all programs, if not otherwise specified. The specifics of each program are described separately.

#### 6.1 Guidelines for taking courses

See the section VI.2 in the Institute-wide Study Guide for the necessary procedures.

#### 6.1.1 Course requirements

Students must first read the section VI.1.1 for the requirements to complete a program. Regarding the section VI.1.1(2), follow the instructions below. Check the Institute-wide Study Guide for information regarding taking the IGE courses, courses from other schools at JAIST or ones at other institutes. The 5D program students must also see the section 6.1.2.

#### A. When students choose a master's thesis as a major research project, they need:

- (1) 8 credits from Seminar in Knowledge Science A (Thesis).
- (2) 2 credits from Research in Knowledge Science A (Minor Research Project).
- (3) 20 credits (10 courses) or more in addition to (1) and (2) above.
  - These 20 credits must contain the following credits and courses:
    - 8 credits (4 courses) or more from the Basic courses, which must contain 4 credits (2 courses) or more from K228-230 (K228 must be included)
    - 2 credits (1 course) or more from the Technical courses not including E413 Scientific Discussions II and B411 Advanced Project Management.
    - 16 credits (8 courses) or more in total including those mentioned above from the KS school courses in 3 areas.

Note that up to 3 completed courses from the Introductory courses can be counted to fulfill the requirements for the master's program.

#### B. When students choose a project report as a major research project, they need:

- (1) 2 credits from Seminar in Knowledge Science A (Project Report).
- (2) 2 credits from Research in Knowledge Science A (Minor Research Project).
- (3) 26 credits (13 courses) or more in addition to (1) and (2) above.

These 26 credits must contain the following credits and courses:

- 10 credits (5 courses) or more from the Basic courses, which must contain 4 credits (2 courses) or more from K228-230 (K228 must be included).
- 4 credits (2 courses) or more from the Technical courses not including E413 Scientific Discussions II and B411 Advanced Project Management.
- 22 credits (11 courses) or more from the KS school courses in 3 areas.

Note that up to 4 completed courses from the Introductory courses can be counted to fulfill the requirements.

# 6.1.2 Requirements for continuing on to the doctoral program as a 5D program student

Every 5D program student must satisfy all the requirements for the master's program completion described in the section 6.1.1 AND the following:

(1) At least 18 credits (9 courses) must be obtained from the KS school courses. Only 2 credits from the Introductory courses can be included in the 18. When the number of credits from the Basic, Technical and Advanced courses exceed 10 (5 courses), the excess of up to 8 credits (4 courses) can be transferred and recognized as credits earned in the doctoral program. For details concerning the application for transfer of credits, see the Institute-wide Study Guide, the section VI.6.

- (2) At least 4 credits (2 courses) or more must be from the IGE courses.
- (3) One of the following 3 conditions of English proficiency:
  - i) Those who have successfully completed the intermediate level English courses (E211-422).
  - ii) Those who took the TOEIC within 2 years prior to their application for admission and scored higher than the score required by the school.
  - iii) Those who have submitted a master's thesis or project report in English and passed the exam.

#### 6.2 Research supervision and guidance

#### 6.2.1 Laboratory assignment and supervisor

See the Institute-wide Study Guide, the section VII.1 for the laboratory assignment. See also the section VII.3 for the multiple supervisory system. In the KS school an acting (temporarily assigned) supervisor will generally be assigned as a second supervisor.

#### 6.2.2 Research project

Research projects consist of both major and minor projects. A supervisor will give guidance on a major research project and the advisor for Minor Research Project will give guidance on a minor research project.

A major research project will focus on a subject in which a student and a supervisor share an academic interest. The student writes a master's thesis or project report on his/her research.

Through a minor research project, students broaden their horizons and develop multiple perspectives by acquiring fundamental concepts, knowledge, and abilities or by collaborating on subjects within their advisor's area.

It is possible for 5D program students to write a master's thesis or conduct a master's research project based on the research, which would be a part of their research in the doctoral program.

#### 6.2.3 Major research project (for a master's thesis or project report)

- (1) Students are required to choose whether to write a master's thesis or conduct a master's research project after consultation with their supervisor. Then they must draw up a research proposal for their master's thesis or master's research project report and submit it to the dean via the Educational Service Section, Educational Affairs Department (hereinafter "Kyoumu") by the specified deadlines [see (2) below]. Note that if the submission of a research proposal is delayed, the completion will be delayed.
- (2) Deadline for a research proposal

**M or 5D program:** The last month of their 1st year (the end of March for April students, or the end of September for October students)

**M***α* **program:** 1 year before the planned date of completion

(3) Prerequisites for submitting a research proposal

The followings are the prerequisites to submit a research proposal.

- Students must have successfully completed 3 Basic courses, including 1 course from K228–230.
- The contents of the research proposals must be acceptable.
- (4) Beginning of research

Students can formally begin their major research just after their research proposal is accepted and approved by their 3 advisors and submitted to Kyoumu.

(5) Length of a research period

1 year at the earliest is required to complete the major research project. Therefore, if the research proposal is not accepted by the deadline mentioned above (2), it is not possible to complete the program within each standard period.

#### (6) Mid-term examination and the final defense

Students must present the current progress and results of their major research project at the mid-term examination 6 months before they plan to graduate, which will be examined by 4

faculty members. Students must present their major research project at the final defense 1 month before they plan to graduate.

- (7) Notes
  - Students must fulfill the prerequisites to submit a research proposal. Students are responsible for ensuring that they have met all the prerequisites [see the section 6.2.4].
  - Students should also be aware that their advisor for Minor Research Project must be assigned before submitting a research proposal [see the section 6.2.4].
  - The form of a research proposal for 5D program students is of the same type as an application form for the program of "Research Fellowship for Young Scientists (Doctoral Course Students)" by the Japan Society for the Promotion of Science (JSPS), which is different from that of the M and Ma program.
  - It is advisable for students to decide a research theme as early as possible and to conduct a bibliographic review in consultation with their supervisor. Many reviews on the research theme are indispensable before a good research proposal can be written.

#### 6.2.4 Minor research project

- (1) Students must consult with faculty members from an area outside their major area, find one who will assume the role of an advisor for Minor Research Project, and choose a research theme. They must submit the theme and the name of the advisor to Kyoumu by the beginning of December in their 1st year for the April students, or of June for the October students. Then, students can conduct their minor research project under the guidance of their advisor.
- (2) It is advisable for students to begin the project shortly after submission of a research theme.
- (3) In general, the project should be finished within 2 months.
- (4) Notes
  - Students should be aware that an advisor for Minor Research Project must be chosen and approved by a faculty meeting before submitting a research proposal.
  - Students can conduct group work as a method of research. They are allowed to conduct group work in the following two cases:
    - When a student recruits several other students with the same interests and find an advisor for a minor research project.
    - When an advisor proposes group work for a minor research project and recruits members.

Each student must write a report to obtain credits (K202 Research in Knowledge Science A) based on the advisor's evaluation of the individual member's reports on group work. They may be asked to write additional reports as a group.

#### 6.3 Degree conferment

See the Institute-wide Study Guide, the section VIII.1 for the detailed information.

#### 6.3.1 Schedule pertaining to conferment of degree and procedures

|                                                |                      | March<br>completion                                                  | June<br>completion                                    | September completion                                  | December completion                                  |
|------------------------------------------------|----------------------|----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| Research<br>proposal                           | Prerequisite         | <ul> <li>Students m<br/>(including 1</li> <li>Proposal co</li> </ul> | nust have comp<br>course from K22<br>ntents must be a | leted at least 3<br>8-230).<br>cceptable.             | Basic courses                                        |
| (for master's<br>thesis or<br>project report)  | Submission<br>period | By the end of<br>March of the<br>previous year                       | By the end of<br>June of the<br>previous year         | By the end of<br>September of<br>the previous<br>year | By the end of<br>December of<br>the previous<br>year |
| Submission of report on minor research project |                      | By the end of<br>March of the<br>previous year                       | By the end of<br>June of the<br>previous year         | By the end of<br>September of<br>the previous<br>year | By the end of<br>December of<br>the previous<br>year |
| Application for c defense                      | legree and           | The end of<br>January                                                | The end of<br>April                                   | The end of<br>June                                    | The end of<br>October                                |
| Submission of thesis or<br>project report      |                      | Early February Early May                                             |                                                       | Early August                                          | Early<br>November                                    |
| Oral defense of thesis or<br>project report    |                      | Mid-February                                                         | Mid-May                                               | Late August                                           | Mid-<br>November                                     |
| Conferment of degree                           |                      | March                                                                | June September                                        |                                                       | December                                             |

#### 6.4 Assignment and change of program, and shortening of period

Students will be assigned to 1 of the 3 programs, M, M $\alpha$  or 5D(in October for the April students and in March for the October students). The assignment is decided according to their career plans, background, academic grades in the 1st term after enrollment (Term 1-1 for April students, or Term 2-1 for October students) and English proficiency (scores of TOEFL or TOEIC, etc.).

Students may be approved to change their program from the M program to the 5D program only in their 1st year after having the course grades evaluated by the faculty. Students can apply for program change from 5D to M anytime. Any other program change is not allowed. Contact Kyoumu if they wish to change.

The M $\alpha$  students are allowed to shorten their approved completion period only at the time of submission of the research proposal. It may be approved without any interview or examination if it can be expected that the students are able to complete the program within a year. Note that once it is approved, it cannot be changed.

#### 6.5 Other

#### 6.5.1 Assistance and recommendation for employment

Recommendation for employment can only be given if students:

- (1) have obtained 12 credits or more from the Introductory, Basic, and Technical courses including compulsory courses.
- (2) have obtained 4 credits or more credits from IGE courses.
- (3) have had their research proposal on a master's thesis/project report accepted.
- (4) have taken the SPI (Synthetic Personality Inventory) examination twice or more at JAIST.

Note if students do not meet (2) but have at least 16 course credits in total, they might be considered as satisfying (1) and (2).

#### 6.5.2 Continuing on to the doctoral program

See the section IX.2 in the Institute-wide Study Guide.

#### 6.5 Master's program schedule

The following is a standard schedule for students enrolling in April and intending to complete the program in 2 years.



# 7 Doctoral program (3D program and doctoral part of the 5D program)

The following sections indicate general requirements and rules common to all programs, if not otherwise specified. The specifics of each program are described separately.

#### 7.1 Guidelines for taking courses

See the Institute-wide Study Guide, the section VI.2 for the guidelines and the necessary procedures to take courses.

#### 7.1.1 Course Requirements

Students must first read the section VI.1.2 for the requirements to complete the program. Regarding the section VI.1.2 (2), follow the instructions below. Check the Institute-wide Study Guide for information regarding taking the IGE courses, courses from other schools at JAIST or ones at other institutes. **Students need to obtain:** 

- (1) 6 credits from the Advanced Seminar in Knowledge Science B (Major Research Project)
- (2) 4 credits from Advanced Research in Knowledge Science B1 (Minor Research Project) or Advanced Research in Knowledge Science B2 (Internship)
- (3) 10 credits (5 courses) or more from the Advanced courses in 2 of the 3 areas
- (4) The courses from the Basic and Technical courses which students did not take in the master's program will be considered as those of the Advanced in the same area if they are taken during the doctoral program and the credits can be counted for program completion requirements. But at least one course (2 credits) from the Advanced courses (K6xxx) must be completed during the doctoral program and be included. If 5D program students have already completed 18 credits (9 courses) from the KS school courses in the master's program, taking one more KS course (2 credits) excluding K601, K602, and K603 during the doctoral program will satisfy required number of credits. Students must apply for credit transfer as specified in the section VI.6. Students are strongly encouraged to make sure that they meet all of the above specified doctoral degree requirements.

#### 7.2 Research supervision and guidance

#### 7.2.1 Laboratory assignment and supervisor

See the Institute-wide Study Guide, the section VII.1 for the laboratory assignment. See also the section VII.3 for the multiple supervisory system. In the KS school a second supervisor will be chosen from the same research area as a supervisor.

#### 7.2.2 Research project and internship

Research projects consist of major and minor projects. A supervisor will give guidance on a major research project and an advisor for Minor Research Projects will give guidance on a minor research project.

A major research project will focus on a subject in which a student and a supervisor share an academic interest to write a doctoral dissertation. Through minor research projects students broaden their horizons and develop multiple perspectives by acquiring fundamental concepts, knowledge, and abilities or by collaborating on subjects within their advisor's area.

Students in the 5D program can carry out research as a minor research project at a graduate school or research institute abroad. In order to do this, students must be accepted by an outside advisor who has sufficient expertise to give guidance. They must maintain close contact with their supervisors and outside advisors for evaluation.

Students who wish to choose an internship instead of working on a minor research project must conduct an internship under their advisor's guidance. The period of an internship should be longer than 3 months.

#### 7.2.3 Major research project

- (1) Students must draw up a research proposal for their doctoral dissertation and submit it to Kyoumu after consultation with their supervisor.
- (2) Deadline for a research proposal A research proposal must be submitted at the latest 1 year after the student's enrollment in the doctoral program.
- Prerequisite for submitting research proposals
   The content of research proposals must be acceptable.
- (4) Beginning of research Students can formally begin their major research project right after their research proposal is accepted and approved by their 3 advisors and submitted to Kyoumu.
- (5) Dissertation outline After their 3 advisors have reviewed the dissertation outline, students must submit it at least 6 months before submitting an application for degree (see the section 7.3.1) to Kyoumu.
- (6) Fast-track degree

After consultation with their supervisor, students who wish to fast-track their studies must apply to the dean via their supervisor, and submit a dissertation outline earlier than the standard submission time.

(7) Notes

The 3D program students who have not decided a research theme for their major research project before enrolling in the doctoral program should choose one as early as possible. Students are expected to consult with their supervisor, choose a theme and conduct a bibliographic review while fulfilling course requirements. Many reviews on the research theme are indispensable before a good research proposal can be written.

#### 7.2.4 Minor research project

- (1) Students must consult with faculty members in an area outside their major area, find a faculty member who will assume the role of an advisor for Minor Research Project, and choose a project theme. Students must submit a theme and a name of an advisor to Kyoumu. Then, students can conduct their minor research project under the guidance of their advisor. If a research topic of a minor research project does not overlap with a major research project, students may choose an advisor for a minor research project in the same area as the supervisor's.
- (2) Students can receive guidance for a minor research project from an outside advisor such as visiting professors or professors at other universities. Students must consult with their supervisor first and take appropriate procedures. They must also maintain close contact with their supervisors throughout the project.
- (3) Notes
  - It is advisable for students to begin a project as early as possible and to finish in their 1st year.
  - As doctoral students are expected to present their research results at conferences and to publish articles in as many occasions as possible to accrue research achievements. Students are encouraged to present a minor research project report at conferences and submit it as an article for publication in refereed academic journals.
  - Students can conduct a minor research project as group work
    - \* When a student recruits several students with the same interests and find an advisor for minor research projects.

\*When an advisor proposes group work for a minor research project and recruits members. Each student must write a thesis to obtain credits (K602) based on the group work. They may be asked to write an additional thesis as a group.

#### 7.2.5 Internship

- (1) Internships are conducted at companies etc. for a period longer than 3 months.
- (2) Students who wish to apply for internships must find a faculty member who will assume the role of an advisor for Internship in consultation with their supervisor. Students must submit a document to the Career Support Section.
- (3) An internship and submission of a report must be completed before submitting an application for preliminary defense. Students must submit a work report with an evaluation from the company attached to their advisor for Internship when they finish an internship.

#### 7.2.6 Grant for off-campus research and internship

Students are encouraged to carry out advanced research at other research institutions abroad or in Japan or to do an internship at companies to fulfill their career goals. Leading companies, excellent regional companies, public offices, NPOs and NGOs are recommended for an internship venue. Detailed information regarding financial support for this, see *HANDBOOK for Students*.

When the off-campus activity is approved as a minor research project, students may earn credits for K602 Advanced Research in Knowledge Science B1. When the off-campus activity is approved as an internship, students may earn credits for K603 Advanced Research in Knowledge Science B2. Other activities are regarded as part of the major research project and students can earn credits of K601 Advanced Seminar in Knowledge Science B. An application form must be submitted at least two months before the start of these activities.

See the Institute-wide Study Guide, the section VII.4 for the necessary procedures.

#### 7.3 Degree conferment

See the section VIII.2 in the Institute-wide Study Guide.

|                                                 | March June September<br>Completion Completion |                                        | September<br>Completion              | December<br>Completion |  |  |  |
|-------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------|------------------------|--|--|--|
| Research proposal                               | Must be submitted                             | l within 1 year afte                   | r enrolling in the do                | octoral program        |  |  |  |
| Minor research<br>project thesis                | Must be submitte<br>submission of the         | ed to the advisor application for prel | for Minor Researd<br>iminary defense | ch Project before      |  |  |  |
| Dissertation outline                            | Early July of the previous year               | Early April                            |                                      |                        |  |  |  |
| Application for<br>preliminary defense          | Early<br>October of the<br>previous year      | Early<br>January                       | Early April                          | Early July             |  |  |  |
| Preliminary defense                             | Middle of<br>December of the<br>previous year | Middle of March                        | Middle of June                       | Middle of<br>September |  |  |  |
| Application for degree                          | Early January                                 | Early April                            | Early July                           | Early October          |  |  |  |
| Formal hearing, oral defense, final examination | Early February                                | arly February Early May                |                                      | Early November         |  |  |  |
| Conferment of degree                            | March June September December                 |                                        |                                      |                        |  |  |  |

#### 7.3.1 Schedule pertaining to conferment of degree and procedures

#### 7.4 Career track choice

3D program students must choose one of the two tracks, type E or S, based on their wishes at the time of enrollment. 5D program students can decide their track anytime after their laboratory assignment before the submission of the research proposal in the master's program.

# 7.5 Doctoral program schedule toward degree completion

The following table shows a standard schedule for the doctoral students enrolled in April who plan to complete their program in 3 years.

| Category                                                         | Submitted to / Note                                                                                             | Period                                                                                  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Research proposal                                                | The dean via Kyoumu                                                                                             | By the end of March in their 1st year                                                   |
| Advisor for minor research project or internship                 | Kyoumu<br>(Title of a minor research project or<br>Application for Internship)                                  | By the end of March in their 1st year                                                   |
| Completion of minor research project or internship               |                                                                                                                 | Must be completed<br>before the submission of<br>application for<br>preliminary defense |
| Dissertation outline                                             | Kyoumu                                                                                                          | By early July in their 3rd year                                                         |
| Application for preliminary defense                              | Kyoumu<br>(Titles of a dissertation and main<br>publication)                                                    | Early October                                                                           |
| Dissertation draft                                               | Should be distributed to 5 or more<br>members of the Doctoral Dissertation<br>Preliminary Examination Committee | At least 2 weeks before<br>the preliminary defense                                      |
| Preliminary defense                                              |                                                                                                                 | By Mid-December                                                                         |
| Application for degree,<br>Doctoral dissertation and<br>abstract | Kyoumu<br>(with the dissertation and abstract)<br>After a successful preliminary defense                        | Early January                                                                           |
| Formal hearing, oral defense and final examination               |                                                                                                                 | Early February                                                                          |
| Submission of dissertation and abstract                          | Kyoumu<br>(formatted as instructed by JAIST)<br>After a successful oral defense                                 | By the degree<br>conferment day                                                         |
| Conferment of degree                                             |                                                                                                                 | Late March                                                                              |

# 8 Education program for leaders in data analytics

Data-driven approach is playing more important role in most sciences and in solving social problems, and educating leaders with more knowledge and skill of data processing is necessary. In order to meet such social needs, the KS school has established a new education program specialized in data analytics based on knowledge science.

This program aims at producing excellent industry-ready talents in various organizations, such as business enterprises, think-tanks, public agencies, NPOs, NGOs, and research institutes, through cultivating abilities to comprehend social and business needs, to solve various social problems with making full use of data in collaboration with specialists, and to coordinate such collaborative works.

#### 8.1 Eligible students for the program

KS students who enrolled in April, 2014 or later in the Ishikawa campus.

#### 8.2 Application procedures

Students who wish to join this program must submit an application form to Kyoumu in June for the April students and in December for the October students. The application will be evaluated at the faculty meeting and the application results will be decided.

Students can take the designated courses for this program even if they are not in the program.

#### 8.3 Program completion requirements

In order to complete this program, students must satisfy the following requirements.

- (1) Master's students must finish 3 courses (6 credits) or more from the list below.
- (2) Doctoral students must finish the following 3 courses, K236, K417 and K619.

| Course<br>Number | Course Title                         | Credit |
|------------------|--------------------------------------|--------|
| K112             | Basic Mathematics for Data Analytics | 2      |
| K236             | Basis of Data Analytics              | 2      |
| K417             | Data Analytics                       | 2      |
| K619             | Advanced Data Analytics              | 2      |

The Courses designated for this program

#### 8.4 Certificate of completion

A certificate of completion will be awarded to the students after completion of the master's/doctoral program.

#### 9 Courses at other graduate institutions

See the section VI.7 in the Institute-wide Study Guide.

**School of Information Science** 

# **School of Information Science**

#### How to use this guidebook

Students in the School of Information Science must read both parts of the Institute-wide Study Guide and this guide for the IS students carefully and thoroughly. This guide contains an outline of the school in the section 1. If you are a master's student, please read the sections 1, 2, 3, 4, 5, 6, 7 and 8. If you are a doctoral student, please read the sections 1, 2, 3, 4, 9 and 10. If anything is not clear, please consult the Educational Service Section, Educational Affairs Department (hereinafter "Kyoumu").

#### 1 Outline of the school

#### 1.1 Outline of the school

Today's society is experiencing dramatic change and progress caused by the rapid expansion of information technology, the general principle of which is to represent and transform information and knowledge. This information-oriented society is expected to continue developing, and a new world whose principal activities are the production and processing of information is burgeoning. The mission of the School of Information Science is to provide a superb education and research environment that will promote cutting-edge research while training future scientists and engineers capable of serving as leaders in this new information-oriented society.

The school consists of 5 areas and is pursuing research and education as follows:

#### A. Theoretical Information Science

Education and research on the theoretical foundations of computer science, including mathematical logic, algorithms, theory of systems, and information security.

#### **B. Human Information Processing**

Education and research on human perception systems, including vision and auditory information processing, robotics, and computer simulation.

#### C. Artificial Intelligence

Education and research on computational models of human intelligence, including natural language processing, computational human reasoning, and game informatics.

#### **D. Computer Systems and Networks**

Education and research on computer architecture, LSI, parallel processing, networks, and ubiquitous networks.

