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Ksmt for solving non-linear constraints?
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We give a detailed overview of the ksmt calculus developed in a conflict

driven clause learning framework for checking satisfiability of non-linear con-

straints over the reals. Non-linear constraint solving naturally arises in the de-

velopment of formal methods for verification of safety critical systems, program

analysis and information management. Implementations of formal