#### E. Software Science

Education and research on reliable software, including software modeling, software design, and formal methods.

Dean: Professor Hiroyuki Iida

#### Number of students

|                                   | Master's program | Doctoral program |
|-----------------------------------|------------------|------------------|
| Department of Information Science | 126              | 37               |

## 2 Faculty profiles

#### ♦ School of Information Science

|          | Name Position Specialization        |                              |                                                                                               |  |  |  |
|----------|-------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Are      | ea: Theoretical Info                | rmation Science              |                                                                                               |  |  |  |
|          | Field: Mathematical L               | .ogic                        |                                                                                               |  |  |  |
|          | ISHIHARA, Hajime                    | Professor                    | Mathematical Logic, Constructive Mathematics                                                  |  |  |  |
|          | NEMOTO, Takako                      | Assistant Professor          | Mathematical Logic                                                                            |  |  |  |
|          | Field: Theory of Algor              | rithms                       |                                                                                               |  |  |  |
|          | UEHARA, Ryuuhei                     | Professor                    | Computational Complexity, Graph Algorithms                                                    |  |  |  |
|          | OTACHI, Yota                        | Assistant Professor          | Graph Algorithms, Parameterized Complexity                                                    |  |  |  |
|          | Field: Systems Science              | e                            |                                                                                               |  |  |  |
|          | HIRAISHI, Kunihiko                  | Professor                    | Formal Modeling and Analysis of Concurrent Systems                                            |  |  |  |
|          | Field: Information Se               | curity                       |                                                                                               |  |  |  |
|          | MIYAJI, Atsuko                      | Professor                    | Information Security, Cryptology, Secure Modeling                                             |  |  |  |
|          | OMOTE, Kazumasa                     | Associate Professor          | Information Security, Network Security                                                        |  |  |  |
|          | SU, Chunhua                         | Assistant Professor          | Cryptography, RFID Security & Privacy, Privacy-Preserving Data Mining                         |  |  |  |
|          | CHEN, Jiageng                       | Assistant Professor          | Information Security                                                                          |  |  |  |
|          | SOMEMURA, Yo                        | Research Professor           | Environmental Management, Environmental Accounting, LSI Lithography                           |  |  |  |
|          | FUTA, Yuichi                        | Research Associate Professor | Information Security, Cryptographic & Number-theoretic Algorithm                              |  |  |  |
|          | TANAKA, Satoru                      | Research Assistant Professor | Number theory, Number theoretic algorithms                                                    |  |  |  |
| Are      | ea: Human Informat                  | tion Processing              |                                                                                               |  |  |  |
|          | Field: Biological Infor             | mation Processing            |                                                                                               |  |  |  |
|          | Dang, Jianwu                        | Professor                    | Mechanism of Speech Production, Cognitive Science of Speech, Speech Production and Perception |  |  |  |
|          | TANAKA, Hirokazu                    | Associate Professor          | Computational Neuroscience, Biomedical Signal Processing, Psychophysics                       |  |  |  |
|          | SUEMITSU, Atsuo                     | Assistant Professor          | Memory Mechanism, Neural Network                                                              |  |  |  |
|          | Field: Acoustic Inform              | nation Processing            |                                                                                               |  |  |  |
|          | AKAGI, Masato                       | Professor                    | Modeling of Auditory Mechanisms of Humans, Speech Signal Processing                           |  |  |  |
|          | UNOKI, Masashi Associate Professor  |                              | Auditory Scene Analysis, Speech Signal Processing, Speech Intelligibility<br>Improvement      |  |  |  |
|          | MIYAUCHI, Ryota                     | Assistant Professor          | Auditory perception, Experimental psychology, Acoustics                                       |  |  |  |
|          | MORIKAWA, Daisuke                   | Assistant Professor          | Acoustic engineering, Psychoacoustics                                                         |  |  |  |
|          | Field: Image Informa                | tion Processing              | 1                                                                                             |  |  |  |
|          | KOTANI, Kazunori                    | Associate Professor          | Computer Imaging, Picture Coding, Human Interface                                             |  |  |  |
|          | YOSHITAKA, Atsuo                    | Associate Professor          | Multimedia Retrieval, Image Retrieval, Human-centric Information Processing                   |  |  |  |
|          | CHEN, Fan                           | Assistant Professor          | Pattern Recognition, Image Processing, Video Analysis                                         |  |  |  |
|          | Field: Robotics                     |                              | -                                                                                             |  |  |  |
|          | CHONG, Nak-Young                    | Professor                    | Human-Friendly Robot Systems, Network Robot, Humanoid Robot                                   |  |  |  |
|          | ASANO, Fumihiko                     | Associate Professor          | Control Engineering, Dynamic of Machinary, Legged Robots                                      |  |  |  |
|          | JEONG, Sungmoon                     | Assistant Professor          | Bio-inspired Intelligent Systems, Intelligent Signal Processing and Pattern Analysis          |  |  |  |
|          | RYU, Hyejeong                       | Research Assistant Professor | Multi-sensor fusion algorithm, autonomous navigation for mobile robots                        |  |  |  |
|          | Field: Computational                | Engineering and Science      |                                                                                               |  |  |  |
|          | MAEZONO, Ryo                        | Associate Professor          | High Performance Computing on Quantum Many-body systems                                       |  |  |  |
|          | HONGO, Kenta                        | Assistant Professor          | Quantum Simulation, Massively Parallel Statistical Processing                                 |  |  |  |
| Are      | ea: Artificial Intellig             | ence                         |                                                                                               |  |  |  |
|          | Field: Natural Langua               | ge Processing                |                                                                                               |  |  |  |
|          | SHIRAI, Kiyoaki Associate Professor |                              | Natural Language Processing, Knowledge Acquisition, Machine Learning                          |  |  |  |
|          | Field: Knowledge Engineering        |                              |                                                                                               |  |  |  |
|          | TOJO, Satoshi Professor             |                              | Formal Semantics of Natural Language, Logic Programming                                       |  |  |  |
|          | NGUYEN, Minh Le Associate Professor |                              | Satatistical Natural Language Processing, Machine Translation,<br>Language Understanding      |  |  |  |
|          | SANO, Katsuhiko                     | Assistant Professor          | Logic and its Application to Formal Semantics                                                 |  |  |  |
|          | Field: Entertainment                | Informatics                  |                                                                                               |  |  |  |
|          | IIDA, Hiroyuki                      | Professor                    | Game Informatics, Entertainment Science                                                       |  |  |  |
|          | IKEDA, Kokolo                       | Associate Professor          | Game Informatics, Evolutionary Algorithm, Machine Learning                                    |  |  |  |
|          | VIENNOT, Simon                      | Assistant Professor          | Game tree search, Combinatorial game theory, Machine learning                                 |  |  |  |
| <b> </b> | HASEGAWA, Shinobu <sup>*1</sup>     | Associate Professor          | Support System for Intellectual Learning, Learning Management System                          |  |  |  |

| ea: Computer Syster                | ms and Networks              |                                                                                                     |  |  |  |  |  |  |  |
|------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Field: Computer Arch               | itecture                     |                                                                                                     |  |  |  |  |  |  |  |
| INOGUCHI, Yasushi <sup>*1</sup>    | Professor                    | Parallel Processing, Hardware and Algorithm                                                         |  |  |  |  |  |  |  |
| TANAKA, Kiyofumi                   | Associate Professor          | Processor Architecture, Parallel and Distributed Systems, Embedded Systems                          |  |  |  |  |  |  |  |
| Field: Integrated Systems          |                              |                                                                                                     |  |  |  |  |  |  |  |
| KANEKO, Mineo                      | Professor                    | Integrated Circuit Design, Circuit System Theory                                                    |  |  |  |  |  |  |  |
| ZHANG, Renyuan                     | Assistant Professor          | Circuit system theory, Mixed Analog/Digital LSI Circuits design                                     |  |  |  |  |  |  |  |
| Field: Information Ne              | tworks                       |                                                                                                     |  |  |  |  |  |  |  |
| TAN, Yasuo                         | Professor                    | Computer Network, Ubiquitous Computing                                                              |  |  |  |  |  |  |  |
| SHINODA, Yoichi <sup>*1</sup>      | Professor                    | Information Environment, Distributed and Parallel Computing                                         |  |  |  |  |  |  |  |
| SHIKIDA, Mikifumi <sup>*1</sup>    | Professor                    | Groupwares, Software Development Environment                                                        |  |  |  |  |  |  |  |
| LIM, Yuto                          | Associate Professor          | Wireless Communication, Heterogeneous, Power Control, Congestion Control, Experimental Verification |  |  |  |  |  |  |  |
| UDA, Satoshi <sup>*1</sup>         | Assistant Professor          | Internet, Routing, Traffice Engineering                                                             |  |  |  |  |  |  |  |
| Field: Ubiquitous Con              | nmunications                 | 1                                                                                                   |  |  |  |  |  |  |  |
| MATSUMOTO, Tadashi                 | Professor                    | Information Theory, Wireless Communications, Turbo Algorithm                                        |  |  |  |  |  |  |  |
| KURKOSKI, Brian Michael            | Associate Professor          | Information Theory, Coding Theory, Coding for Data Storage                                          |  |  |  |  |  |  |  |
| KHOIRUL, Anwar                     | Assistant Professor          | Information Theory, Wireless and Mobile Communication, Turbo Equalization                           |  |  |  |  |  |  |  |
| SAITO, Yasuhiro <sup>*2</sup>      | Research Professor           | Information and Communications Policy                                                               |  |  |  |  |  |  |  |
| OKADA, Takashi                     | Research Associate Professor | Multi-Agent Simulation                                                                              |  |  |  |  |  |  |  |
| a: Software Science                | e                            |                                                                                                     |  |  |  |  |  |  |  |
| Field: Software Struc              | ture                         |                                                                                                     |  |  |  |  |  |  |  |
| SUZUKI, Masato                     | Associate Professor          | High-reliability Software Systems, Software Airchitechture                                          |  |  |  |  |  |  |  |
| Field: Formal Method               | s for Software Developm      | ent                                                                                                 |  |  |  |  |  |  |  |
| OGATA, Kazuhiro                    | Professor                    | Software Engineering, Formal Methods, Verification                                                  |  |  |  |  |  |  |  |
| FUTATSUGI, Kokichi <sup>*3</sup>   | Research Professor           | Software Engineering, Formal Methods, Language Design                                               |  |  |  |  |  |  |  |
| AOKI, Toshiaki                     | Associate Professor          | Software Engineering/Science, Formal Methods, Embedded System Developm                              |  |  |  |  |  |  |  |
| CHIBA, Yuki                        | Assistant Professor          | Term Rewriting Systems, Automated Theorem Proving                                                   |  |  |  |  |  |  |  |
| GAINA, Daniel Mircea <sup>*3</sup> | Assistant Professor          | Formal Methods and Abstract Model Theory                                                            |  |  |  |  |  |  |  |
| Field: Software Verifi             | cation                       |                                                                                                     |  |  |  |  |  |  |  |
| OGAWA, Mizuhito                    | Professor                    | Automatic Deduction, Formal Proof, Program Analysis, Program Verification                           |  |  |  |  |  |  |  |
| HIROKAWA, Nao                      | Associate Professor          | Computational Model, Term Rewriting Systems                                                         |  |  |  |  |  |  |  |
| YOKOYAMA, Keita                    | Assistant Professor          | Mathematical Logic, Reverse Mathematics                                                             |  |  |  |  |  |  |  |
| Field: Dependable Sy               | stems                        |                                                                                                     |  |  |  |  |  |  |  |
| TERAUCHI, Tachio                   | Professor                    | Programming Languages, Program Verification, Program Analysis, Computer Security                    |  |  |  |  |  |  |  |
| KISHI, Tomoji                      | Visiting Professor           | Product Line Software Engineering                                                                   |  |  |  |  |  |  |  |
| DEFAGO, Xavier                     | Associate Professor          | Distributed Systems, Distributed Algorithms, Fault-tolerance                                        |  |  |  |  |  |  |  |
| BONNET, Francois<br>Pierre Andre   | Assistant Professor          | Distributed Algorithms, Distributed Computability, Robot Computing                                  |  |  |  |  |  |  |  |
| PREINING, Norbert*3                | Associate Professor          | Mathematical Logic, Fuzzy Logic, Formal Methods, Verification                                       |  |  |  |  |  |  |  |
| Tomita, Takashi <sup>*1</sup>      | Assistant Professor          | Formal methods, Quantitative verification, Model checking, Program synthesis                        |  |  |  |  |  |  |  |

\*1 The menber belongs to the Research Center for Advanced Computing Infrastructure.
\*2 The menber belongs to the Dependable Network Innovation Center.
\*3 The menber belongs to the Research Center for Software Verification.

#### ♦ Visiting chairs

| Name                                 | Position                         | Specialization |  |  |  |  |  |  |
|--------------------------------------|----------------------------------|----------------|--|--|--|--|--|--|
| Computational Lingu                  | Computational Linguistics        |                |  |  |  |  |  |  |
| HU, Zhenjiang                        | Visiting Professor               |                |  |  |  |  |  |  |
| WATANABE, Osamu Visiting Professor   |                                  |                |  |  |  |  |  |  |
| Cognitive Science                    |                                  |                |  |  |  |  |  |  |
| WAKABAYASHI, Kazutoshi               | Visiting Professor               |                |  |  |  |  |  |  |
| Parallel and Distribut               | Parallel and Distributed Systems |                |  |  |  |  |  |  |
| CHO, Kenjiro                         | Visiting Professor               |                |  |  |  |  |  |  |
| WATANABE, Katsuya Visiting Professor |                                  |                |  |  |  |  |  |  |

#### ♦ Chairs operated jointly with research institutes and/or companies

| Name                           | Position                                                  | Specialization                                                          |  |  |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Information and Kno            | Information and Knowledge Integrated Processing (Fujitsu) |                                                                         |  |  |  |  |  |  |  |
| MATSUTSUKA, Takahide           | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| YUGAMI, Nobuhiro               | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| Ultra-High Speed Comr          | nunication Network Constru                                | ction (National Institute of Information and Communications Technology) |  |  |  |  |  |  |  |
| IMASE, Makoto                  | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| HARAI, Hiroaki                 | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| Distributed Informat           | ion Processing (National Ir                               | stitute of Advanced Industrial Science and Technology)                  |  |  |  |  |  |  |  |
| ONISHI, Masaki                 | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| YAMASHITA, Tomohisa            | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| Advanced Software E            | Engineering (National Institu                             | ute of Informatics)                                                     |  |  |  |  |  |  |  |
| HONIDEN, Shinichi              | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| YOSHIOKA, Nobukazu             | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| Information Science            | Chair Cooperated with Vi                                  | etnam FIVE Institutes*                                                  |  |  |  |  |  |  |  |
| LE, Bac Hoai                   | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| Green ICT (NTT Energ           | y and Environment Systems                                 | Laboratories)                                                           |  |  |  |  |  |  |  |
| NAKAMURA, Masayuki             | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| NAKAMURA, Jiro                 | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| Thai Information Sci           | ence (Thammasart Universit                                | y, NECTEC)                                                              |  |  |  |  |  |  |  |
| THEERAMUNKONG,<br>Thanaruk     | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| WUTIWIWATCHAI, Chai            | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| SUNTISRIVARAPORN,<br>Boontawee | Visiting Associate Professor                              |                                                                         |  |  |  |  |  |  |  |
| Tianjin Information S          | Science (Tianjin University)                              |                                                                         |  |  |  |  |  |  |  |
| ZHANG, Jiawan                  | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| LI, Xiaohong                   | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |
| LIU, Baolin                    | Visiting Professor                                        |                                                                         |  |  |  |  |  |  |  |

\* FIVE Institutes indicate University of Science, Vietnam National University-Ho Chi Minh City (HCMUS), University of Technology, Vietnam National University-Ho Chi Minh City (HCMUT), Institute of Information Technology, Vietnamese Academy of Science and Technology (IOIT, VAST), Hanoi University of Science and Technology (HUST), Vietnam National University, University of Engineering and Technology (VNU-UET).

#### Contract Contract

| Name Position                        |                              | Specialization                                                  |  |  |  |  |  |  |  |
|--------------------------------------|------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|
| Cyber Range Organization and Design  |                              |                                                                 |  |  |  |  |  |  |  |
| CHINEN, Ken-ichi                     | Research Associate Professor | Wide-area Information Distribution, Network Topology            |  |  |  |  |  |  |  |
| BEURAN, Razvan<br>Florin             | Research Associate Professor | Network Systems, Performance Evaluation, Information Processing |  |  |  |  |  |  |  |
| Dependable Network Innovation Center |                              |                                                                 |  |  |  |  |  |  |  |

| Name           | Position           | Specialization |
|----------------|--------------------|----------------|
| MIYAKAWA, Shin | Visiting Professor |                |

# 3 Class schedule for 2015-2016

Term 1-1 (April 8 – June 5)

School of Information Science 2 5 9:20-10:50 11:00-12:30 15:10-16:40 16:50-18:20 I119 Statistics in Writing and Presentation Logic and Mathematics 1115 Digital Logic and G212 1211 Computer Design Skills (Preining) Information Science (Tsuji) (Akagi · [Morikawa]) (Kaneko-Inoguchi) G213E Japan Studies L212E History and Philosophy 1235 Game Informatics 1216E Computational Complexity of Science (Kawanishi) and Discrete Mathematics (Ikeda Iida [Viennot]) (Mizumoto) ٩ 1236 Logical Inference and (Uehara Miyaji [J.Chen]) A Methodology for L214 Knowledge Representation 1225E Statistical Signal **Innovation Design** (Tojo) Processing (H.Tanaka) (Kunifuji, etc.) 1655E Modern Quantum and 1450 Network Design Laboratory (Tan Chinen) Neural Computation (H.Tanaka • Maezono) Programming Laboratory I Fundamental Mathematics Interaction Seminar 2 1116 1114 E011 Interaction Seminar 1 E021 Basic TC 3 (Omote · [J.Chen] · [Su]) for Information Science Basic TC 1 F113 F111 Intermediate TC 1 E212 1120 Fundamentals of Logic (Preining) E211 Intermediate TC 2 and Mathematics I118 Graphs and Automata Scientific Discussions 1 E411 Advanced TC 1 E213 (Terauchi) JO11A Introductory Technical Japanese 1 J011B Introductory Technical Japanese 1 (Toio) 1233 Operating Systems 1211E Mathematical Logic J111A Basic Technical Japanese 1 J111B Basic Technical Japanese 1 J211 Intermediate Technical Japanese 1 (Shinoda) (Ogawa) 1447E Database Systems 1212 Analysis for Information 1411 Advanced Technical Japanese 1 (Ogawa · Marukawa) Science (Kotani) 1111 Algorithms and Data Structures 1119 Statistics in G212 Writing and Presentation Logic and Mathematics L211 g (Uehara) Information Science Skills (Tsuji) (Preining) I112 Computer Systems (Akagi [Morikawa]) G213E Japan Studies L212E History and Philosophy (Yoshitaka) 1235 Game Informatics (Kawanishi) of Science (13:30 1214 System Optimization (Ikeda · Iida · [Viennot]) (Mizumoto) Wed. (Kaneko-Hiraishi) 1236 Logical Inference and L214 A Methodology for 1218 Computer Architecture Knowledge Representation Innovation Design Hours (K.Tanaka) (Tojo) (Kunifuji, etc.) 1655E Modern Quantum and <u>e</u> Neural Computation (H.Tanaka · Maezono) 1115 Digital Logic and 1116 Programming Laboratory E011 Interaction Seminar 1 F021 Interaction Seminar 2 Computer Design (Omote · [J.Chen] · [Su]) E111 Basic TC 1 E113 Basic TC 3 (Kaneko-Inoguchi) 1120 Fundamentals of Logic E211 Intermediate TC 1 E212 Intermediate TC 2 I216E Computational Complexity and Mathematics E213 Scientific Discussions 1 E411 Advanced TC 1 and Discrete Mathematics (Terauchi) J011A Introductory Technical Japanese 1 J011B Introductory Technical Japanese 1 F (Uehara Miyaji [J.Chen]) 1233 Operating Systems J111A Basic Technical Japanese 1 J111B Basic Technical Japanese 1 1225E Statistical Signal (Shinoda) J211 Intermediate Technical Japanese 1 Processing (H.Tanaka) 1447E Database Systems J411 Advanced Technical Japanese 1 1450 Network Design Laboratory (Ogawa · Marukawa) (Tan Chinen) 1114 Fundamental Mathematics 1111 Algorithms and Data Structures for Information Science (Uehara) (Preining) I112 Computer Systems I118 Graphs and Automata (Yoshitaka) (Tojo) 1214 System Optimization E I211E Mathematical Logic (Kaneko · Hiraishi) (Ogawa) 1218 Computer Architecture 1212 Analysis for Information (K.Tanaka) Science (Kotani)

Irregular class schedule:

1465S Literacy in Information Security Management (Miyaji • Futa):

Dates to be announced (5th period of Tuesday or Friday afternoons in Terms 1-1, 2-1 and 2-2)

#### NOTE:

The first class of B101 will be held on Wednesday, April 8. The second and subsequent classes of B101 will be held in Term 1-2.

All lectures except B101 in this term will start on Thursday, April 9 and the day will follow the WEDNESDAY schedule.

Friday, June 5 will follow the MONDAY schedule.

| Term 1-2 ( June 10 |                               |                                                                                                                                                                           |                               |                                                                                                                                                                           |                              | e 10 –                                                         | - August 3 )                                                                                                                                                                                                               | Schoo                                                  | l of Information Science                                                                                                                                              |
|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                               | 1                                                                                                                                                                         |                               | 2                                                                                                                                                                         | 3                            |                                                                | 4                                                                                                                                                                                                                          |                                                        | 5                                                                                                                                                                     |
|                    |                               | 9:20-10:50                                                                                                                                                                |                               | 11:00-12:30                                                                                                                                                               |                              |                                                                | 15:10-16:40                                                                                                                                                                                                                |                                                        | 16:50-18:20                                                                                                                                                           |
| Mon.               | I213<br>I217<br>I441          | Discrete Signal Processing<br>(Asano)<br>Functional Programming<br>(Ogata)<br>Advanced Computer Networks<br>(Shinoda)                                                     | 1226<br>1234E<br>1442         | Computer Networks<br>(Tan)<br>Foundation of Software<br>Environment (Suzuki)<br>Advanced System<br>Software Laboratory<br>(Shikida)                                       |                              | N008<br>B101<br>G211E                                          | Nano Quantum Device<br>Materials (*)<br>Career Development<br>Basic <b>(Kohda, etc.)</b><br>Global Communication<br>for Collaboration Building<br><b>(Kawanishi)</b>                                                       | N008<br>B101                                           | Nano Quantum Device<br>Materials (*)<br>Career Development<br>Basic <b>(Kohda, etc.)</b>                                                                              |
| Tue.               | 1223E<br>1438<br>1656E        | Natural Language<br>Processing I<br>(Nguyen)<br>Exercises on Graph Theory<br>(Kaneko)<br>Logical Decision Procedures<br>(Preining+Hirokawa)                               | I117E<br>I219<br>I439         | Programming Laboratory II<br>(Bonnet)<br>Software Design<br>Methodology<br>(Aoki•[Chiba])<br>Speech Signal Processing<br>(Akagi•Dang)                                     |                              | N006<br>E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412 | Nano IT Materials (*)<br>Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2 | N006<br>E021<br>E113<br>E212<br>E412<br>J012B<br>J112B | Nano IT Materials (*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2 |
| Wed.               | I232<br>I445E<br>I483<br>E413 | Information Theory<br>(Matsumoto-Kurkoski)<br>Distributed Systems<br>(Defago)<br>Smart Embedded System<br>Development<br>(T.Okada)<br>Scientific Discussions 2<br>(Blake) | 1213<br>1217<br>1441          | Discrete Signal Processing<br>(Asano)<br>Functional Programming<br>(Ogata)<br>Advanced Computer Networks<br>(Shinoda)                                                     | Office Hours (13:30 ~ 15:00) | N007<br>G211E                                                  | Nano Biodevice Materials (*)<br>Global Communication<br>for Collaboration Building<br>(Kawanishi)                                                                                                                          | N007                                                   | Nano Biodevice Materials (*)                                                                                                                                          |
| Thu.               | 1226<br>1234E<br>1442         | Computer Networks<br>(Tan)<br>Foundation of Software<br>Environment (Suzuki)<br>Advanced System<br>Software Laboratory<br>(Shikida)                                       | 1223E<br>1438<br>1656E        | Natural Language<br>Processing I<br>(Nguyen)<br>Exercises on Graph Theory<br>(Kaneko)<br>Logical Decision Procedures<br>(Preining•Hirokawa)                               |                              | E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412         | Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2                          | E021<br>E113<br>E212<br>E412<br>J012B<br>J112B         | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2                          |
| Fri.               | I117E<br>I219<br>I439         | Programming Laboratory II<br>(Bonnet)<br>Software Design<br>Methodology<br>(Aoki•[Chiba])<br>Speech Signal Processing<br>(Akagi•Dang)                                     | 1232<br>1445E<br>1483<br>E413 | Information Theory<br>(Matsumoto-Kurkoski)<br>Distributed Systems<br>(Defago)<br>Smart Embedded System<br>Development<br>(T.Okada)<br>Scientific Discussions 2<br>(Blake) |                              |                                                                |                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                       |

#### . .

Irregular class schedule:

1466S Advanced Information Security Theory and Application (Miyaji·Futa·[S.Tanaka]·[J.Chen]·[Su]):

Dates to be announced (Friday afternoons in June-September)

1471S Project-based Learning of Information Security Practice (Miyaji Futa Omote [S.Tanaka] [J.Chen] [Su]):

Dates to be announced (Friday afternoons in June-September and two days in September for intensive work)

NOTE:

\* N00x courses will be offered by the faculty of Center for Nano Materials and Technology and School of Materials Science.

|      |                        |                                                                                                                                                                                             |                        | 101112 1 ( 000                                                                                                                                                                              |                              |                                                                        |                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                        |
|------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                        | 1<br>9:20-10:50                                                                                                                                                                             |                        | 2<br>11:00-12:30                                                                                                                                                                            | 3                            |                                                                        | 4<br>15:10-16:40                                                                                                                                                                                                                                                       |                                                        | 5<br>16:50-18:20                                                                                                                                                                                                       |
| Mon. | 1218E<br>1233E         | Computer Architecture<br>(Inoguchi)<br>Operating Systems<br>(Defago)                                                                                                                        | 1223<br>1235E<br>1465  | Natural Language<br>Processing I<br>(Shirai)<br>Game Informatics<br>(Iida•[Viennot])<br>Information Security<br>(Miyaji•Omote•[Su])                                                         |                              | N001<br>G212<br>G213E                                                  | Fabrication of Nano-Devices<br>with Training Course(*)<br>Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                   | N001<br>L211E<br>L212<br>L214E                         | Fabrication of Nano-Devices<br>with Training Course(*)<br>Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science (Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.)         |
| Tue. | I217E<br>I234<br>I427  | Functional Programming<br>(Hirokawa)<br>Foundation of Software<br>Environment (Shikida)<br>System Control Theory<br>(Asano)                                                                 | 1212E<br>1214E<br>1481 | Analysis for<br>Information Science<br>(Dang)<br>System Optimization<br>(Kaneko+Hiraishi)<br>Software Development<br>Laboratory for Highly<br>Dependable Embedded Systems<br>(Suzuki, etc.) |                              | N002<br>E011<br>E111<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Study on Nanobiotechnology<br>with Training Course(*)<br>Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1                  | N002<br>E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Study on Nanobiotechnology<br>with Training Course(*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1                  |
| Wed. | 1211<br>1225<br>1448   | Mathematical Logic<br>(Ogawa)<br>Statistical Signal<br>Processing (Unoki)<br>Distance Learning System<br>(Hasegawa)                                                                         | 1218E<br>1233E         | Computer Architecture<br>(Inoguchi)<br>Operating Systems<br>(Defago)                                                                                                                        | Office Hours (13:30 ~ 15:00) | N003<br>G212<br>G213E                                                  | Analysis of Nano Materials<br>with Training Course(*)<br>Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                    | N003<br>L211E<br>L212<br>L214E                         | Analysis of Nano Materials<br>with Training Course(*)<br>Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science (Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.)          |
| Thu. | 1223<br>1235E<br>1465  | Natural Language<br>Processing I<br>(Shirai)<br>Game Informatics<br>(Iida•[Viennot])<br>Information Security<br>(Miyaji•Omote•[Su])                                                         | I217E<br>I234<br>I427  | Functional Programming<br>(Hirokawa)<br>Foundation of Software<br>Environment (Shikida)<br>System Control Theory<br>(Asano)                                                                 |                              | N004<br>E011<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411         | Structural Analysis of Solids on<br>Nano-Scale with Training Course(*)<br>Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1 | N004<br>E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Structural Analysis of Solids on<br>Nano-Scale with Training Course(*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1 |
| Fri. | I212E<br>I214E<br>I481 | Analysis for<br>Information Science<br>(Dang)<br>System Optimization<br>(Kaneko•Hiraishi)<br>Software Development<br>Laboratory for Highly<br>Dependable Embedded Systems<br>(Suzuki, etc.) | I211<br>I225<br>I448   | Mathematical Logic<br>(Ogawa)<br>Statistical Signal<br>Processing (Unoki)<br>Distance Learning System<br>(Hasegawa)                                                                         |                              |                                                                        |                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                        |

#### Term 2-1 (October 7 – December 2)

School of Information Science

Irregular class schedule:

1466 Introduction to International Standardization (Somemura, etc.): 5th period of every Friday in Terms 2-1 and 2-2

NOTE:

 $\cdot$   $\,$  Wedensday, October 7 will follow the MONDAY schedule.

• \* N00x courses will be offered by the faculty of Center for Nano Materials and Technology and School of Materials Science.

#### 1 2 3 л 5 11:00-12:30 9:20-10:50 15:10-16:40 16:50-18:20 1236E Logical Inference and 1216 Computational Complexity G211E Global Communication for Collaboration Building Knowledge Representation and Discrete Mathematics (Kawanishi) (Nguyen) (Omote [J.Chen]) 1435 Software Architecture I219E Software Design (Suzuki) Methodology (Ogata) 1440 Enhanced Operating Systems (K.Tanaka) |413 Theoretical Computer Science (Ishihara) 1226E Computer Networks 1232E Information Theory Interaction Seminar 1 E021 Interaction Seminar 2 E011 E112 Basic TC 2 Basic TC 3 (Lim) (Kurkoski Matsumoto) F113 1419 Image Information Science Software Process Design for Intermediate TC 1 E212 Intermediate TC 2 1482 E211 (Yoshitaka) Highly Dependable Embedded E412 Advanced TC 2 1613E Algebraic Formal Methods Systems J012A Introductory Technical Japanese 2 J012B Introductory Technical Japanese 2 ٦e. (Futatsugi · Ogata · Preining (Suzuki-Aoki, etc.) J112A Basic Technical Japanese 2 J112B Basic Technical Japanese 2 Gaina Masaki Nakamura) J212 Intermediate Technical Japanese 2 J412 Advanced Technical Japanese 2 1213E Discrete Signal Processing 1236E Logical Inference and G211E Global Communication 8 (Akagi) Knowledge Representation for Collaboration Building ~ 15: 1414 Natural Language Processing II (Nguyen) (Kawanishi) (Shirai) 1435 Software Architecture (13:30 E413 Scientific Discussions 2 (Suzuki) Wed. (Blake) 1440 Enhanced Operating Systems (K.Tanaka) Hours Office 1216 Computational Complexity 1226E Computer Networks E011 Interaction Seminar 1 E021 Interaction Seminar 2 and Discrete Mathematics (Lim) E112 Basic TC 2 E113 Basic TC 3 (Omote [J.Chen]) 1419 Image Information Science E211 Intermediate TC 1 E212 Intermediate TC 2 I219E Software Design (Yoshitaka) E412 Advanced TC 2 Methodology 1613E Algebraic Formal Methods J012A Introductory Technical Japanese 2 J012B Introductory Technical Japanese 2 Thu (Ogata) (Futatsugi · Ogata · Preining J112A Basic Technical Japanese 2 J112B Basic Technical Japanese 2 1413 Theoretical Computer Science Gaina · Masaki Nakamura) J212 Intermediate Technical Japanese 2 (Ishihara) J412 Advanced Technical Japanese 2

#### Term 2-2 (December 4 – February 8) School of Information Science

Irregular class schedule:

Systems

1232E Information Theory

(Kurkoski Matsumoto)

Highly Dependable Embedded

(Suzuki - Aoki, etc.)

1466 Introduction to International Standardization (Somemura, etc.): 5th period of every Friday in Terms 2-1 and 2-2

(Akagi)

(Shirai)

(Blake)

I213E Discrete Signal Processing

E413 Scientific Discussions 2

Software Process Design for 1414 Natural Language Processing II

NOTE:

1482

Ë

٩

Friday, December 4 will follow the WEDNESDAY schedule.
# 4 Curriculum

# 4.4.1 Overview of curriculum

Based on JAIST's mission statement, the curriculum of the IS school is designed to help students systematically progress from the basics of information science to its cutting-edge frontiers while acquiring fundamental academic skills, that will enable them to make significant contributions to the development of state-of-the-art technologies through learning actively.

Courses are divided into 3 categories:

- (1) Courses in the School of Information Science, including Information Science Seminars (lectures and training by external instructors)
- (2) Courses in the Institute of General Education common to three schools
- (3) Courses at other graduate institutions

Last but not least, it is insufficient for students merely to take lectures with a passive attitude. All the courses in IS school are designed so they require students to work on each course at least 45 hours of independent study per credit. To acquire abilities that will benefit them in the future, students are expected to nurture the seeds of the advanced science and technology in the future.

# 4.4.2 Courses in the School of Information Science (IS school courses/Ixxx series)

The IS school courses (Ixxx series) are divided into groups using 1) the 5 following areas; A. Theoretical Information Science, B. Human Information Processing, C. Artificial Intelligence, D. Computer Systems and Networks, E. Software Science (see the section 1.1) and 2) the following 4 levels;

- 11xx... Introductory courses: are designed mainly for students from outside of the area of information science to acquire foundations necessary for higher level studies.
- 12xx... Basic courses: provide standard master-level knowledge on Information Science required for advanced studies.
- 14xx... Technical courses and Specialized Technical courses: which provide advanced knowledge on Information Science for master's students. These are provided mostly in Japanese.
- 16xx... Advanced courses: which impart advanced knowledge on Information Science for doctoral students. These are provided in English.

In order to acquire a wide range of foundations and specialist knowledge, students must take courses from multiple areas. For more information, refer to the corresponding pages.

# 5 Guide to program completion

# 5.1 Course charts in the School of Information Science

In the charts below, "J" in the Language column indicates that the course is offered in Japanese; "E" indicates that the course is offered in English.

#### 5.1.1 Introductory courses

The Introductory courses are mainly offered in Japanese. They are the courses to acquire foundations necessary for higher level studies. In order to take higher level courses, the related introductory course knowledge is required.

| Course<br>Number | Course Title                                       | Lan-<br>guage | Course Term | Instructor(s)           | Notes |
|------------------|----------------------------------------------------|---------------|-------------|-------------------------|-------|
| 1111             | Algorithms and Data Structures                     | J             | 1-1         | Uehara                  |       |
| I112             | Computer Systems                                   | J             | 1-1         | Yoshitaka               |       |
| I114             | Fundamental Mathematics for<br>Information Science | J             | 1-1         | Preining                |       |
| I115             | Digital Logic and Computer Design                  | J             | 1-1         | Kaneko•Inoguchi         |       |
| I116             | Programming Laboratory I                           | J             | 1-1         | Omote · [J.Chen] · [Su] |       |
| I117             | Programming Laboratory II                          | E             | 1-2         | Bonnet                  |       |
| I118             | Graphs and Automata                                | J             | 1-1         | Тојо                    |       |
| 1119             | Statistics in Information Science                  | J             | 1-1         | Akagi∙[Morikawa]        |       |
| I120             | Fundamentals of Logic and<br>Mathematics           | J             | 1-1         | Terauchi                |       |

**NOTE**: Instructors in brackets [] are in charge of the office hours.

#### 5.1.2 Basic courses

All Basic courses are offered twice a year, one in Japanese and the other in English. These courses are designed to impart standard graduate-level knowledge on Information Science, which is required for advanced studies. The knowledge units have been carefully organized so that students can understand basic academic matters to advanced academic issues required for their advanced study. It is advisable for students to select courses without concentrating on a particular area in order to acquire well-balanced knowledge.

More than one instructor may teach one course. Please check the class schedule regarding instructors for each course for each term.

| Course<br>Number | Course Title             | Lan-<br>guage | Course<br>Term | Instructor(s)          | Area | Notes      |
|------------------|--------------------------|---------------|----------------|------------------------|------|------------|
| 1011             | Mathematical Logic       | E             | 1-1            | Ogawa                  | Λ    |            |
| 1211             | Mathematical Logic       | J             | 2-1            | Oyawa                  | A    |            |
| 1212             | Analysis for Information | J             | 1-1            | Kotani                 | D    |            |
| 1212             | Science                  | E             | 2-1            | Dang                   | D    |            |
| 1212             | Discrete Signal          | J             | 1-2            | Asano                  | р    |            |
| 1213             | Processing               | E             | 2-2            | Akagi                  | В    |            |
| 1014             | System Ontimization      | J             | 1-1            | Kanaka, Hiraishi       | Λ    |            |
| 1214             | System Optimization      | E             | 2-1            | Kalleku miraisili      | A    |            |
| 1014             | Computational            | J             | 2-2            | Omote · [J.Chen]       | ~    | $\bigcirc$ |
| 1210             | Mathematics              | E             | 1-1            | Uehara•Miyaji•[J.Chen] | A    | 0          |
| 1017             | Eunstional Drogramming   | J             | 1-2            | Ogata                  | Е    |            |
| 1217             | Functional Programming   | E             | 2-1            | Hirokawa               | E    |            |
| 1210             | Computer Arabitesture    | J             | 1-1            | K.Tanaka               |      |            |
| 1218             | computer Architecture    | E             | 2-1            | Inoguchi               | D    |            |
| 1210             | Software Design          | J             | 1-2            | Aoki·[Chiba]           | F    |            |
| 1219             | Methodology              | E             | 2-2            | Ogata                  | E    |            |

| 1222 | Natural Language       | E | 1-2 | Nguyen               | 6        |   |
|------|------------------------|---|-----|----------------------|----------|---|
| 1223 | Processing I           | J | 2-1 | Shirai               |          |   |
| 1005 | Statistical Signal     | E | 1-1 | H.Tanaka             | р        |   |
| 1225 | Processing             | J | 2-1 | Unoki                | Б        |   |
| 1224 | Computer Networks      | J | 1-2 | Tan                  |          |   |
| 1220 |                        | E | 2-2 | Lim                  |          |   |
| 1222 | Information Theory     | J | 1-2 | Matsumoto • Kurkoski |          |   |
| 1232 | mormation meory        | E | 2-2 | Kurkoski · Matsumoto | А        |   |
| 1222 | Operating Systems      | J | 1-1 | Shinoda              |          |   |
| 1233 | Operating Systems      | E | 2-1 | Defago               |          |   |
| 1224 | Foundation of Software | E | 1-2 | Suzuki               | -        |   |
| 1234 | Environment            | J | 2-1 | Shikida              |          |   |
| LOOF | Come Information       | J | 1-1 | Ikeda·Iida·[Viennot] | 6        | * |
| 1235 | Game informatics       | E | 2-1 | lida · [Viennot]     |          | ~ |
| 1224 | Logical Inference and  | J | 1-1 | Тојо                 | <u> </u> | * |
| 1230 | Representation         | E | 2-2 | Nguyen               | L L      |   |

NOTE: Instructors in brackets [] are in charge of the office hours.

□Program Basic courses for the Highly-Dependable and Smart Embedded Systems Track.

 $\bigcirc \mathsf{Program}$  Basic courses for the Information Security Track.

\* If students who enrolled before April 2012 have completed I215, they cannot take I235 nor I236.

#### 5.1.3 Technical courses

The Technical courses consist of highly specialized lectures for master's and doctoral students. The various specializations of our faculty members have been utilized to provide a challenging and rewarding curriculum. These courses are provided biennially (sometimes annually) in Japanese (some lectures are offered in English). As there are some prerequisites, please refer to the syllabus for details.

| Course<br>Number | Course Title                        | Lan-<br>guage | Course<br>Term | Instructor(s)          | year of<br>course<br>offered | Area | Notes |
|------------------|-------------------------------------|---------------|----------------|------------------------|------------------------------|------|-------|
| 1411             | Pattern Analysis and Recognition    | J             |                | Kotani                 | biennially                   | В    |       |
| 1413             | Theoretical Computer<br>Science     | J             | 2-2            | Ishihara               | biennially★                  | А    |       |
| 1414             | Natural Language<br>Processing II   | J             | 2-2            | Shirai                 | biennially★                  | С    |       |
| 1416             | Parallel Processing                 | J             |                | Inoguchi               | biennially                   | D    |       |
| 1419             | Image Information<br>Science        | J             | 2-2            | Yoshitaka              | biennially★                  | В    |       |
| 1427             | System Control Theory               | J             | 2-1            | Asano                  | biennially <del>★</del>      | В    |       |
| 1431             | Theory of Algorithms                | J             |                | Uehara                 | biennially                   | А    |       |
| 1432             | Theory of<br>Discrete-State Systems | J             |                | Hiraishi               | biennially                   | А    |       |
| 1435             | Software Architecture               | J             | 2-2            | Suzuki                 | biennially★                  | E    |       |
| 1437             | Coding Theory                       | J             |                | Matsumoto•<br>Kurkoski | biennially                   | А    |       |
| 1438             | Exercises on Graph Theory           | J             | 1-2            | Kaneko                 | biennially <del>★</del>      | А    |       |
| 1439             | Speech Signal<br>Processing         | J             | 1-2            | Akagi∙Dang             | biennially★                  | В    |       |
| 1440             | Enhanced Operating<br>Systems       | J             | 2-2            | K.Tanaka               | biennially★                  | D    |       |
| 1441             | Advanced Computer<br>Networks       | J             | 1-2            | Shinoda                | biennially★                  | D    |       |

| 1442 | Advanced System<br>Software Laboratory   | J | 1-2                 | Shikida               | annually ★  | E |          |
|------|------------------------------------------|---|---------------------|-----------------------|-------------|---|----------|
| 1443 | Foundation of Software<br>Verification   | J |                     | Aoki•[Chiba]          | biennially  | E |          |
| 1444 | Embedded Software<br>Engineering         | J | Intensive<br>course | Kishi                 | annually ★  | E |          |
| 1445 | Distributed Systems                      | E | 1-2                 | Defago                | annually ★  | E |          |
| 1446 | Computer Systems<br>Performance Analysis | E |                     | Defago∙<br>[Viennot]  | biennially  | D |          |
| 1447 | Database Systems                         | E | 1-1                 | Ogawa∙<br>Marukawa    | biennially★ | E |          |
| 1448 | Distance Learning<br>System              | J | 2-1                 | Hasegawa              | biennially★ | С |          |
| 1450 | Network Design<br>Laboratory             | J | 1-1                 | Tan·Chinen            | annually★   | D |          |
| 1455 | Information Security<br>Application      | J |                     | Omote                 | biennially  | А | 0        |
| 1465 | Information Security*                    | J | 2-1                 | Miyaji•Omote•<br>[Su] | biennially★ | А | <b>*</b> |
| 1467 | Processor Design<br>Laboratory           | J |                     | Inoguchi∙<br>K.Tanaka | biennially  | D |          |
| 1468 | Modeling of Dynamics                     | J |                     | Maezono•<br>[Hongo]   | biennially  | В |          |

**NOTE**: Instructors in brackets [] are in charge of the office hours.

 $\star$ The course is offered in the 2015 academic year.

□Program Basic courses for the Highly-Dependable and Smart Embedded Systems Track.

 $\bigcirc \mathsf{Program}$  Basic courses for the Information Security Track.

\* If students who enrolled before April 2012 complete 1465, 1465 is treated as 1461S. If they have already completed 1461S, they cannot take 1465.

## 5.1.4 Specialized Technical courses

The Specialized Technical courses are designed to impart specialized knowledge in the Fostering Talent Program (Highly-Dependable and Smart Embedded Systems Track, Information Security Track, Fostering ICT Global Leader Track). They are provided annually in Japanese. Since some Specialized Technical courses have exceptional schedules and restrictions, please refer to later sections (6.2.6-5), syllabus, and the class schedule.

| Course<br>Number | Course Title                                                                               | Lan-<br>guage | Course<br>Term      | Instructor(s)        | Notes | Area |
|------------------|--------------------------------------------------------------------------------------------|---------------|---------------------|----------------------|-------|------|
| Progress         | sive courses                                                                               |               |                     |                      |       |      |
| 1473             | Hardware/Software Codesign                                                                 | J             | Intensive<br>course | Wakabayashi          |       | D    |
| 1478             | IT Project Management                                                                      | J             | Intensive<br>course | K.Okada              |       | E    |
| Practica         | l courses                                                                                  |               |                     |                      |       |      |
| 1481             | Software Development Laboratory for<br>Highly Dependable Embedded<br>Systems* <sup>1</sup> | J             | 2-1                 | Suzuki, etc.         |       | E    |
| 1482             | Software Process Design for Highly Dependable Embedded Systems* <sup>2</sup>               | J             | 2-2                 | Suzuki•Aoki,<br>etc. |       | E    |
| 1483             | Smart Embedded System Development                                                          | J             | 1-2                 | T.Okada              |       | E    |

#### Highly-Dependable and Smart Embedded Systems Track

\*1 If students who enrolled before April 2013 complete I481, it is treated as I480. If they have already completed I480, they cannot take I481.

\*2 If students who enrolled before April 2013 complete 1482, it is treated as 1479. If they have already completed 1479, they cannot take 1482.

# **Information Security Track**

| Course<br>Number | Course Title                                                             | Lan-<br>guage | Course<br>Term | Instructor(s)                                          | Notes     | Area<br>*1 |
|------------------|--------------------------------------------------------------------------|---------------|----------------|--------------------------------------------------------|-----------|------------|
| Progress         | sive courses                                                             |               |                |                                                        |           |            |
| 1465S            | Literacy in Information Security<br>Management                           | J             | 1-1*6          | Miyaji∙Futa                                            |           | D          |
| 1466S            | Advanced Information Security<br>Theory and Application* <sup>2</sup>    | J             | 1-2*6          | Miyaji∙Futa∙<br>[S.Tanaka]∙<br>[J.Chen]∙[Su]           |           | A          |
| 1469S            | Law and Management of<br>Information Security                            | J             |                |                                                        | *         |            |
| 1470S            | Information Security Technology                                          | J             |                |                                                        | *         |            |
| Practica         | l courses                                                                |               |                |                                                        |           |            |
| I471S            | Project-based Learning of<br>Information Security Practice* <sup>2</sup> | J             | 1-2*6          | Miyaji+Futa+<br>Omote+<br>[S.Tanaka]+<br>[J.Chen]+[Su] |           | A          |
| 14785            | Project-based Learning of Network<br>Security                            | J             |                |                                                        | *         |            |
| 14795            | Exercise in Security Project-Based<br>Learning A                         | J             |                |                                                        | *1 Credit |            |
| 1480S            | Exercise in Security Project-Based<br>Learning B                         | J             |                |                                                        | *1 Credit |            |
| I481S            | Exercise in Security Project-Based<br>Learning C                         | J             |                |                                                        | *1 Credit |            |
| I482S            | Exercise in Security Project-Based<br>Learning D* <sup>3*4</sup>         | J             |                |                                                        | *1 Credit |            |
| I483S            | Exercise in Security Project-Based<br>Learning E* <sup>3</sup>           | J             |                |                                                        | *1 Credit |            |
| I484S            | Exercise in Security Project-Based<br>Learning F* <sup>5</sup>           | J             |                |                                                        | *1 Credit |            |
| 14855            | Exercise in Security Project-Based<br>Learning G                         | J             |                |                                                        | *1 Credit |            |

**NOTE**: Instructors in brackets [] are in charge of the office hours.

Students in the Information Security Track have priority to register for the above courses. Students who are not in the track may not take the courses.

- \* The courses are offered at other graduate schools.
- **\*1** Areas are for the students who are not in the Information Security Track.
- \*2 I466S and I471S must be taken both in the same term.
- **\*3** Only students who completed 1479S and 1480S, and either one of 1481S or 1471S can take these courses.
- \*4 Students who enrolled before April 2013 and completed I475S cannot take this course.
- \*5 Only students who completed all of 1479S, 1480S and 1481S and either one of 1481S or 1471S can take this course.
- \*6 The courses have irregular class schedules. See the class schedule for detailed schedule.

## Fostering ICT Global Leader Track

| Course<br>Number | Course Title                                     | Lan-<br>guage | Course<br>Term | Instructor(s)  | Notes | Area |
|------------------|--------------------------------------------------|---------------|----------------|----------------|-------|------|
| 1466             | Introduction to<br>International Standardization | J             | 2-1&2-2        | Somemura, etc. |       |      |

**NOTE**: The course has an irregular class schedule. See the class schedule for detailed schedule.

#### 5.1.5 Advanced courses

The Advanced courses are highly specialized lectures for students in the master's and doctoral programs. The various specializations of our faculty members have been utilized to provide a

challenging and rewarding curriculum. They are provided biennially in English. As there are some prerequisites (knowledge equivalent to the content of related basic courses) for master's students to take them; please refer to the syllabus for details.

| Course<br>Number | Course Title                               | Lan-<br>guage | Course<br>Term | Instructor(s)                                               | year of<br>course<br>offered | Area |
|------------------|--------------------------------------------|---------------|----------------|-------------------------------------------------------------|------------------------------|------|
| 1613             | Algebraic Formal Methods                   | E             | 2-2            | Futatsugi •<br>Ogata•Preining•<br>Gaina•<br>Masaki Nakamura | biennially★                  | E    |
| I615             | Robotics                                   | E             |                | Chong                                                       | biennially                   | В    |
| 1620             | Foundation of VLSI Design                  | E             |                | Kaneko                                                      | biennially                   | D    |
| 1631             | Foundation of<br>Computational Geometry    | E             |                | Uehara                                                      | biennially                   | А    |
| 1645             | Human Perceptual Systems<br>and its Models | E             |                | Unoki                                                       | biennially                   | В    |
| 1649             | Wireless Sensor Networks                   | E             |                | Lim                                                         | biennially                   | D    |
| 1654             | Term Rewriting                             | E             |                | Hirokawa                                                    | biennially                   | E    |
| 1655             | Modern Quantum and<br>Neural Computation   | E             | 1-1            | H.Tanaka•<br>Maezono                                        | biennially★                  | В    |
| 1656             | Logical Decision Procedures                | E             | 1-2            | Preining∙<br>Hirokawa                                       | biennially★                  | E    |

★ The course is offered in the 2015 academic year. There may be changes in the courses offered next year.

# 5.1.6 Seminars offered by the IS school (Information Science Seminars)

The IS school invites lecturers from other universities, research institutions, and industries and offers practical lectures and exercises as intensive courses, seminars, exercises which can be included in the requirements for completion as the IS courses The school will announce the schedule by email and students can register for courses a month before the start of each course. Students who wish to take these courses are advised to pay attention to email announcements.

1456-457 Information Science Seminars I and II are seminars offered by invited lecturers. Students can attend these seminars without any advance notification or registration. Furthermore, students can earn 1 credit as a part of the requirements by attending the seminars 7 times and submitting a report for each seminar to the corresponding host faculty member.

- (1) Students who wish to earn credits from the seminar must submit a report (1600 characters in Japanese or 1200 words in English) for each seminar within 10 days after the seminar. The report should basically include content of the seminar, and survey related to the topic. The report form is available at the JAIST webpage. Students should submit their reports to the corresponding host faculty members and obtain approval seal, and then keep it until they apply for credits.
- (2) The deadlines for submitting credit applications are the end of January and the end of July each year.

The school also offers 1458 Information Science Seminars III supported by the Semiconductor Technology Academic Research Center (STARC). 1458 will be biennially offered for 1 week in late August as Program C of the Embedded Software Engineering Exercise Class.

In program of the Embedded Software Engineering Exercise Class, students form a team with about 5 members, and simulate software development and gain experience as if in industry. A program completion certificate and 1 credit from the Technical courses (without area assignments) will be awarded.

# **Optional courses**

| Course<br>Number | Course Title                      | Course Term | Instructor<br>(s) | Notes                |
|------------------|-----------------------------------|-------------|-------------------|----------------------|
| Basic co         | urses                             | •           |                   |                      |
| I241             | Information Technology I          |             |                   | 1 credit             |
| 1242             | Information Technology II         |             |                   | 1 credit             |
| 1243             | Information Technology III        |             |                   | 1 credit             |
| 1244             | Information Technology IV         |             |                   | 1 credit             |
| Technica         | al courses                        |             |                   |                      |
| 1456             | Information Science Seminars I    |             |                   | 1 credit             |
| 1457             | Information Science Seminars II   |             |                   | 1 credit             |
| 1458             | Information Science Seminars III  |             |                   | Biennially, 1 credit |
| 1459             | Information Science Seminars IV   |             |                   | 1 credit             |
| 1461             | Advanced Technology I             |             |                   |                      |
| 1462             | Advanced Technology II            |             |                   |                      |
| 1463             | Advanced Technology III           |             |                   |                      |
| 1464             | Advanced Technology IV            |             |                   |                      |
| Advance          | d courses                         |             |                   |                      |
| 1622             | Information Processing Theory I   |             |                   |                      |
| 1623             | Information System Theory I       |             |                   |                      |
| 1624             | Information Processing Theory II  |             |                   |                      |
| 1625             | Information System Theory II      |             |                   |                      |
| 1626             | Information Processing Theory III |             |                   |                      |
| 1627             | Information System Theory III     |             |                   |                      |
| 1628             | Information Processing Theory IV  |             |                   |                      |
| 1629             | Information System Theory IV      |             |                   |                      |
| 1652             | Information Processing Theory V   |             |                   | 1 credit             |
| 1653             | Information System Theory V       |             |                   | 1 credit             |

## 5.2 Seminar and research

Courses for a major research (seminar) and a minor research (research) are below. For doctoral students, a minor research can be substituted for an internship.

#### Master's program

| Course<br>Number | Course Title                                         | Instructor                            | Notes                                 |
|------------------|------------------------------------------------------|---------------------------------------|---------------------------------------|
| 1201             | Seminar in Information Science A (Thesis)            | Supervisor                            | 8 credits; compulsory elective course |
| 1205             | Seminar in Information Science A<br>(Project Report) | Supervisor                            | 2 credits; same as above              |
| 1202             | Research in Information Science A                    | Advisor for Minor<br>Research Project | 2 credits; compulsory course          |

#### Doctoral program

| Course<br>Number | Course Title                       | Instructor        | Notes                     |
|------------------|------------------------------------|-------------------|---------------------------|
| 1601             | Advanced Seminar in Information    | Supervisor        | 6 credits; compulsory for |
| 1001             | Science B                          | Supervisor        | doctoral program          |
| 1400             | Advanced Research in Information   | Advisor for Minor |                           |
| 1002             | Science B1(Minor Research Project) | Research Project  | 4 credits; compulsory     |
| 1402             | Advanced Research in Information   | Advisor for       | elective course           |
| 1003             | Science B2(Internship)             | Internship        |                           |

#### 5.3 Guidelines for taking courses

See the Institute-wide Study Guide, the section VI.2.

#### 6 Master's program

The master's program in the IS school is mainly aimed at fostering highly advanced engineers. The master's degree in Information Science will be conferred to students when they complete the program.

#### 6.1 Choices in master's program

There are three categories students must pay attention to:

- (1) Educational programs: All students must belong to one of the following programs; M, M $\alpha$ , 5D, and SD programs.
- (2) Thesis, Report, Survey: Students must choose to work on writing a thesis (master's thesis), or conducting a research project (Project Report) or conducting a survey (Survey for Doctoral Research Plan) to complete the master's program. In order to choose Survey for Doctoral Research Plan, students must be in the 5D program and choose the Fostering ICT Global Leader Track.
- (3) Fostering Talent Program: This program requires Japanese language proficiency as courses in the program are only offered in Japanese. Students who wish to participate in the program must choose one of the following three tracks: i) Highly-Dependable and Smart Embedded Systems Track, ii) Information Security Track, and iii) Fostering ICT Global Leader Track. i) and ii) are for M or M $\alpha$  students and provide them with highly technical training on specific topics. iii) is specifically for 5D students. They must read this guide carefully before selecting a track since there are differences in employment recommendations, and support after continuing on to the doctoral program (see the section 3.1.3).

#### 6.1.1 Educational programs

The standard period of study for master's and doctoral programs is 2 years and 3 years respectively. The standard period of 2 years (called the M program) can be changed by: The  $M\alpha$  program, which extends the period to the maximum of 3 years (although the tuition is same as that for the 2-year program). The 5D program, which combines the doctoral program with the master's program, and the SD program, which combines the doctoral program with the master's program and shortens the total duration to 4 years.

Note that the SD program can only be selected at the entrance examination. Master's students can select any one of the M, M $\alpha$ , or 5D programs 5 months after enrollment (i.e., the end of August for students enrolled in April, or February for students enrolled in October) with the guidance of their supervisors. Students are not allowed to change their program they have enrolled in, except for the 5D/SD programs to the M program and the SD program to the 5D program. It is possible for M or M $\alpha$  program graduates to continue on to the doctoral (3D) program (see the section 3.3).

**M program:** This program is mainly aimed at fostering highly advanced engineers. The standard length of study for a master's degree (in Information Science) is 2 years. Students can complete a master's program in a shorter time. If a faculty meeting approves their research work is excellent, students may shorten the completion period to a minimum of 1 year, according to JAIST regulations. Advice on this will be offered shortly after enrollment in JAIST.

- (1) M program students cannot choose Survey for Doctoral Research Plan.
- (2) M program students can choose either a) Highly-Dependable and Smart Embedded Systems Track or b) Information Security Track but not c) Fostering ICT Global Leader Track.

**M** $\alpha$  **program**: This program is mainly aimed at fostering highly advanced engineers, and has been designed so that students can devote sufficient time to completing their master's degrees. This program is suitable for students who have a background other than information science or who wish to study at a slower pace from the basic of information science. Students can set their period of this program up to 3 years (either 2 years and 3 months, 2 years and 6 months, 2 years and 9 months, or 3 years, with the same tuition as that of in the 2-year program). Students in good standing can also complete the M $\alpha$  program in a shorter period, 2 years in consultation with their supervisor. Note that once students have decided the length of study, they are not allowed to extend the period of study. Please note that the following restrictions:

- (1)  $M\alpha$  students cannot choose Survey for Doctoral Research Plan.
- (2) Mα students can choose either i) Highly-Dependable and Smart Embedded Systems Track or ii) Information Security Track but not iii) Fostering ICT Global Leader Track.
- (3) The application to shorten the period is acceptable only when students submit a research proposal (at least 1 year prior to completion of the degree) or apply for conferment of a master's degree.
- (4) Employment recommendations and issuing an official letter of confirmation of expected completion of a master's degree depend on students' expected date of completion of the degree. If Mα program students are able to complete the program in a shorter time than they originally planned as 3 years and plan to be employed after spending 2 years in the master's program, they must contact Kyoumu.

**5D program**: This program is a unified program of master's and doctoral programs. The standard period of this program is 5 years to complete both degrees (2 years for the master's and 3 years for the doctoral).

- (1) 5D students can choose Survey for Doctoral Research Plan for master's degree only if they are in the Fostering ICT Global Leader Track.
- (2) 5D students can choose the Fostering ICT Global Leader Track if they wish, but not the Highly-Dependable and Smart Embedded Systems Track nor the Information Security Track.
- (3) In addition to the master's degree requirements, 5D students must satisfy the requirements for continuing on to the doctoral program (see the section 6.2.2 C).
- (4) There is financial support for students with excellent academic results after enrolling in the doctoral program.
- (5) 5D students will take an internal entrance examination (for the doctoral program at JAIST) at the time of mid-term defense or final defense. If 5D students failed the examination or cannot complete the master's program within 2 years (including the case that students cannot satisfy the requirements described in 6.2.2 C), their program will automatically shift to the M program.
- (6) It is possible to change their programs from the 5D to the M program at any time upon the faculty approval. Changing from the M to the 5D program is not allowed.
- (7) Employment recommendations and issuing an official letter of confirmation of expected completion of a doctoral degree depend on students' expected date of completion of the degree. If 5D students decide not to go on to the doctoral program to be employed after obtaining a master's degree, they must apply for program change from 5D to M beforehand.
- (8) If 5D students who enrolled as a scholarship student change the program to the M program, they will be disqualified for the scholarship.

**SD program:** Students in this program skip their final undergraduate year and undergo a unified master's and the doctoral program so that they complete both degrees in 4 years (about 1.5 years for the master's and 2.5 years for the doctorate). Students can only select the SD program at the time of entrance examination.

(1) SD program students cannot choose the Fostering Talent program.

- (2) If SD program students are unable to complete the master's program in 1.5 years, their program automatically shifts to either the 5D or the M program (which program is up to the student to choose choice).
- (3) If SD program students change to another program, they will be disqualified for the scholarship.
- (4) Employment recommendations depend on students' expected date of completion of the doctoral degree (i.e., the completion of the SD program).

#### 6.1.2 Master's thesis research, Project Report and Survey for Doctoral Research Plan

Students must choose to work on writing a thesis (master's thesis), or conducting a research project (Project Report) or conducting a survey to prepare for the research in the doctoral program (Survey for Doctoral Research Plan) to receive a master's degree. Students who choose the project report need to take 6 additional credits (3 courses) from the IS school courses. Typical examples of a project report includes a survey, system construction, and database construction. If students choose to work on a survey, they must conduct a research survey to prepare for doctoral research and take a Ph.D. qualifying examination. The choice must be made under guidance by the student's supervisor and must be submitted with the application for the research proposal (details will be described later). Survey for Doctoral Research Plan is only for the students in the Fostering ICT Global Leader Track.

#### 6.1.3 Fostering Talent Program

For the M/M $\alpha$  students, the Forster Talent Program offers following two tracks, a) Highly-Dependable and Smart Embedded Systems Track and b) Information Security Track which provide them with highly technical training on specific topics. For 5D students, the Fostering ICT Global Leader Track will train students to become leaders in the international society in the future. Japanese language proficiency is required for the program since the courses are only offered in Japanese. Please refer to the Japanese-language version of the Degree Completion Guide for specific program details.

**A. Highly-Dependable and Smart Embedded Systems Track**: The importance of technology for modifiability and the reliability of support systems in our increasingly computerized society are growing, as our social activities become more reliant on the electronic world, which has been brought about by progress in computer networking. We offer the "Highly-Dependable and Smart Embedded Systems Track" to educate and train highly specialized experts who will serve to improve the development capabilities, productivity, and international competitiveness of related industries. We have organized an environment and facilities for practical exercises and training in embedded-systems verification to cultivate students' problem-solving capabilities in embedded systems.

The PBL (Problem Based Learning) courses are compulsory for the students in this track. The students will acquire cutting-edge knowledge and techniques in order to solve actual system problems in cooperation with companies.

The application deadline for this track is early July (for students who enrolled in April) and early January (for those who enrolled in October). Successful applicants will be selected at a faculty meeting.

**B.** Information Security Track: This track aims to foster advanced engineers and practitioners of information security in network management. It is conducted in collaboration with distinguished universities, research institutes, companies, and non-profit organizations. In our partner universities (Institute of Information Security, Nara Institute of Science and Technology (NAIST), Keio University, and Tohoku University), pioneers of Internet research in Japan, there are many specialists particularly in the field of information security. This track features interchanging advanced knowledge and sharing of know-how related to network management and education. The focus is not only on how to set up and operate network equipment but also understanding the social background and systematic knowledge of information security.

Students must apply for this track and take paper examinations and interviews at the beginning of April. Successful applicants will be selected at a faculty meeting.

**C.** Fostering ICT Global Leader Track: This track aims to foster the leaders who can play an active part in international society. The goal of this program is to establish the graduate education which brings up advanced people who can play an active part in an ICT field, in addition to advanced technical knowledge and capability, the degree program which makes a broad view, special application capability, communications skills, internationalism, etc. The purpose is to foster the ICT Global Leader, which raises the talented people who can assert a standard of Japan and play an important role in technical committees, such as ISO, IEC, and ITU, for the international standardization of an ICT field.

The application deadline for this track is mid-April (for students who enrolled in April) and mid-October (for those who enrolled in October). Successful applicants will be selected at a faculty meeting.

# 6.2 Requirements for completion and continuing on to the doctoral program6.2.1 Completion requirements

Students must first read the Institute-wide Study Guide, the section VI.1.1. Regarding the section VI.1.1(2), follow the instructions in 3.2.2 below. Check the Institute-wide Study Guide for information regarding taking the IGE courses, courses from other schools in JAIST or ones at other institutes.

# 6.2.2 Course and credit requirements

- A. When students choose a master's thesis as a major research project, they need to obtain:
  - (1) 8 credits from the I201 Seminar in Information Science A (Thesis)
  - (2) 2 credits from the I202 Research in Information Science A (Minor Research Project)
  - (3) 20 credits (10 courses) or more
  - (4) (3) should include 10 credits (5 courses) or more from the Basic courses in 4 areas and 6 credits (3 courses) or more from any of the IS school courses.

# B. When students choose a project report as a major research project, they need to obtain:

- (1) 2 credits from the I205 Seminar in Information Science A (Project Report)
- (2) 2 credits from the I202 Research in Information Science A (Minor Research Project)
- (3) 26 credits (13 courses) or more
- (4) (3) should include 10 credits (5 courses) or more from the Basic courses in 4 areas and 12 credits (6 courses) or more from any of the IS school courses with maximum of 6 credits (3 courses) from the Introductory courses.
- C. When students continue on to the doctoral program as a 5D program student, they must satisfy the master's completion requirements described above and all the following requirements:
  - (1) At least 18 credits (9 courses) from the IS school courses. Only 2 credits from the Introductory courses can be included in the 18. When the number of credits from the IS school courses excluding ones from the Introductory courses exceeds 10 (5 courses), the excess of up to 8 credits (4 courses) can be transferred and recognized as credits for the doctoral program completion. For details concerning the application for transfer of credits, see the section 9.2.
  - (2) 4 credits (2 courses) or more from the IGE courses.
  - (3) one of the following 3 conditions of English proficiency:
    - Those who have enrolled in and successfully completed English courses of a level higher than or equal to the Intermediate level (E211-422).
    - Those who have TOEIC score 590 or TOEFL 500 or higher taken within 2 years prior to

their application for admission.

• Those who have submitted a master's thesis or project report in English, presented in English at the oral defense, and passed the final examination.

# 6.3 Assistance and recommendation for employment

Recommendation for employment can only be given if students:

- (1) are expected to complete enough credits for their degree completion requirements.
- (2) have been approved by their supervisors.
- (3) have had their research proposal on a master's thesis/project report or a survey for the doctoral research plan accepted.
- (4) have taken the SPI (Synthetic Personality Inventory) examination twice or more at JAIST. Students do not have to meet (4) if their Japanese is not fluent enough to take the SPI exam but they obtain an approval from a professor in charge of career assessment upon their supervisor's request.

# 6.4 Continuing on to the doctoral program

Students must read the Institute-wide Study Guide, the section IX.2.

## 6.5 Teaching certificate

See the section IX.4 in the Japanese-language version of the Institute-wide Study Guide.

# 7 Research supervision and schedule for completion of the master's program

The information given below is primarily intended for students who enrolled in April. Students enrolled in October should also follow it, shifting the scheudle by 6 months. We have described the schedule for the M program as standard; for those who are in the  $M\alpha$  program or intending to complete the program in a shorter time, please calculate the deadlines for each milestone.

## 7.1 Laboratory assignment

See the Institute-wide Study Guide, the section VII.1. Students are to submit their placement preference application in June after laboratory introduction and laboratory visit in May of their 1st year. Then, they will be formally assigned to laboratories. First-year students will be informed of the formal assignment procedure at the student orientation shortly after enrolling at JAIST.

## 7.2 Major research project (Seminar in Information Science A)

- (1) Students must submit a research proposal for a master's thesis or a research project after getting approval from their 3 advisors to Kyoumu by the deadline (roughly 1 year prior to completion of the program); see the table in the section 4.4.1 for details. For example, students enrolled in the M program in April must submit their proposals before the end of March in their 1st year.
- (2) Requirements for submitting a research proposal
  - i) A minor research project (Research in Information Science A) must have been completed.
  - ii) 10 credits (5 courses) or more from the Basic courses in 4 areas must have been obtained.
  - iii) 12 credits (6 courses) or more from the IS school courses must have been obtained.
  - iv) The content of the proposals must be acceptable.
  - v) Students are required to decide whether they will conduct a master's thesis or a research project in consultation with their supervisor before they submit a research proposal.

## (3) Beginning of a research

i) Master's thesis

Students can formally begin their major research project just after their research proposal is accepted and approved by their 3 advisors.

ii) Research Project

Students can formally begin their major research project after they satisfy the following conditions; a) All 3 advisors accepted and approved their research proposal, b) 6 credits or more have been obtained in addition to 12 credits or more of the IS school courses (see 4.2.(2)iii) Note that up to 6 credits (3 courses) from the Introductory courses can be counted in the 18 credits.

- (4) Students are supposed to take 1 year or more to complete a master's thesis and 7 months or more to complete a research project. Therefore, if they don't submit their research proposal by the specified deadline, they will not complete the M program in 2 years (see the section 4.4.1).
- (5) A mid-term examination of master's thesis and a research project proposal Students must present their latest progress and results of their master's thesis or research project at the beginning of September in their 2nd year at the mid-term examination. Students who conduct research project (not a master's thesis) must have obtained 18 credits (9 courses) from the IS school courses by the end of August in their 2nd year before the mid-term examination.
- (6) Change from a master's thesis to a research project After submission of a research proposal for a master's thesis, students who wish to change it to a research project can do so if they have obtained 18 credits (9 courses) from the IS school courses. Please note that it will take 7 months or more to complete a research project after the change. Students who wish to change must contact Kyoumu.

#### 7.3 Minor research project (Research in Information Science A)

- (1) A minor research project must be conducted under the supervision of an advisor whose area is outside students' major area. The aim to conduct the project is to enable students to acquire fundamental concepts, knowledge, and abilities in an area outside their major area. Students should conduct a minor research project with one or a combination of the following research methods: theory, interpretation or analysis of data, surveys, or experiments.
- (2) Students enrolled in April must start their minor research project by early December in their 1st year after they have been assigned to their advisor for Minor Research Project around July. The duration of the project is assumed to be approximately 2 months, and must be completed by the end of January in their 1st year. Students enrolled in October operate on a scale of 6 months behind those who entered in April.
- (3) Students must submit a research theme to Kyoumu within 1 month of starting their research after consultation with their advisor for Minor Research Project. Note that students must obtain at least 4 credits (2 courses) from the IS school courses before they begin their minor research project.

#### 7.4 Conferment of degree

See the Institute-wide Student Guide, the section VIII.1 for details.

#### 7.4.1 Schedule toward degree completion

|                                              |                                    | March<br>Completion                                                                                                                                                                                                                                                                                                                   | June<br>Completion                            | September<br>Completion                               | December<br>Completion                               |
|----------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| Minor Research Project                       |                                    | <ul> <li>Before starting a project, students must obtain at least 4 credits (2 courses) from IS school courses.</li> <li>After assigned to the advisor (in July), students must begin by early December in their 1st year.</li> <li>The project should be done in about 2 months, by the end of January in their 1st year.</li> </ul> |                                               |                                                       |                                                      |
| A. for<br>Research Submission<br>Proposal on |                                    | <ul> <li>Completion of a minor research project.</li> <li>At least 12 credits (6 courses). There are different requirements for<br/>the students in the Fostering Talent Program. Refer to the degree<br/>guide in Japanese for details.</li> <li>The content for the proposal is approved by 3 advisors.</li> </ul>                  |                                               |                                                       |                                                      |
| Master's<br>Thesis                           | Submission<br>Period               | By the end of<br>March of the<br>previous year                                                                                                                                                                                                                                                                                        | By the end of<br>June of the<br>previous year | By the end of<br>September of<br>the previous<br>year | By the end of<br>December of<br>the previous<br>year |
| B.                                           | Prerequisites<br>for<br>Submission | <ul> <li>Completion of a minor research project.</li> <li>At least 12 credits (6 courses). There are different requirements for students in Fostering Talent Program. Refer to the degree guide in Japanese for details.</li> <li>The content for the proposal is approved by 3 advisors.</li> </ul>                                  |                                               |                                                       |                                                      |
| Research<br>Proposal on<br>Project<br>Report | Submission<br>Period               | By the end of<br>March of the<br>previous year                                                                                                                                                                                                                                                                                        | By the end of<br>June of the<br>previous year | By the end of<br>September of<br>the previous<br>year | By the end of<br>December of the<br>previous year    |
| Prerequisite to<br>Start Project             |                                    | • At least 18 credits (9 courses). There are different requirements for students in Fostering Talent Program. Refer to the degree guide in Japanese for details.                                                                                                                                                                      |                                               |                                                       |                                                      |
| Application for Degree<br>and Defense        |                                    | End of January                                                                                                                                                                                                                                                                                                                        | End of April                                  | End of June                                           | End of October                                       |
| Submission of Thesis or<br>Report            |                                    | Early February                                                                                                                                                                                                                                                                                                                        | Mid-May                                       | Mid-August                                            | Mid-<br>November                                     |
| Thesis or Report Defense                     |                                    | Mid-February                                                                                                                                                                                                                                                                                                                          | Late May                                      | Late August                                           | Late November                                        |
| Conferment of Degree                         |                                    | March                                                                                                                                                                                                                                                                                                                                 | June                                          | September                                             | December                                             |

## 7.5 Standard schedule for M program students enrolled in April



# 8 Recommended courses for laboratory

Students should check the table below to prepare for their study and plan their research. After being assigned to a laboratory, students are strongly encouraged to consult with their supervisor and discuss about their study plans.

| Area                      | Field                                       | Instructor                       | Recommended Courses                                                                                                                             |
|---------------------------|---------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Mathematical<br>Logic                       | ISHIHARA,<br>Hajime              | Required Knowledge Equivalent to: 1118 and<br>1120<br>Strongly Recommended Courses: 1211<br>Recommended Courses: 1413                           |
|                           | Theory of<br>Algorithms                     | UEHARA, Ryuuhei                  | Required Knowledge Equivalent to: I111 and<br>I118<br>Recommended Course: I431                                                                  |
| Theoretical               | Systems Science                             | HIRAISHI,<br>Kunihiko            | Required Knowledge Equivalent to: I118<br>Recommended Courses: I211, I214, and I432                                                             |
| Information<br>Science    | Information                                 | MIYAJI, Atsuko                   | Required Knowledge Equivalent to: I111,<br>I116, and I119<br>Required Courses: I216, I465, I465S, I466S<br>and I471S<br>Recommended Course:I232 |
|                           | Security                                    | OMOTE,<br>Kazumasa               | Required Knowledge Equivalent to: I111,<br>I116, and I119<br>Recommended Courses: I216, I455 or I465                                            |
|                           |                                             | SOMEMURA, Yo                     | Recommended Course: 1466                                                                                                                        |
| Human                     | Biological<br>Information<br>Processing     | TANAKA, Hirokazu                 | Required Knowledge Equivalent to: I114,<br>I116, and I119<br>Recommended Courses: I212 and I213                                                 |
|                           | Acoustic<br>Information<br>Processing       | AKAGI, Masato                    | Required Knowledge Equivalent to: I114 and<br>I119<br>Strongly Recommended Courses: I212 or<br>I213<br>Recommended Courses: I225 and I439       |
|                           |                                             | UNOKI, Masashi                   | Required Knowledge Equivalent to: I114,<br>I116, and I119<br>Recommended Courses:I212, I213, I225,<br>I439 and I645                             |
| Information<br>Processing | Image<br>Information                        | KOTANI, Kazunori                 | Required Knowledge Equivalent to: I114,<br>I116, and I119<br>Recommended Courses: I212, I213,<br>I225, I411, and I419                           |
|                           | Processing                                  | YOSHITAKA,<br>Atsuo              | Recommended Courses: 1212, 1213, 1411, 1419, and 1439                                                                                           |
|                           | Robotics                                    | CHONG,<br>Nak-Young              | Required Knowledge Equivalent to: I114,<br>I116, and I118<br>Recommended Courses: I212, I213, and I226                                          |
|                           |                                             | ASANO, Fumihiko                  | Required Knowledge Equivalent to: 1114<br>Recommended Courses: 1212, 1213 and 1427                                                              |
|                           | Computational<br>Engineering and<br>Science | MAEZONO, Ryo                     | Required Knowledge Equivalent to: I114<br>Recommended Courses: I212                                                                             |
| Artificial                | Natural<br>Language<br>Processing           | SHIRAI, Kiyoaki                  | Required Knowledge Equivalent to: I118<br>Recommended Lectures: I223, and I414                                                                  |
| Intelligence              | Knowledge<br>Engineering                    | TOJO, Satoshi<br>NGUYEN, Minh Le | Recommended Courses: 1236                                                                                                                       |

|                     | Entortoinmont                | IIDA, HiroyukiRequired Knowledge Equivalent to: 11<br>Recommended Course: 1235 |                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Informatics                  | IKEDA, Kokolo                                                                  | Required Knowledge Equivalent to: I111, I119<br>and I120<br>Recommended Courses: I214 and I225                                                                                                                                                                                                                                                    |
|                     |                              | HASEGAWA,<br>Shinobu                                                           | Recommended Courses: 1214 and 1235<br>Recommended Courses:1223, 1235 or 1236,<br>and 1448                                                                                                                                                                                                                                                         |
|                     |                              | INOGUCHI,<br>Yasushi                                                           | Required Knowledge Equivalent to: I115<br>and I116<br>Recommended Courses: I218 and I111                                                                                                                                                                                                                                                          |
|                     | Architecture                 | TANAKA, Kiyofumi                                                               | Required Knowledge Equivalent to:<br>1115 and 1116<br>Required Course: 1218<br>Recommended Courses: 1111, 1118, and 1233                                                                                                                                                                                                                          |
|                     | Integrated<br>Systems        | KANEKO, Mineo                                                                  | Required Knowledge Equivalent to: 1115<br>Recommended Courses: 1214, 1438, and 1620                                                                                                                                                                                                                                                               |
| Computer<br>Systems |                              | TAN, Yasuo                                                                     | Recommended Courses: I226, I233, I218, I214 and I450                                                                                                                                                                                                                                                                                              |
| and                 |                              | SHINODA, Yoichi                                                                |                                                                                                                                                                                                                                                                                                                                                   |
| Networks            | Information<br>Networks      | LIM, Yuto                                                                      | Recommended Courses: 1232, 1214,                                                                                                                                                                                                                                                                                                                  |
|                     | Networks                     | CHINEN, Ken-ichi                                                               | Required Knowledge Equivalent to: 1115 and<br>1116<br>Required Course: 1218<br>Recommended Courses: 1111, 1118, and 1233                                                                                                                                                                                                                          |
|                     | Ubiquitous<br>Communications | MATSUMOTO,                                                                     |                                                                                                                                                                                                                                                                                                                                                   |
|                     |                              | KURKOSKI, Brian                                                                |                                                                                                                                                                                                                                                                                                                                                   |
|                     | Software<br>Structure        | SUZUKI, Masato                                                                 | Recommended Courses (before<br>laboratory assignment): I234 and I219<br>Recommended Courses (after laboratory<br>assignment): I442 or I435                                                                                                                                                                                                        |
|                     | Formal Methods               | OGATA, Kazuhiro                                                                |                                                                                                                                                                                                                                                                                                                                                   |
|                     | Development                  | AOKI, Toshiaki                                                                 |                                                                                                                                                                                                                                                                                                                                                   |
|                     | Software<br>Verification     | OGAWA, Mizuhito                                                                | Required Knowledge Equivalent to: 1118<br>Recommended Courses: 1211<br>Recommended Courses (depending on major<br>research project): 1216, 1217, 1443, 1447,<br>1613, and 1654                                                                                                                                                                    |
| Software<br>Science |                              | HIROKAWA, Nao                                                                  | Required Knowledge Equivalent to: 1111 and<br>1118<br>Strongly Recommended Courses: 1217<br>Recommended Courses: 1211, 1216, 1413,<br>and 1654                                                                                                                                                                                                    |
|                     |                              | TERAUCHI, Tachio                                                               |                                                                                                                                                                                                                                                                                                                                                   |
|                     | Dependable<br>Systems        | DEFAGO, Xavier                                                                 | Required Knowledge Equivalent to:<br>Introductory Courses<br>Basic Courses (three or four courses from<br>1233, 1219, 1226, and 1211)<br>Strongly Recommended Technical Courses: in<br>order of 1445, 1435, and 1442<br>Recommended Courses (depending on major<br>research project): in order of 1446, 1440,<br>1441, 1431, 1432, 1218, and 1217 |

# 9 Doctoral program

The doctoral program is aimed at fostering highly advanced engineers and researchers in advanced information science. A Ph.D. in Information Science is conferred on completion.

Doctoral students are encouraged to engage in off-campus research activities at other universities, research institutes or corporations either in or outside Japan, and an internship at companies either in or outside Japan. These activities are strongly recommended for students in the 3D/5D programs and necessary for those in the SD program.

# 9.1 Choices in doctoral programs

There are two categories students must pay attention to:

- (1) Educational programs: There are the 5D and the SD programs, which offer consecutive five or four-year doctoral education through the master's program and the doctoral program and the 3D program, which is a standard three-year doctoral program. Scholarship is available for students who have high academic achievement. For more information regarding scholarship, refer to the JAIST webpage.
- (2) Career track choice: Students must choose one of two tracks; type E (for students who plan on becoming an engineer in business enterprise) or type S (for students who plan on becoming a researcher in advanced information science) about 3 months after enrollment. Although there is no official difference between Type E and Type S in terms of JAIST degree requirements and supports, students are expected to take this opportunity to consult their supervisors about their future career plan.

# 9.2 Completion requirements for doctoral degree

# 9.2.1 Completion requirements

See the Institute-wide Study Guide, the section VI.1.2.

# 9.2.2 Course requirements and credit transfer

Regarding the section VI.1.2 (2) in the Institute-wide Study Guide, follow the instructions below. Check the Institute-wide Study Guide for information regarding taking the IGE courses, courses from other schools in JAIST or ones at other institutes.

Students are required to obtain at least 20 credits from the IS school courses. The followings are the details:

- (1) 6 credits from I601 Advanced Seminar in Information Science B, and 4 credits from either I602 Advanced Research in Information Science B1 or I603 Advanced Research in Information Science B2
- (2) 10 credits (5 courses) or more from the IS school courses in 3 areas excluding the Introductory courses. The credits earned in the master's program cannot be recognized to fullfill requirements in the doctoral program except for (3) below.
- (3) Credit transfer

Check the Institute-wide Study Guide, the section VI.6. Credits up to a maximum of 8 of the credits exceeding 10 credits earned from 5 Basic courses in 4 areas of the IS school courses except for the Introductory courses in the master's program can be recognized as credits earned in the doctoral program upon the faculty approval. Students who wish to apply for credit transfer must apply to the dean within 2 weeks after enrollment in the doctoral program at JAIST. The credits obtained at other universities, if the content of courses meets more than 80% in terms of knowledge units, can be treated similarly.

# 10 Research supervision and schedule for completion of the doctoral

# program

The information given below is primarily intended for students enrolled in April. It can also be applied correspondingly to students enrolled in October, shifting the schedule by 6 months. We have described the schedule to complete the doctoral program as in 3 years; for those who are in the 5D or SD programs or who intending to complete the program in a shorter time, please calculate the deadlines for each milestone.

# 10.1 Laboratory assignment

See the Institute-wide Study Guide, the section VII.1.1.2.

# 10.2 Major research project (Advanced Seminar in Information Science B)

- (1) Submission of a research proposal
  - A research proposal for a doctoral dissertation must be submitted to Kyoumu within 1 year after enrollment in the doctoral program. It must be approved by their 3 advisors (a supervisor, second supervisor, and an advisor for Minor Research Project/Internship) before submission.
- (2) Students can formally begin their major research project after the 3 advisors' acceptance of the research proposal.

# 10.3 Minor research project (Advanced Research in Information Science B1)

- (1) A minor research project must be a research selected from a neighboring or related to their major research field. Students must conduct a minor research project that will be useful to their major research project. They must receive guidance from a faculty member outside the field they belong to (including other areas).
- (2) An advisor for Minor Research Project must be decided when students submit their research proposal for a major research project.
- (3) A minor research project (approximately 6 months in duration) must be completed before submitting a doctoral dissertation.
- (4) Each student must submit a research title and the name of their advisor for Minor Research Project to Kyoumu before conducting a minor research project.

# 10.4 Internship (Advanced Research in Information Science B2)

- (1) Internships are conducted at companies etc. for a period longer than 3 months.
- (2) Students who wish to apply for an internship must find a faculty member who will assume the role of an advisor for Internship in consultation with their supervisor.
- (3) The internship and the submission of a report must be completed before submitting a doctoral dissertation outline. Students must attach an evaluation from the company with the report and submit them to their advisor for Internship.
- (4) Students who wish to apply for an internship must follow prescribed procedures at the Career Support Section when they start their internship.

## 10.5 Grant for off-campus research and internship

Students are encouraged to carry out research at other universities, research institutions and companies in Japan or abroad, or to do an internship at companies. These activities are necessary to complete the SD program. For detailed information regarding financial support for these, see *HANDBOOK for Students*. When an off-campus activity is approved as a minor research project, students may earn credits for 1602 Advanced Research in Information Science B1. When an off-campus activities are regarded as a part of Advanced Research in Information Science B2. Other activities are regarded as a part of Advanced Seminar in Information Science B. An application form must be submitted at least two months before the start of these activities. See the section VII.4 in the Institute-wide Study Guide for the necessary procedures.

# 10.6 Conferment of degree

See the Institute-wide Study Guide, the section VIII.2.

| · · · · · · · · · · · · · · · · · · ·                    |                                       | 0                                                                            |                         | ,                      |
|----------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|-------------------------|------------------------|
|                                                          | March<br>Completion                   | June<br>Completion                                                           | September<br>Completion | December<br>Completion |
| Research proposal                                        | Must be submitted (within 6 months fo | vithin 1 year after enrolling in the doctoral progran r SD program students) |                         |                        |
| Minor research project or internship                     | Must be completed                     | before submissior                                                            | n of a dissertation     | outline                |
| Dissertation outline*                                    | By early July of the previous year    | By early<br>October of the<br>previous year                                  | By early<br>January     | By early April         |
| Application for<br>preliminary defense                   | Early October of the previous year    | Early January                                                                | Early April             | Early July             |
| Preliminary defense                                      | December of the<br>previous year      | March                                                                        | June                    | September              |
| Application for degree                                   | Early January                         | Early April                                                                  | Early July              | Early October          |
| Formal hearing,<br>oral defense, and fnal<br>examination | Early February                        | Early May                                                                    | Early August            | Early November         |
| Conferment of degree                                     | March                                 | June                                                                         | September               | December               |

10.6.1 Schedule by completion time

\* Students can shorten the program period for completion by submitting an outline earlier than the planned.

#### 10.6.2 Schedule toward degree conferment

The following table is a standard timeline for the doctoral students who enrolled in April intending to complete in 3 years.

| Category                                                                          | Submit to                                                                                                                            | Period                                                                                                      |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Research proposal                                                                 | Kyoumu                                                                                                                               | By the end of March in the 1st year                                                                         |
| Minor research project or<br>internship                                           | Their advisor's name and a title of the<br>project must be submitted to Kyoumu.<br>Their advisor's name for Internship to<br>Kyoumu. | By the end of March in<br>their 1st year<br>(must be done before the<br>dissertation<br>outline submission) |
| Dissertation outline                                                              | Kyoumu                                                                                                                               | By early July in their 3rd<br>year                                                                          |
| Application for<br>preliminary defense                                            | Kyoumu<br>(dissertation and main publication titles)                                                                                 | Early October                                                                                               |
| Dissertation Draft                                                                | Should be distributed to 5 or more<br>members of the Doctoral Dissertation<br>Preliminary Examination Committee                      | At least 2 weeks before the preliminary defense                                                             |
| Preliminary defense                                                               |                                                                                                                                      | December                                                                                                    |
| Application for<br>conferment of degree,<br>doctoral dissertation<br>and abstract | Kyoumu<br>After a successful preliminary defense                                                                                     | Early January                                                                                               |
| Selection of members for<br>doctoral dissertation<br>examination committee        |                                                                                                                                      | January                                                                                                     |
| Formal hearing, oral defense,<br>and final examination                            |                                                                                                                                      | Early February                                                                                              |

| Decision results on<br>conferment of degree |                                                                              | February                     |
|---------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Dissertation<br>abstract                    | Kyoumu (formatted as instructed by JAIST)<br>After a successful oral defense | By the degree conferment day |
| Conferment of degree                        |                                                                              | Late March                   |

# **11 Courses at other graduate institutions** See the Institute-wide Study Guide, the section VI.7.

**School of Materials Science** 

# **School of Materials Science**

# 1 Outline of the school

Progress in science and technology requires us to build upon conventional science and technology through new and original research. With this in mind, the school has integrated physics, chemistry, biology, and computer science into the curriculum, and offers comprehensive research and education ranging from basic to applied science. We conduct advanced research to produce new science and technologies that will play leading roles in the coming era by utilizing nanotechnology, which enables us to observe and control materials at the atomic and molecular scales.

The school focuses on three areas.

#### ♦ Materials Characterization and Devices (Physics-oriented)

This area focuses on the characterization of atomic and molecular structures and the electronic state of materials, the analysis of properties created by such structures and states, and the training of individuals capable of contributing to the development of new materials and devices.

#### ♦ New Materials Design and Synthesis (Chemistry-oriented)

This area focuses on the systematic characterization of chemical compositions and material structures, clarification of the functionality of materials for the rational design of new functions, and the training of individuals capable of contributing to the creation of new functional materials on the basis of design at the atomic and molecular levels.

#### ♦ Biofunction and Organization (Biology-oriented)

This area focuses on the characterization of the dynamic structure of biomolecules, the systematic understanding of the principles of biological functionality, and the training of individuals capable of contributing to the construction and control of novel functional biomaterials for innovative technological applications through the modulation of function.

Dean: Professor Toshifumi Tsukahara

#### Number of students

|                                 | Master's program | Doctoral program |
|---------------------------------|------------------|------------------|
| Department of Materials Science | 120              | 35               |

# 2 Faculty profiles

#### ♦ School of Materials Science

| Name                       | Position                        | Specialization                                                                                                |
|----------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------|
| Materials Characterizatio  | n and Device                    |                                                                                                               |
| SHIMODA, Tatsuya           | Professor                       | Micro-liquid Process, Soft Material Device                                                                    |
| TOMITORI, Masahiko         | Professor                       | Surface Science                                                                                               |
| MIZUTANI, Goro             | Professor                       | Surface Science, Nonlinear Optics                                                                             |
| MURATA, Hideyuki           | Professor                       | Organic Optoelectronic Devices                                                                                |
| MIZUTA, Hiroshi            | Professor                       | Nanoelectronics, NEMS, Atom-scale devices                                                                     |
| OZAKI, Taisuke             | Visiting Professor              | Computational Solid State Physics, Computational Chemistry                                                    |
| Koyano, Mikio              | Associate Professor             | Solid State Theory                                                                                            |
| HORITA, Susumu             | Associate Professor             | Electron Device, Crystal Growth of Thin Film                                                                  |
| TAKAMURA, Yukiko           | Associate Professor             | Surface/Interface Engineering, Film Growth                                                                    |
| OSHIMA, Yoshifumi          | Associate Professor             | Surface/Interface Physics, Electron Microscopy                                                                |
| AN, Toshu                  | Associate Professor             | Nanosurface Science, Spin Science                                                                             |
| HIRJIBEHEDIN, Cyrus Farokh | Visiting<br>Associate Professor | Condensed Matter Physics, Surface Science                                                                     |
| SAKAI, Heisuke             | Assistant Professor             | Organic memory devices, Organic sensor devices                                                                |
| SASAHARA, Akira            | Assistant Professor             | Surface Science                                                                                               |
| FLEURENCE, Antoine         | Assistant Professor             | Inorganic Thin Film Growth, Surface Science                                                                   |
| MASUDA, Takashi            | Assistant Professor             | Solution processes, Interface Science                                                                         |
| MURUGANATHAN,<br>Manoharan | Assistant Professor             | Nanodevices, NEMS, RF devices                                                                                 |
| KHUAT, Hien Thi Thu        | Assistant Professor             | Sum frequency generation, second harmonic generation spectroscopy and microscopy. Surface sciences.           |
| New Materials Design and   | d Synthesis                     |                                                                                                               |
| EBITANI, Kohki             | Professor                       | Chemistry of Heterogeneous Catalysts, Design of Functionalized Catalyst Surface, Nano<br>Materials Technology |
| TERANO, Minoru             | Professor                       | Polymers (Organic Materials), Catalytic Chemistry                                                             |
| YAMAGUCHI, Masayuki        | Professor                       | Polymer Physics, Rheology                                                                                     |
| MATSUMI, Noriyoshi         | Professor                       | Polymer Synthesis, Functional Polymers                                                                        |
| MAENOSONO, Shinya          | Professor                       | Functional Materials Chemistry, Colloid Chemistry, Chemical Engineering                                       |
| MIYAKE, Mikio              | Visiting Professor              | Preparation and Characterization of Functional Cluster Materials                                              |
| SANKAR, Gopinathan         | Visiting Professor              | Materials Chemistry, Catalyst Chemistry                                                                       |
| NGUYEN, Thanh Thi Kim      | Visiting Professor              | Nanomaterials Chemistry, Nanomagnetic Medicine                                                                |
| KANEKO, Tatsuo             | Associate Professor             | Polymer Chemistry, Liquid Crystal Science, Eco-materials                                                      |
| SHINOHARA, Ken-ichi        | Associate Professor             | Polymer Chemistry, Functional Polymer Synthesis, Single-Molecules Imaging                                     |
| MATSUMURA, Kazuaki         | Associate Professor             | Polymer science, biomaterial, tissue engineering                                                              |
| NAGAO, Yuki                | Associate Professor             | Protonics, Solid State Chemistry, Polymer Chemistry, Coordination Chemistry                                   |
| TANIIKE, Toshiaki          | Associate Professor             | Computational Science, Catalystic Science, Surface Science                                                    |
| TATEYAMA, Seiji            | Research Lecturer               | Organosilicon Chemistry, Organic Chemistry                                                                    |
| NISHIMURA, Shun            | Assistant Professor             | Catalyst chemistry                                                                                            |
| NOBUKAWA, Shogo            | Assistant Professor             | Polymer property, Dielectric property, Rheology                                                               |
| VEDARAJAN, Raman           | Assistant Professor             | Electrochemistry, Energy Devices, Electrochemical Sensors                                                     |
| MOTT, Derrick Michael      | Assistant Professor             | Nanotechnology and materials synthesis and characterization                                                   |
| OKEYOSHI, Kosuke           | Assistant Professor             | Polymer chemstry, Photochemistry, Soft matter                                                                 |
| CHAMMINGKWAN, Patchanee    | Assistant Professor             | Catalytic Chemistry, Polyolefin                                                                               |

| Biofunction and Organization |                                 |                                                                         |  |
|------------------------------|---------------------------------|-------------------------------------------------------------------------|--|
| TAKAGI, Masahiro             | Professor                       | Biotechnology, Synthetic Biology                                        |  |
| FUJIMOTO, Kenzo              | Professor                       | Bioorganic Chemistry                                                    |  |
| HOHSAKA, Takahiro            | Professor                       | Advanced Genetic Engineering, Biomacromolecular Science                 |  |
| TAKAMURA, Yuzuru             | Professor                       | Microfabrication Process, Integrated Bioscience System                  |  |
| TSUKAHARA, Toshifumi         | Professor                       | Molecular Biology, RNA Analysis, RNA Engineering                        |  |
| TSUTSUI, Hidekazu            | Associate Professor             | Soft matter physics Biophysics Physical chemistry                       |  |
| HIRATSUKA, Yuichi            | Associate Professor             | Molecular robotics, Nanobiotechnology, Biophysics, MEMS                 |  |
| HAMADA, Tsutomu              | Associate Professor             | Soft Matter Physics, Biological Physics, Artificial Cell                |  |
| SHIMOKAWA, Naofumi           | Assistant Professor             | Soft matter physics, Biophysics, Physical chemistry                     |  |
| SAKAMOTO, Takashi            | Assistant Professor             | Biochemistry, Nucleic Acid Chemistry, Genome Chemistry                  |  |
| ODA, Kazushi                 | Assistant Professor             | Molecular Biology, Biophysics                                           |  |
| MIZUKAMI, Taku               | Assistant Professor             | Biophysics, Photobiology, Scientific Computation, Data Mining           |  |
| WATANABE, Takayoshi          | Assistant Professor             | Chemical Biology, Protein Engineering                                   |  |
| NAGAI, Ken                   | Assistant Professor             | Nonlinear physics, Nonequilibrium physics                               |  |
| PHAN, Tue Trong              | Assistant Professor             | Electronic materials and devices, solution process, printed electronics |  |
| SUZUKI, Hitoshi              | Research<br>Assistant Professor | Molecular Biology, Biochemistry                                         |  |

# ♦ Chairs operated jointly with research institutes and/or companies

| Name                                                                                                                                                | Position                        | Specialization                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Thermo-electric Convers                                                                                                                             | ion (ICU)                       | ·                                                                                                         |  |
| OKANO, Ken                                                                                                                                          | Visiting Professor              | Semiconductor Physics, Photoelectric Devices                                                              |  |
| Stress Signal Research (                                                                                                                            | National Institute of Advance   | d Industrial Science and Technology)                                                                      |  |
| YOSHIDA, Yasukazu                                                                                                                                   | Visiting Professor              | Bio-organic Chemistry                                                                                     |  |
| NAGAI, Hidenori                                                                                                                                     | Visiting<br>Associate Professor | Nano-micro Science                                                                                        |  |
| Computing in Materials S                                                                                                                            | cience (Institute of Science    | e and Engineering, Kanazawa University)                                                                   |  |
| NAGAO, Hidemi                                                                                                                                       | Visiting Professor              | Computqational Bioscience                                                                                 |  |
| SAITO, Mineo                                                                                                                                        | Visiting Professor              | Computational Materials Physics                                                                           |  |
| Nanotechnology Chair Cooperated with Vietnam (Vietnam National University, Hanoi)                                                                   |                                 |                                                                                                           |  |
| PHAM, Viet Hung                                                                                                                                     | Visiting Professor              | Environmental Analytical Chemistry, Instrumental Analysis Devices, Sensors<br>Development and Application |  |
| NGUYEN, Tuan Anh                                                                                                                                    | Visiting<br>Associate Professor | Computational design of molecular magnet                                                                  |  |
| Nanoimaging Physics (In                                                                                                                             | stitute of Science and Engine   | eering, Kanazawa University)                                                                              |  |
| ARAI, Toyoko                                                                                                                                        | Visiting Professor              | Surface Science, Nanophysics                                                                              |  |
| Materials and Devices for Renewable Energy<br>(Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology) |                                 |                                                                                                           |  |
| KONDO, Michio                                                                                                                                       | Visiting Professor              | Semiconductor Engineering, Plasma Process Engineering, Photovoltaics                                      |  |
| MASUDA, Atsushi                                                                                                                                     | Visiting Professor              | Photovoltaics, Thin-film Electronic Materials                                                             |  |
| Nano-Devices (University of Southampton)                                                                                                            |                                 |                                                                                                           |  |
| CHONG, Harold Meng Hoon                                                                                                                             | Visiting<br>Associate Professor | Nanoelectronics, Nanophotonics                                                                            |  |
| Aroma Science (Takasago                                                                                                                             | International Corporation)      |                                                                                                           |  |
| TSUJINO, Yoshio                                                                                                                                     | Visiting Professor              | Cosmetic Science                                                                                          |  |
| HOSHINO, Kunihide                                                                                                                                   | Visiting<br>Associate Professor | Aromascience                                                                                              |  |

| Nano-analysis research by synchrotron (Japan Synchrotron Radiation Research Institute)                  |                                                                                        |                                                    |  |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|--|
|                                                                                                         |                                                                                        |                                                    |  |
| A course for solution-based Si nano-device study (Delft University of Technology)                       |                                                                                        |                                                    |  |
| ISHIHARA, Ryoichi                                                                                       | Visiting Professor Thin Film Transistors, Semiconductor Properties, Electronic Devices |                                                    |  |
| Ultra-fine patterning by a focused ion beam (Hitachi High-Tech Science Corporation)                     |                                                                                        |                                                    |  |
| YASAKA, Anto                                                                                            | Visiting Professor                                                                     | Charged Particle Beam Technology, Nano Fabrication |  |
| Applied Process Chemical Science for Green Synthesis (Department of Chemistry, the University of Delhi) |                                                                                        |                                                    |  |
| RAWAT, Diwan S                                                                                          | Visiting Professor                                                                     | Chemical Organic Synthesis                         |  |

#### Center for Nano Materials and Technology

| Name                            | Position            | Specialization                                                                            |
|---------------------------------|---------------------|-------------------------------------------------------------------------------------------|
| OHKI, Shin-ya <sup>*3</sup>     | Professor           | Protein NMR, Structural Biology, Biophysics                                               |
| IWASAKI, Hideo <sup>*1</sup>    | Professor           | Low Temperature Physics                                                                   |
| SUZUKI, Toshikazu <sup>*1</sup> | Professor           | Semiconductor Device, Crystal Growth                                                      |
| YAMADA, Syoji*1                 | Visiting Professor  | Quantum Electron Property of Compound Semiconductors and Composite Hyperfine<br>Structure |
| AKABORI, Masashi <sup>*1</sup>  | Associate Professor | Semiconductor Nanostructures, Semiconductor Spintronics                                   |
| OSAKA, Issey <sup>*3</sup>      | Lecturer            | Mass spectrometry, Proteomics, Chromatography                                             |
| SHIMAHARA, Hideto <sup>*3</sup> | Assistant Professor | Biocatalytic Science, NMR Structural Biology, Biomolecular Quantum Chemsitry              |
| UMETSU, Yoshitaka <sup>*3</sup> | Assistant Professor | Structural Biology, Biophysics, Protein Science                                           |

#### ♦ Green Devices Research Center

| Name                            | Position                        | Specialization                                                                      |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------|
| TOKUMITSU, Eisuke <sup>*1</sup> | Professor                       | Solid State Electronics, Semiconductor Devices, Electronic Materials, Green Devices |
| INOUE, Satoshi <sup>*1</sup>    | Research Professor              | Device Physics, Electronic Devices, Semiconductor Devices, Display Devices          |
| OHDAIRA, Keisuke <sup>*1</sup>  | Associate Professor             | Solar Cells, Semiconductor Engineering, Thin Film Formation                         |
| BIYANI, Manish <sup>*3</sup>    | Research<br>Associate Professor | Biomaterials design, Hybrid Bio-nano devices, Peptasensors                          |
| HAGA, Kenichi <sup>*1</sup>     | Assistant Professor             | Electronic Devices, Oxide Materials                                                 |

\*1 The member belongs to the area of the Materials Characterization and Device.
\*2 The member belongs to the area of the New Materials Design and Synthesis.
\*3 The member belongs to the area of the Biofunction and Organization.

# 3 Class schedule for 2015-2016

|      |                                                                                                                                                                                                        | Term 1-1 (Ap                                                                                                                                                                                           | ori                          | 18 – 1                                                         | June 5)                                                                                                                                                                                                                       | Schoo                                          | of Materials Science                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 1                                                                                                                                                                                                      | 2                                                                                                                                                                                                      | 3                            |                                                                | 4                                                                                                                                                                                                                             |                                                | 5                                                                                                                                                       |
|      | 9:20-10:50                                                                                                                                                                                             | 11:00-12:30                                                                                                                                                                                            |                              |                                                                | 15:10-16:40                                                                                                                                                                                                                   |                                                | 16:50-18:20                                                                                                                                             |
| Mon. | M221 Organic Chemistry<br>(Matsumi)<br>M245 Mathematics for Condensed<br>Matter Science and Technology<br>(Koyano)<br>M615E Advanced Biofunctions<br>(Takagi•Yuzuru Takamura)                          | M113 Introduction to Bioscience<br>(Takagi•Shimokawa)<br>M231 Bioorganic Chemistry<br>(Fujimoto•Hohsaka)                                                                                               |                              | G212<br>G213E                                                  | Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                                    | L211<br>L212E<br>L214                          | Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science<br>(Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.) |
| Tue. | M111A Introduction to Physics A<br>(Horita)<br>M111B Introduction to Physics B<br>(Mizutani)                                                                                                           | M211 Quantum Mechanics<br>(Murata)<br>M223 Properties of<br>Organic Materials<br>(Nagao)<br>M611E Electronic Structures of<br>Solids and Surfaces<br>(Tomitori•Mizutani•<br>Yukiko Takamura•Fleurence) |                              | E011<br>E111<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1<br>Advanced Technical Japanese 1 | E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1            |
| Wed. | M112 Introduction to Chemistry<br>(Taniike-Matsumura)<br>M251 Chemistry of Catalyst<br>and Catalysis<br>(Ebitani)                                                                                      | M221 Organic Chemistry<br>(Matsumi)<br>M245 Mathematics for Condensed<br>Matter Science and Technology<br>(Koyano)<br>M615E Advanced Biofunctions<br>(Takagi•Yuzuru Takamura)                          | Office Hours (13:30 ~ 15:00) | G212<br>G213E                                                  | Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                                    | L211<br>L212E<br>L214                          | Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science<br>(Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.) |
| Thu. | M113 Introduction to Bioscience<br>(Takagi • Shimokawa)<br>M231 Bioorganic Chemistry<br>(Fujimoto • Hohsaka)                                                                                           | M111A Introduction to Physics A<br>(Horita)<br>M111B Introduction to Physics B<br>(Mizutani)                                                                                                           |                              | E011<br>E111<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1<br>Advanced Technical Japanese 1 | E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1            |
| Fri. | M211 Quantum Mechanics<br>(Murata)<br>M223 Properties of<br>Organic Materials<br>(Nagao)<br>M611E Electronic Structures of<br>Solids and Surfaces<br>(Tomitori•Mizutani•<br>Yukiko Takamura•Fleurence) | M112 Introduction to Chemistry<br>(Taniike•Matsumura)<br>M251 Chemistry of Catalyst<br>and Catalysis<br>(Ebitani)                                                                                      |                              |                                                                |                                                                                                                                                                                                                               |                                                |                                                                                                                                                         |

NOTE:

• The first class of B101 will be held on Wednesday, April 8. The second and subsequent classes of B101 will be held in Term 1-2.

· All lectures except B101 in this term will start on Thursday, April 9 and the day will follow the WEDNESDAY schedule.

• Friday, June 5 will follow the MONDAY schedule.

| _      |       |                      |                                                                                                                                         |                      | Territ 1-2 ( Ju                                                                                                                         |                              | 10 -                                                           | August 5 )                                                                                                                                                                                                                 | 501100                                                 | of of Materials Science                                                                                                                                               |
|--------|-------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |       |                      | 1<br>9:20-10:50                                                                                                                         |                      | 2<br>11:00-12:30                                                                                                                        | 3                            |                                                                | 4<br>15:10-16:40                                                                                                                                                                                                           |                                                        | 5<br>16:50-18:20                                                                                                                                                      |
|        | Mon.  | M222<br>M254         | Computational Material<br>Design<br>(Shimoda•Dam)<br>Synthetic Design of<br>Polymers<br>(Kaneko)                                        | M232<br>M618E        | Biofunctional Materials<br>(Hamada)<br>Materials Design<br>(Ebitani•Matsumura•<br>Maenosno)                                             |                              | N008<br>B101<br>G211E                                          | Nano Quantum Device<br>Materials (*)<br>Career Development<br>Basic <b>(Kohda, etc.)</b><br>Global Communication<br>for Collaboration Building<br><b>(Kawanishi)</b>                                                       | N008<br>B101                                           | Nano Quantum Device<br>Materials (*)<br>Career Development<br>Basic <b>(Kohda, etc.)</b>                                                                              |
|        | Iue.  | M213<br>M261<br>M421 | Electromagnetic Theory<br>(Tomitori)<br>Functional Biomolecules<br>(Tsutsui)<br>Electronics<br>(T.Suzuki)                               | M243<br>M423         | Solid State Physics I<br>(Yukiko Takamura)<br>Functional Protein Device<br>(Hiratsuka)                                                  |                              | N006<br>E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412 | Nano IT Materials (*)<br>Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2 | N006<br>E021<br>E113<br>E212<br>E412<br>J012B<br>J112B | Nano IT Materials (*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2 |
| 14/2-1 | wea.  | M415<br>M224<br>E413 | Medical Biomaterials<br>(Tsukahara•H. Suzuki)<br>Inorganic Materials<br>Chemistry<br>(Maenosono)<br>Scientific Discussions 2<br>(Blake) | M222<br>M254         | Computational Material<br>Design<br>(Shimoda•Dam)<br>Synthetic Design of<br>Polymers<br>(Kaneko)                                        | Office Hours (13:30 ~ 15:00) | N007<br>G211E                                                  | Nano Biodevice Materials (*)<br>Global Communication<br>for Collaboration Building<br>(Kawanishi)                                                                                                                          | N007                                                   | Nano Biodevice Materials (*)                                                                                                                                          |
| Th     | I NU. | M232<br>M618E        | Biofunctional Materials<br>(Hamada)<br>Materials Design<br>(Ebitani • Matsumura •<br>Maenosno)                                          | M213<br>M261<br>M421 | Electromagnetic Theory<br>(Tomitori)<br>Functional Biomolecules<br>(Tsutsui)<br>Electronics<br>(T.Suzuki)                               |                              | E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412         | Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2                          | E021<br>E113<br>E212<br>E412<br>J012B<br>J112B         | Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 2<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2                          |
|        | Fri.  | M243<br>M423         | Solid State Physics I<br>(Yukiko Takamura)<br>Functional Protein Device<br>(Hiratsuka)                                                  | M415<br>M224<br>E413 | Medical Biomaterials<br>(Tsukahara•H. Suzuki)<br>Inorganic Materials<br>Chemistry<br>(Maenosono)<br>Scientific Discussions 2<br>(Blake) |                              |                                                                |                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                       |

# Term 1-2 ( June 10 – August 3 )

School of Materials Science

NOTE:

• \* N00x courses will be offered by the faculty of Center for Nano Materials and Technology and School of Materials Science.

| _    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                              |                                                                        |                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 1<br>9:20-10:50                                                                                                                                                                                                           | 2<br>11:00-12:30                                                                                                                                                                                                          | 3                            |                                                                        | 4<br>15:10-16:40                                                                                                                                                                                                                                                       |                                                        | 5<br>16:50-18:20                                                                                                                                                                                                       |
| Mon  | M413E Extreme Materials<br>(Maenosono•Nagao•<br>Taniike•Mott)<br>M211 Quantum Mechanics<br>(Iwasaki)                                                                                                                      | M262 Biomaterial Sensing<br>(Yuzuru Takamura)<br>M420 Solid State Physics II<br>(Akabori)                                                                                                                                 |                              | N001<br>G212<br>G213E                                                  | Fabrication of Nano-Devices<br>with Training Course(*)<br>Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                   | N001<br>L211E<br>L212<br>L214E                         | Fabrication of Nano-Devices<br>with Training Course(*)<br>Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science (Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.)         |
| Tue. | M225 Structure Analysis<br>of Materials<br>(Shinohara)<br>M245 Mathematics for Condensed<br>Matter Science and Technology<br>(Mizuta)<br>M282E New Materials Design<br>and Synthesis<br>(Yamaguchi-Matsumi-<br>Maenosono) | M212 Statistical Mechanics<br>(Shimoda)<br>M231 Bioorganic Chemistry<br>(Fujimoto•Hohsaka)                                                                                                                                |                              | N002<br>E011<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411         | Study on Nanobiotechnology<br>with Training Course(*)<br>Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1                  | N002<br>E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Study on Nanobiotechnology<br>with Training Course(*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1                  |
| Wed. | M252 Polymer Design<br>(Yamaguchi•Matsumura)<br>M414 Device Physics<br>(Tokumitsu)                                                                                                                                        | M413E Extreme Materials<br>(Maenosono•Nagao•<br>Taniike•Mott)<br>M211 Quantum Mechanics<br>(Iwasaki)                                                                                                                      | Office Hours (13:30 ~ 15:00) | N003<br>G212<br>G213E                                                  | Analysis of Nano Materials<br>with Training Course(*)<br>Writing and Presentation<br>Skills (Tsuji)<br>Japan Studies<br>(Kawanishi)                                                                                                                                    | N003<br>L211E<br>L212<br>L214E                         | Analysis of Nano Materials<br>with Training Course(*)<br>Logic and Mathematics<br>(Preining)<br>History and Philosophy<br>of Science (Mizumoto)<br>A Methodology for<br>Innovation Design<br>(Kunifuji, etc.)          |
| Thu. | M262 Biomaterial Sensing<br>(Yuzuru Takamura)<br>M420 Solid State Physics II<br>(Akabori)                                                                                                                                 | M225 Structure Analysis<br>of Materials<br>(Shinohara)<br>M245 Mathematics for Condensed<br>Matter Science and Technology<br>(Mizuta)<br>M282E New Materials Design<br>and Synthesis<br>(Yamaguchi-Matsumi-<br>Maenosono) |                              | N004<br>E011<br>E111<br>E211<br>E213<br>J011A<br>J111A<br>J211<br>J411 | Structural Analysis of Solids on<br>Nano-Scale with Training Course(*)<br>Interaction Seminar 1<br>Basic TC 1<br>Intermediate TC 1<br>Scientific Discussions 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1<br>Intermediate Technical Japanese 1 | N004<br>E021<br>E113<br>E212<br>E411<br>J011B<br>J111B | Structural Analysis of Solids on<br>Nano-Scale with Training Course(*)<br>Interaction Seminar 2<br>Basic TC 3<br>Intermediate TC 2<br>Advanced TC 1<br>Introductory Technical Japanese 1<br>Basic Technical Japanese 1 |
| Eri. | M212 Statistical Mechanics<br>(Shimoda)<br>M231 Bioorganic Chemistry<br>(Fujimoto-Hohsaka)                                                                                                                                | M252 Polymer Design<br>(Yamaguchi-Matsumura)<br>M414 Device Physics<br>(Tokumitsu)                                                                                                                                        |                              |                                                                        |                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                        |

#### Term 2-1 (October 7 – December 2) School of Materials Science

Irregular class schedule:

M616E Advanced Biomaterials (Hiratsuka · Tsutsui · Hamada · Nagai): Dates to be announced

M620E Electronic Properties of Condensed Matter (Murata · Sakai · Koyano · An): Dates to be announced

NOTE:

· Wedensday, October 7 will follow the MONDAY schedule.

\* N00x courses will be offered by the faculty of Center for Nano Materials and Technology and School of Materials Science.

|      |                                                                                                                                  | School of Materials Science                                                                                                      |                              |                                                        |                                                                                                                                                                                                   |                                                                                                                                                    |
|------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 1<br>9:20-10:50                                                                                                                  | 2<br>11:00-12:30                                                                                                                 | 3                            |                                                        | 4<br>15:10-16:40                                                                                                                                                                                  | 5<br>16:50-18:20                                                                                                                                   |
| Mon. | M411 Methods of Instrumental<br>Analysis<br>(Oshima)                                                                             | M614E Advanced Device Physics<br>(Ohdaira)                                                                                       |                              | G211E                                                  | Global Communication<br>for Collaboration Building<br>(Kawanishi)                                                                                                                                 |                                                                                                                                                    |
| Tue. |                                                                                                                                  | M281E Quantum Theory and<br>its application to<br>Solid State Electronics<br>(Mizuta•Murata•T.Suzuki)                            |                              | E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412 | Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2 | E021Interaction Seminar 2E113Basic TC 3E212Intermediate TC 2E412Advanced TC 2J012BIntroductory Technical Japanese 2J112BBasic Technical Japanese 2 |
| Wed. | M283E Biofunction and<br>Organization<br>(Takagi•Tsukahara•<br>Yuzuru Takamura•Ohki)<br>E413 Scientific Discussions 2<br>(Blake) | M411 Methods of Instrumental<br>Analysis<br>(Oshima)                                                                             | Office Hours (13:30 ~ 15:00) | G211E                                                  | Global Communication<br>for Collaboration Building<br>(Kawanishi)                                                                                                                                 |                                                                                                                                                    |
| Thu. | M614E Advanced Device Physics<br>(Ohdaira)                                                                                       |                                                                                                                                  |                              | E011<br>E112<br>E211<br>J012A<br>J112A<br>J212<br>J412 | Interaction Seminar 1<br>Basic TC 2<br>Intermediate TC 1<br>Introductory Technical Japanese 2<br>Basic Technical Japanese 2<br>Intermediate Technical Japanese 2<br>Advanced Technical Japanese 2 | E021Interaction Seminar 2E113Basic TC 3E212Intermediate TC 2E412Advanced TC 2J012BIntroductory Technical Japanese 2J112BBasic Technical Japanese 2 |
| Fri. | M281E Quantum Theory and<br>its application to<br>Solid State Electronics<br>(Mizuta-Murata-T.Suzuki)                            | M283E Biofunction and<br>Organization<br>(Takagi•Tsukahara•<br>Yuzuru Takamura•Ohki)<br>E413 Scientific Discussions 2<br>(Blake) |                              |                                                        |                                                                                                                                                                                                   |                                                                                                                                                    |

#### Term 2-2 (December 4 – February 8)

NOTE:

• Friday, December 4 will follow the WEDNESDAY schedule.

# 4 Curriculum

Students in the School of Materials Science (MS school) must read both parts of the Institute-wide Study Guide and this guide carefully and thoroughly.

# 4.1 Outline of the curriculum

Based on JAIST's mission statement, the curriculum of the MS school is designed to help students to systematically progress from the basics of materials science to its advanced frontiers while acquiring fundamental academic skills that will enable them to contribute significantly to the development of cutting-edge science and technology.

It is insufficient for students merely to take lectures with a passive attitude. Students are required to keep in mind that the lectures are intended to assist the learning process in understanding advanced science and technology. To acquire abilities that will benefit them in the future, students must work actively and also independently toward their academic goals. Grades are decided strictly on the basis of the results of examinations or the equivalents in each course. Credits for the course will not be granted when the level of performance is below the prescribed standard.

The courses in the School of Materials Science (MS school courses/Mxxx series) are classified into 4 groups; **Area A**: Materials Characterization and Devices (physics-oriented area), **Area B**: New Materials Design and Synthesis (chemistry-oriented area), **Area C**: Biofunction and Organization (biology-oriented area), and **extra-Area**. Since some courses are offered in different semesters of the same year and some are once every other year, it is advisable for students to make a reasonable study plan while considering their own pace of progress. Students should select courses with the aim of developing a well-balanced all-round academic ability. Further, students must do coursework seriously, because they will be assigned to a laboratory based on their grades, and there are prerequisites of courses to submit a research proposal.

# 4.2 The courses in the School of Materials Science (MS school courses/Mxxx series)

## 4.2.1 Introductory courses

The Introductory courses (M1xx series) are designed mainly for students outside of the area of materials science.

The M111A Introduction to Physics A, M112 Introduction to Chemistry, and M113 Introduction to Bioscience are courses to learn fundamentals to prepare for the higher-level courses in the school of Materials Science. Check the section 5.2(1) and 5.3.2 for M111B Introduction to Physics B. Course registration guidance will be provided on the basis of the results of an academic ability test which will be held soon after their enrollment for students admitted to JAIST in April.

## 4.2.2 Basic courses

The Basic courses (M2xx series) are divided into 3 Areas, namely A, B, and C. Each area is composed of fundamental courses (Group-I: M21x, M22x, M23x series) and higher-level courses (Group-II: M24x, M25x, M26x series). The courses in Group-I are generally for students trying out different areas. The courses in Group-II are for students to study further in the familiar area. The M281, M282, and M283 courses are offered in English and they are in Group-II. Students must select one area as their major one and the other two consequently become a minor area 1 and a minor area 2.

## 4.2.3 Technical courses

The Technical courses (M4xx series), as specialized high level courses, are appropriate for master's students. They are designed based on the specializations of the faculty members and cover topics from the fundamental to advanced.

## 4.2.4 Advanced courses

The Advanced courses (M6xx series) are designed mainly for doctoral students, though master's students can take them and earn the credits which can be counted for completion requirements.

These are mainly offered in English. Students are encouraged to plan their course taking carefully considering their future plans.

## 4.3 Seminar and research

Courses for a major research project (Seminar) and a minor research project (Research) are described below. For doctoral students, a minor research project can be substituted for an internship.

Master's program

| Course<br>Number | Course Title                               | Instructor(s)                             | Notes                    |
|------------------|--------------------------------------------|-------------------------------------------|--------------------------|
| M201             | Seminar in<br>Materials Science A (Thesis) | Supervisor                                | 8 credits: compulsory    |
| M202             | Research in<br>Materials Science A         | Advisor for the<br>Minor Research Project | 2 credits: same as above |

**Note**: Seminar in Materials Science A (Thesis) may be substituted for Seminar in Materials Science A (Project Report). 2 credits instead of 8 may be earned for this.

#### Doctoral program

| Course<br>Number | Course Title                                                             | Instructor(s)                         | Notes                                    |
|------------------|--------------------------------------------------------------------------|---------------------------------------|------------------------------------------|
| M601             | Advanced Seminar in<br>Materials Science B                               | Supervisor                            | 6 credits: compulsory                    |
| M602             | Advanced Research in<br>Materials Science B1<br>(Minor Research Project) | Advisor for<br>Minor Research Project | 4 credits; compulsory<br>elective course |
| M603             | Advanced Research in<br>Materials Science B2(Internship)                 | Advisor for Internship                | M603.                                    |

#### 4.4 Curriculum charts

The tables below list course number, course title, course term, instructor(s), area and credits. "J" indicates courses offered in Japanese and "E" in English in the language column.

- **Note 1**: A comma (,) between the names of instructors indicates that each faculty member teach the course in each term, and a middle dot (·) indicates that 2 or more faculty members teach the course taking turns in the same class/term.
- **Note 2**: The M271–272, M431-434, and M631-635 courses are not offered on a regular basis. Information on these courses will be available when they are scheduled. Credits may be recognized on a credit-by-credit basis.

Course Lan-**Course Title Course Term** Instructor(s) Area Number guage M111A Introduction to Physics A\*1 1-1 Horita А J Introduction to Physics B\*1, 2 M111B J 1-1 Mizutani А M112 J Taniike • Matsumura Introduction to Chemistry 1-1 В M113 J 1-1 С Introduction to Bioscience Takagi · Shimokawa

4.4.1 Introductory courses

\*1 Credits from one of either, but not both, of the courses M111A or M111B can be used to fulfill the degree requirements.

\*<sup>2</sup> Students who belong to the laboratories in the physics-centered area can take the M111B but cannot use the credits to satisfy the requirements.

#### 4.4.2 Basic courses

| Course<br>Number | Course Title                                                         | Lan-<br>guage | C   | course | e Terr | n   | Instructor(s)                                 | Area |
|------------------|----------------------------------------------------------------------|---------------|-----|--------|--------|-----|-----------------------------------------------|------|
| M211             | Quantum Mechanics                                                    | J             | 1-1 |        | 2-1    |     | Murata, Iwasaki                               | AI   |
| M212             | Statistical Mechanics                                                | J             |     |        | 2-1    |     | Shimoda                                       | AI   |
| M213             | Electromagnetic Theory                                               | J             |     | 1-2    |        |     | Tomitori                                      | AI   |
| M221             | Organic Chemistry                                                    | J             | 1-1 |        |        |     | Matsumi                                       | BI   |
| M222             | Computational Material Design                                        | J             |     | 1-2    |        |     | Shimoda·Dam                                   | AI   |
| M223             | Properties of Organic Materials                                      | J             | 1-1 |        |        |     | Nagao                                         | BI   |
| M224             | Inorganic Materials Chemistry                                        | J             |     | 1-2    |        |     | Maenosono                                     | BI   |
| M225             | Structure Analysis of Materials                                      | J             |     |        | 2-1    |     | Shinohara                                     | BI   |
| M231             | Bioorganic Chemistry                                                 | J             | 1-1 |        | 2-1    |     | Fujimoto•Hohsaka                              | CI   |
| M232             | Biofunctional Materials                                              | J             |     | 1-2    |        |     | Hamada                                        | CI   |
| M243             | Solid State Physics I                                                | J             |     | 1-2    |        |     | Yukiko Takamura                               | AII  |
| M245             | Mathematics for Condensed<br>Matter Science and Technology           | J             | 1-1 |        | 2-1    |     | Koyano, Mizuta                                | AII  |
| M251             | Chemistry of Catalyst and<br>Catalysis                               | J             | 1-1 |        |        |     | Ebitani                                       | BH   |
| M252             | Polymer Design                                                       | J             |     |        | 2-1    |     | Yamaguchi •<br>Matsumura                      | BH   |
| M254             | Synthetic Design of Polymers                                         | J             |     | 1-2    |        |     | Kaneko                                        | BH   |
| M261             | Functional Biomolecules                                              | J             |     | 1-2    |        |     | Tsutsui                                       | CII  |
| M262             | Biomaterial Sensing                                                  | J             |     |        | 2-1    |     | Yuzuru Takamura                               | CII  |
| M281             | Quantum Theory and its<br>application to Solid State<br>Electronics* | E             |     |        |        | 2-2 | Mizuta • Murata •<br>T.Suzuki                 | AII  |
| M282             | New Materials Design and Synthesis*                                  | E             |     |        | 2-1    |     | Yamaguchi•<br>Matsumi•Maenosono               | BII  |
| M283             | Biofunction and Organization*                                        | E             |     |        |        | 2-2 | Takagi∙Tsukahara∙<br>Yuzuru Takamura∙<br>Ohki | CII  |

\* M281, M282, and M283 are offered in English. When students wish to complete their degree only with the courses offered in English, these courses can be counted as the Basic courses to satisfy the degree requirements.

# Sub-table

| Course<br>Number | Course Title                     | Course Term | Instructor(s) | Note                 |
|------------------|----------------------------------|-------------|---------------|----------------------|
| M271             | Physical Properties of Materials |             |               | Offered as necessary |
| M272             | Chemical Functions of Materials  |             |               | Offered as necessary |

#### 4.4.3 Technical courses

| Course<br>Number | Course Title                        | Lan-<br>guage | Course<br>Term | Instructor(s)                    | Notes                          | Area |
|------------------|-------------------------------------|---------------|----------------|----------------------------------|--------------------------------|------|
| M411             | Methods of<br>Instrumental Analysis | J             | 2-2 Oshima     |                                  | Offered in alternate years★    | A    |
| M412             | Composite Materials                 | J             |                | To be announced                  | To be announced                | В    |
| M413             | Extreme Materials                   | E             | 2-1            | Maenosono∙Nagao∙<br>Taniike∙Mott | Offered in<br>alternate years★ | В    |
| M414             | Device Physics                      | J             | 2-1            | Tokumitsu                        | *                              | А    |

| M415 | Medical Biomaterials             | J | 1-2 | Tsukahara • H. Suzuki | Offered in alternate years★ | С |
|------|----------------------------------|---|-----|-----------------------|-----------------------------|---|
| M420 | Solid State Physics II           | J | 2-1 | Akabori               | *                           | А |
| M421 | Electronics                      | J | 1-2 | T.Suzuki              | *                           | А |
| M422 | Advanced Scientific<br>Computing | J |     | To be announced       | To be announced             | Α |
| M423 | Functional Protein<br>Device     | J | 1-2 | Hiratsuka             | *                           | С |

★ The course is offered in the 2015 academic year. There may be changes in the courses offered next academic year.

#### Sub-table

| Course<br>Number | Course Title                             | Course<br>Term | Instructor(s) | Notes                |
|------------------|------------------------------------------|----------------|---------------|----------------------|
| M431             | Evaluation of Properties of Materials I  |                |               | Offered as necessary |
| M432             | Evaluation of Functions of Materials I   |                |               | Offered as necessary |
| M433             | Evaluation of Properties of Materials II |                |               | Offered as necessary |
| M434             | Evaluation of Functions of Materials II  |                |               | Offered as necessary |

#### 4.4.4 Advanced courses

| Course<br>Number | Course Title                                         | Lan-<br>guage | Course<br>Term | Instructor(s)                                           | Notes                          | Area |
|------------------|------------------------------------------------------|---------------|----------------|---------------------------------------------------------|--------------------------------|------|
| M611             | Electronic Structures of Solids and Surfaces         | E             | 1-1            | Tomitori · Mizutani ·<br>Yukiko Takamura ·<br>Fleurence | Offered in<br>alternate years★ | A    |
| M612             | Optical Properties<br>of Solids                      | Ε             |                | Mizutani∙Khuat •<br>Murata∙Koyano                       | Offered in alternate years     | А    |
| M613             | Quantum Phenomena<br>in Condensed Matter             | E             |                | Iwasaki•Mizuta                                          | Offered in alternate years     | А    |
| M614             | Advanced<br>Device Physics                           | E             | 2-2            | Ohdaira                                                 | Offered in alternate years★    | А    |
| M615             | Advanced Biofunctions                                | Е             | 1-1            | Takagi∙<br>Yuzuru Takamura                              | Offered in alternate years★    | С    |
| M616             | Advanced Biomaterials                                | E             | 2-1*           | Hiratsuka • Tsutsui •<br>Hamada • Nagai                 | Offered in<br>alternate years★ | С    |
| M617             | Molecular and<br>Functionality Design<br>of Polymers | E             |                | Yamaguchi∙<br>Nobukawa∙<br>Shinohara∙Kaneko             | Offered in alternate years     | В    |
| M618             | Materials Design                                     | E             | 1-2            | Ebitani∙Matsumura∙<br>Maenosono                         | Offered in<br>alternate years★ | В    |
| M619             | Materials Morphology                                 | E             |                | Taniike∙<br>Matsumi • Vedarajan                         | Offered in alternate years     | В    |
| M620             | Electronic Properties of<br>Condensed Matter         | E             | 2-1*           | Murata∙Sakai ∙<br>Koyano • An                           | Offered in<br>alternate years★ | А    |
| M621             | Advanced<br>Computational<br>Materials Science       | E             |                | To be announced                                         | To be announced                | А    |
| M622             | Advanced Biomolecular<br>Science                     | E             |                | Ohki•Osaka                                              | Offered in alternate years     | С    |

★ The course is offered in the 2015 academic year. There may be changes in the courses offered next academic year.

\* The courses are offered as intensive courses. See the class schedule for detailed schedule.

Sub-table

| Course<br>Number | Course Title                    | Lan-<br>guage | Course<br>Term | Instructor(s) | Notes                | Area |
|------------------|---------------------------------|---------------|----------------|---------------|----------------------|------|
| M631             | Physics of Materials            | E             |                |               | Offered as necessary |      |
| M632             | Chemistry of Materials          | Е             |                |               | Offered as necessary |      |
| M633             | Advanced Materials<br>Physics   | E             |                |               | Offered as necessary | А    |
| M634             | Advanced Materials<br>Chemistry | E             |                |               | Offered as necessary | В    |
| M635             | Advanced Biotechnology          | Е             |                |               | Offered as necessary | С    |

.....

# << Important >>

Please refer to the corresponding sections for the detailed information on how to complete the program as shown in this table.

|            | Master's program                                 | Doctoral program                              |
|------------|--------------------------------------------------|-----------------------------------------------|
| 5D program | 5 Guide to completion of<br>the master's program | 6 Guide to completion of the doctoral program |
| 3D program |                                                  | 6 Guide to completion of the doctoral program |
| M program  | 5 Guide to completion of<br>the master's program |                                               |
| Mα program | 5 Guide to completion of the master's program    |                                               |

# 5 Master's program (M, Ma programs and master's part of the 5D program)

The information given below is primarily intended for students enrolled in April. It can also be applied correspondingly to students enrolled in October. Other rules and requirements based on the JAIST regulations and the degree completion regulations which are not specified in this guide are laid out separately.

#### 5.1 Laboratory assignment and Educational programs

See also the sections VII.1 and V.1 in the Institute-wide Study Guide.

- (1) Students are temporarily assigned to a laboratory before a formal assignment is made. Using this period to attend courses and visit laboratories students will choose a one to be formally assigned.
- (2) Before a fomal assignment to a lab, students must complete at least 2 courses (4 credits) (one course must be from the Basic courses) from the MS school courses, except for the E413 Scientific Discussions II, B411 Advanced Project Management and courses in the Nano Material Technology program. Students who wish to complete the program by taking courses offered only in English (ones with "E" in the chart in the section 4.4, E413 and B411) are eligible to be assigned to a lab after finishing at least 2 courses from the MS school courses except for the E413 and B411. The first formal assignment will be decided in June on the basis of the academic grades given in Term 1-2. The third will be decided in December on the basis of the academic grades given in Term 2-1. Adjustment can be made as necessary.
- (3) Students will select one of the three educational programs; M, M $\alpha$  and 5D programs after they are formally assigned to a laboratory. Students cannot change the program they selected except for the change from M to 5D program. M $\alpha$  students can apply to shorten their extended period only when they submit a research proposal or when they apply for conferment of a degree.

#### 5.2 Program completion requirements for master's students

Students must first read the Institute-wide Study Guide, the section VI.1.1. Check the Institute-wide Study Guide for information regarding taking the IGE courses, courses from other schools in JAIST or ones at other institutes.

#### (1) Students in M program and $M\alpha$ program need to obtain all of the following:

- 1) 8 credits from Seminar in Materials Science A (Major Research Project)
- 2) 2 credits from Research in Materials Science A (Minor Research Project)
- 3) 20 credits (10 courses) or more including the following:
  - i) 16 credits (8 courses) or more from the MS school courses (Mxxx series)
  - ii) 4 credits (2 courses) or more from the Basic courses (M2xx series) in student's major area including at least 1 course from Group-II (M24x, M25x, M26x).
  - iii) 2 credits (1 course) or more from the Basic courses (M2xx series) in the minor area 1, and 2 credits (1 course) or more in the minor area 2. One of them can also be from any of the Introductory/Technical or Advanced courses if the course is in one of the minor areas. The M111B Introduction to Physics B is designed mainly for students from outside of the area of physics. Either M111A or M111B can be used to fulfill the requirements for a master's degree. Students who belong to the laboratories of the physics-centered area can take the M111B but cannot use the credits to satisfy the requirements.

When students wish to satisfy the requirements of the MS school courses (Mxxx series) by taking only the courses given in English (M281, M282, M283, and Advanced courses), one of the Advanced courses can be considered as the Basic courses (M21x, M22x, M23x series) in Group-I of the same area. The Basic courses conducted in Japanese cover the contents of those conducted in English. Students cannot use credits obtained from both of the Basic courses conducted in English and ones in Japanese to satisfy the requirements for the Basic courses.

4) Note that the Nano Material Technology courses can be used to fulfill the requirements without
specific areas assigned to them.

#### (2) Requirements for students in 5D program

- 1) As described in 5.2(1) for completion of master's program
- 2) All of the following to continue on to the doctoral program:
  - i) At least 18 credits (9 courses) from the MS school courses. 2 credits (one course) from the Introductory courses can be included in the 18. When the number of credits earned from the Basic, Technical, and Advanced courses exceed 10 (5 courses), the excess of up to 8 credits (4 courses) can be transferred and recognized as credits earned in the doctoral program. See the section VI.6 in the Institute-wide Study Guide.
  - ii) 4 credits (2 courses) or more from the courses in the IGE.
  - iii) One of the following 3 conditions of English proficiency:
    - a. Those who completed one or more of E2xx or E4xx courses.
    - b. Those who have taken the TOEIC within 2 years prior to their application for admission and scored higher than the score required by each school.
    - c. Those who have submitted a master's thesis or project report in English and passed the exam.

#### 5.2.1 Guidelines for taking courses in the School of Materials Science

See the Institute-wide Study Guide, the section VI.2. See also the section 4.2 the MS school courses. Very few courses are offered in the MS school in Term 2-2 and students are advised to plan their course taking carefully. The courses scheduled to be offered in the next academic year may change.

## 5.2.2 Seminar (Major Research Project) and Research (Minor Research Project) (compulsory)

#### (1) Number of credits

10 credits (2 courses) will be given when students complete: Seminar in Materials Science A (Thesis) (8 credits) as Major Research Project Research in Materials Science A (2 credits) as Minor Research Project

\*4 credits (2 courses) will be given when students complete: Materials Science A (Project Report) (2 credits) as Major Research Project Research in Materials Science A (2 credits) as Minor Research Project

#### \*Master's research project

Students who choose to work on a research project instead of a thesis must have an overall grade-point average in the MS school courses in the top third of the students of the same year in the school and have a faculty meeting approval that their project report meets the objectives of the school. They must satisfy the program completion requirements (see the section 5.2) and also acquire additional 6 credits (3 courses) except for the Introductory courses from the MS school courses.

#### (2) Course style

The style of instruction for Seminar and Research is done by giving research guidance for a thesis or a project report.

#### 5.3 Research supervision and guidance

#### 5.3.1 Laboratory assignment

See the Institute-wide Study Guide, VII.1 and the section 5.1(2) for requirements for assignment. See also VII.3 in the Institute-wide Study Guide for Multiple Supervisory System.

#### 5.3.2 Research project

#### (1) Major Research Project

- 1) Students must choose a research theme for a major research project and submit a research proposal to the dean via the Educational Service Section, Educational Affairs Department (hereinafter "Kyoumu") in their 1st year by the specified deadline.
- 2) Requirements for submitting a research proposal
  - Students must obtain at least 8 credits (4 courses) from the MS school courses, in 2 Areas (a major area and a minor area 1) from the Basic courses before proposal submission. Note that students who belong to the physics-centered laboratories cannot use the credits from M111B Introduction to Physics B to satisfy this requirement.
  - The contents of a research proposal must be acceptable.
- 3) Beginning of the research

Students can formally begin a major research project just after a research proposal is accepted and approved by their 3 advisors.

4) Length of research period

At least one year is required to spend to complete a major research project.

#### (2) Minor Research Project

Students are strongly encouraged to choose a research topic for a minor research project from a different area from their main research field, though it is acceptable to have a topic from the same area. An advisor for Minor Research Project will be decided in October. Students must begin a minor research project at the end of Term 2-1 (early December) in their 1st year, and must complete it by the end of September of their 2nd year. The thesis of a minor research project must be submitted to the dean before the end of the following October, and it must be attached to the master's thesis as its supplement.

#### 5.4 Degree conferment

See the Institute-wide Study Guide, the section VIII.1 for the detailed information.

|                           |                                                                                 | March<br>Completion                            | June<br>Completion                            | September<br>Completion                               | December<br>Completion                               |
|---------------------------|---------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
|                           | Prerequisite                                                                    | See 5.3.2(1)ii).                               |                                               |                                                       |                                                      |
| Research<br>proposal      | Submission<br>period                                                            | By the end of<br>March of the<br>previous year | By the end of<br>June of the<br>previous year | By the end of<br>September of<br>the previous<br>year | By the end of<br>December of<br>the previous<br>year |
| Submission<br>minor resea | Submission of thesis of O p                                                     |                                                | By the end of<br>January                      | By the end of<br>April                                | By the end of<br>July                                |
| Application conferment    | oplication forThe end ofThe end ofThe end ofonferment of degreeJanuaryAprilJune |                                                | The end of<br>October                         |                                                       |                                                      |
| Submission of thesis      |                                                                                 | Early February                                 | Early May                                     | Mid-August                                            | Early November                                       |
| Thesis defense            |                                                                                 | Mid-February                                   | Mid-May                                       | Late August                                           | Mid-November                                         |
| Confermen                 | t of degree                                                                     | March                                          | June                                          | September                                             | December                                             |

#### 5.4.1 Schedule pertaining to conferment of degree and procedures

#### 5.5 Other

#### 5.5.1 Assistance and recommendation for employment

Recommendation for employment can only be given if students:

- (1) have a realistic chance of obtaining credits necessary for completion of the program.
- (2) have consulted with their supervisor and have acquired the approval.
- (3) have taken the SPI (Synthetic Personality Inventory) Test held in JAIST twice or more.

(4) have registered themselves in the "JAIST Career Support System" and have filled in with all the necessary information, which will be evaluated for the decision for recommendation.

#### 5.5.2 Teaching certificate

See the section IX.4 in the Japanese-language version of the Institute-wide Study Guide.

#### 5.5.3 Continuing on to the doctoral program

See the section IX.2 in the Institute-wide Study Guide.

#### Master's program schedule



#### 6 Doctoral program (3D program and doctoral part of the 5D program)

The information given below is primarily prepared for students enrolled in April. It can also be applied correspondingly to students enrolled in July and October. Other rules and requirements based on the JAIST regulations and the degree completion regulations which are not specified in this guide are laid out separately.

#### 6.1 Program completion requirements for doctoral students

Students must read the Institute-wide Study Guide, the sections VI.1.2 and VI.2 regarding the program completion requirements and course registration.

#### 6.1.1 Course requirements

Check the Institute-wide Study Guide for information regarding taking the IGE courses, courses from other schools in JAIST or ones at other institutes.

Students need to obtain all of the following:

- (1) 6 credits from Advanced Seminar in Materials Science B (Major Research Project)
- (2) 4 credits from Advanced Research in Materials Science B1 (Minor Research Project)
- or Advanced Research in Materials Science B2 (Internship)
- (3) 10 credits (5 courses) or more in 2 Areas from the Advanced courses. The Basic courses (except M281-283) and the Technical courses other than courses not completed during the master's program are considered Advanced courses in the same area and can be used to fulfill the requirements for the doctoral program but at least 4 credits (2 courses) from the Advanced courses (M6xx series with areas A, B or C) must be taken and completed during the period in the doctoral program.
- (4) The credits of the Advanced courses in Nano Materials (N006-008) can be used as the Technical courses (M4xx) to fulfill the degree requirements. Note that the credits of the Basic courses in Nano Technology (N001-005) are regarded as those of the Introductory courses, so they cannot be used to fulfill the degree requirements.
- (5) When 5D program students have obtained 18 credits (9 courses) from the Basic, Technical, and Advanced courses in the master's program, taking 1 more course (2 credits) from the Basic, Technical and Advanced courses in the doctoral program (except M601, M602 and M603) will satisfy the degree completion requirements of the doctoral program according to the section VI.6 in the Institute-wide Study Guide. Students must double check the necessary number of credits and if all the requirements mentioned above in this section are met.

#### 6.2 Research supervision and guidance

#### 6.2.1 Laboratory assignment and supervisor

See the section VII.1 in the Institute-wide Study Guide. See also the section VII.3 for the multiple supervisory system.

## 6.2.2 Seminar (Major Research Project) and Research (Minor Research Project) (compulsory)

The style of instruction for Seminar and Research is done by giving research guidance for a doctoral dissertation.

#### (1) Major Research Project

A major research project focuses on a subject within student's area of specialization.

1) A research proposal must be submitted to the dean via Kyoumu within 1 year after student's enrollment in the doctoral program. A research proposal for a minor research project/an internship must have been approved before this.

Student's three advisors must approve of the proposal before their submission.

2) A dissertation outline must be submitted no later than 6 months before the submission of a dissertation to Kyoumu. Students must get approvals from their 3 advisors before submitting it

to Kyoumu.

#### (2) Minor Research Project

A minor research project must be in an area outside student's specialty or related but different area of a major research project.

- 1) A research proposal for a minor research project must be submitted within 1 year after students' enrollment in the doctoral program to the dean and get an approval from the dean.
- 2) A minor research project must be conducted under the guidance of an advisor other than the supervisor and the second supervisor.
- 3) A minor research project (the period should be for approximately 6 months) must be completed before submission of an application for a preliminary defense of a doctoral dissertation.
- 4) A thesis of a minor research project must be bound and submitted to the dean via Kyoumu.

#### (3) Minor Research Project (Internship)

Internships are conducted at companies and other places for a period longer than 3 months.

- 1) Students must first consult with their supervisor and submit a research proposal for an internship to the dean and get an approval from the dean within 1 year after students' enrollment in the doctoral program.
- 2) Students must go to the Career Support Section and take an appropriate procedure.
- 3) An internship and the submission of a report must be completed before submitting an application for preliminary defense. Students must attach an evaluation from the company where the internship was conducted with the report and submit them to their advisor for Internship.

#### 6.2.3 Off-campus research and internship

Students in the 3D and 5D programs are encouraged to carry out advanced research at other research institutions in Japan or abroad, or to do an internship at companies. Detailed information regarding financial support, see *HANDBOOK for Students*.

When an off-campus activity is approved as a minor research project, students may earn credits for M602 Advanced Research in Materials Science B1. When an off-campus activity is approved as an internship, students earn credits for M603 Advanced Research in Materials Science B2. Other activities are regarded as a part of a major research project, M601 Advanced Seminar in Materials Science B.

See the Institute-wide Study Guide, the section VII.4 for the necessary procedures.

#### 6.3 Degree conferment

See the Institute-wide Study Guide, the section VIII.2

#### 6.3.1 Schedule pertaining to conferment of degree and procedures

| •                                                                               | March                                                                          | June                  | September              | December          |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|------------------------|-------------------|--|
|                                                                                 | Completion                                                                     | Completion            | Completion             | Completion        |  |
| Research proposal                                                               | By the end of                                                                  | Du the and of Mou     | By the end of          | By the end of     |  |
| for minor research                                                              | February in their                                                              | by the end of May     | August in their        | November in their |  |
| project/internship                                                              | 1st year                                                                       | in their ist year     | 1st year               | 1st year          |  |
| Research proposal                                                               |                                                                                |                       |                        |                   |  |
| for major research                                                              | Must be submitted                                                              | within 1 year after e | enrolling in the docto | oral program      |  |
| project                                                                         |                                                                                |                       |                        |                   |  |
| Dissertation outline                                                            | Early July of the                                                              | Early October of      | Early January          | Early April       |  |
|                                                                                 | previous year                                                                  | the previous year     |                        |                   |  |
| Minor research<br>Must be completed before applying for the preliminary defense |                                                                                | ense                  |                        |                   |  |
| project or internship                                                           |                                                                                |                       |                        |                   |  |
| Application                                                                     | Early October of                                                               | Forly January         | Forbe April            |                   |  |
| defense                                                                         | the previous year                                                              | Early January         | Early April            | Early July        |  |
| Dissertation draft                                                              | To be distributed to the members of the preliminary defense committee at least |                       |                        |                   |  |
|                                                                                 | 2 weeks before the preliminary defense                                         |                       |                        |                   |  |
| Preliminary defense                                                             | December                                                                       | March                 | June                   | September         |  |
| Application for                                                                 | Farly January                                                                  | Farly April           | Farly July             | Farly October     |  |
| degree                                                                          | Langsandary                                                                    | Early April           | Langsag                |                   |  |
| Formal hearing,                                                                 |                                                                                |                       |                        |                   |  |
| oral defense, final                                                             | Early February                                                                 | Early May             | August                 | Early November    |  |
| examination                                                                     |                                                                                |                       |                        |                   |  |
| Conferment of                                                                   | March                                                                          | lune                  | September              | December          |  |
| degree                                                                          | Wal Ch                                                                         | Suite                 | September              | December          |  |

#### 6.4 Doctoral program schedule toward degree completion

The table below is a standard schedule for doctoral students enrolled in April and intending to complete their program in 3 years.

| Category                                                                | Submitted to / Note                                                                                             | Period                                                                                  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Research proposal for<br>minor research project/<br>internship          | The dean                                                                                                        | by the end of February in their 1st year                                                |  |
| Research proposal for major research project                            | The dean via Kyoumu<br>Submission must be after getting an<br>approval from all 3 advisors Kyoumu               | by the end of February in<br>their 1st year<br>by the end of March in their<br>1st year |  |
| Minor research project/<br>internship                                   | Kyoumu<br>Thesis (for minor research) should be<br>bound.                                                       | Must be completed before<br>the submission of application<br>for preliminary defense    |  |
| Dissertation outline                                                    | Kyoumu                                                                                                          | by the early July in their 3rd year                                                     |  |
| Application for preliminary defense                                     | A title of a dissertation and an outline<br>of main publications must be<br>submitted to the dean via Kyoumu    | Early October                                                                           |  |
| Dissertation draft                                                      | Should be distributed to 5 or more<br>members of the Doctoral Dissertation<br>Preliminary Examination Committee | at least 2 weeks before the preliminary defense                                         |  |
| Preliminary defense                                                     |                                                                                                                 | December                                                                                |  |
| Application for conferment of degree                                    | The President via Kyoumu<br>Only after a successful preliminary<br>defense                                      | Early January                                                                           |  |
| Selection of members of the doctoral dissertation examination committee |                                                                                                                 | January                                                                                 |  |

| Formal hearing, oral defense and final examination |                                           | Early February               |
|----------------------------------------------------|-------------------------------------------|------------------------------|
| Decision results on<br>conferment of degree        |                                           | February                     |
| Submission of dissertation and abstract            | Kyoumu<br>After a successful oral defense | By the degree conferment day |
| Conferment of degree                               |                                           | Late March                   |

# **7 Courses at other graduate institutions** See the Institute-wide Study Guide, the section VI.7.

## Nano Material Technology Program

### Nano Material Technology Program

The Center for Nano Materials and Technology (CNMT) strives to support and advance education and research in the fields of nano-materials and nanotechnology in cooperation with the School of Materials Science.

#### Operation and maintenance of research facilities and machines

Our center houses highly specialized research facilities and large research instruments. We maintain the facilities and instruments to assist research work at the highest global standards. The special research facilities include a large clean room, machine shop, and helium liquefaction system. The large instruments include an 800 MHz nuclear magnetic resonance spectrometer, FT-ICR mass spectrometers, a superconductive electron interferometer, an X-ray photoelectron spectroscopy system, an X-ray analyzer, an electron probe micro-analyzer, a Rutherford backscattering analysis and high-energy ion implantation system, an electron beam exposure apparatus, a molecular beam epitaxy system, and transmission and scanning electron microscopes.

#### Research assistance to faculty and students

We offer guidance on the operation of the center's large instruments and machine tools, collaboration in experiments, the analysis of data, and sample analysis on request to help and advance research being conducted in nanotechnology. We also give guidance sessions on our facilities and instruments, and provide safe training sessions.

#### Support for joint research projects

The center has a support system to encourage intramural, interior and joint international research projects and holds regular international conferences and workshops to publicize the results of those projects.

#### **Development of researchers and technologists**

The Nano Material Technology Program aims to create leading researchers and technologists in the field of advanced nanotechnology-based science. The well-organized course curricula together with our state-of-the-art facilities enable students to systematically acquire practical technology skills.

#### Nano Material Technology Program

#### <Goal>

The Center for Nano Materials and Technology (CNMT) opened in April 2002 after the reorganization of the former Center for New Materials, which was originally established as one of the facilities for common use at JAIST.

The purpose of the Nano Material Technology Program, which is managed by the CNMT, is to help students acquire broad and high-level knowledge and experimental techniques in nanotechnology and play an important role in companies and/or research laboratories.

#### 1 Start time

The course starts at the beginning of each term.

#### 2 Course enrolment

JAIST students can enroll in these courses through the standard course enrollment procedures. Please contact the Educational Services Section for details concerning the necessary procedures. Since there are some restrictions to take the Basic Courses in Nano-Technology, please refer to the section 6 below.

#### 3 Courses

| Field                                                                                                                      | Course Title                                                                 | Course<br>Term     | Instructor(s)                                                        | Credits |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------|---------|
| N001BasicN001With TCourses inN002Nano-with TTechnologyN003(withNano-trainingN004courses ofN004relatedon Naexperiments)N005 | <u>N001</u> Fabrication of Nano-Devices with Training Course                 | 2-1                | T.Suzuki•Akabori                                                     | 2       |
|                                                                                                                            | N002 Study on Nanobiotechnology with Training Course                         | 2-1                | Tsukahara•Yuzuru Takamura •<br>H.Suzuki • Phan                       | 2       |
|                                                                                                                            | <u>N003</u> Analysis of<br>Nano-Materials with Training Course               | 2-1                | Ohki·Osaka·Umetsu                                                    | 2       |
|                                                                                                                            | <u>N004</u> Structural Analysis of Solids on Nano-Scale with Training Course | 2-1                | Maenosono∙Mott∙Tomitori∙<br>Sasahara                                 | 2       |
|                                                                                                                            | <u>N005</u> Material Analysis with Training Course                           | To be<br>announced | To be announced                                                      | 2       |
|                                                                                                                            | N006 Nano IT Materials                                                       | 1-2                | Mizutani•T. Suzuki•Tokumitsu•<br>Masuda•Kaneko•Yamaguchi             | 2       |
| Advanced<br>Courses in<br>Nano-<br>Materials                                                                               | N007 Nano Biodevice Materials                                                | 1-2                | Tsukahara∙Ohki∙Fujimoto∙<br>Hohsaka∙Hiratsuka                        | 2       |
|                                                                                                                            | N008 Nano Quantum Device Materials                                           | 1-2                | Akabori · Iwasaki · Horita ·<br>Murata · Mizuta · Yuzuru<br>Takamura | 2       |

#### 4 Course requirements

To satisfy the requirements for the Nano Material Technology Program, students must complete a total of 4 or more courses (more than 8 credits), including at least 1 course (2 credits) from the Basic courses in Nano-Technology and at least 1 course (2 credits) from the Advanced courses in Nano-Materials. A certificate of completion for the Nano Material Technology Program will be awarded to students who have acquired the required number of credits.

#### 5 Chart of credit transfer

| Field                                      | Knowledge Science       | Information Science              | Materials Science              |
|--------------------------------------------|-------------------------|----------------------------------|--------------------------------|
| Basic courses in<br>Nano-Materials         | Liberal Arts courses in | Liberal Arts courses in the IGE  | Introductory courses<br>(M1xx) |
| Advanced courses in the IGE Nano-Materials |                         | Liberal Arts courses in the IGE* | Technical courses<br>(M4xx)    |

\* Acquired credits cannot be used to fulfill requirements.

#### 6 Course outlines

#### Basic courses in Nano-Technology (N001 - N005)

A remarkable feature of the Basic courses in Nano-Technology is training through which students can deepen and exercise knowledge learned in lectures. Therefore, as a general rule, absence from lectures is not permitted. Priority should be given to the main courses of each school held in the morning; therefore, the training is to be taken when students have sufficient time. The period of training depends on the progress made in the course. The number of participants is limited to approximately 5 per course and may be adjusted. To ensure that these courses are meaningful, students must first complete the courses at each school. Then, as a rule, among those wishing to take the training, students whose schooling is longest have priority.

<u>N001</u> Fabrication of Nano-Devices with Training Course

Training: Lithography (UV, EB) and Measurement methods for nano-scale semiconductor devices

<u>N002</u> Study on Nanobiotechnology with Training Course

- Training: Gene amplification, Base-sequence analysis, Electrophoresis, Protein analysis and Nano-biodevices
- <u>N003</u> Analysis of Nano-Materials with Training Course **Training:** NMR and Mass spectrometry

- <u>N004</u> Structural Analysis of Solids on Nano-Scale with Training Course **Training:** XRD, TEM and SPM.
- <u>N005</u> Material Analysis with Training Course **Training:** To be announced.
- Advanced courses in Nano-Materials (<u>N006</u> <u>N008</u>)
  - N006 Nano IT Materials

Lecture: Optical fibers, Semiconductor communication devices, Photonics materials, and Display devices.

N007 Nano Biodevice Materials

Lecture: NMR, DNA, Protein, Sugar, and Informatics

\* The credits of <u>M415</u> Medical Biomaterials offered in the School of Materials Science can be substituted for the credits of this lecture, <u>N007</u> Nano Biodevice Materials.

- N008 Nano Quantum Device Materials
  - Lecture: Semiconductor quantum device, Thermal quantum devices, Inorganic and organic quantum devices, Bio quantum devices, and Advanced nano devices.

#### Contact:

Educational Service Section Educational Affairs Department Japan Advanced Institute of Science and Technology 1-1 Asahidai Nomi Ishikawa 923-1292 email: kyoumu@jaist.ac.jp TEL: 0761-51-1936

Issue Date: April 1, 2015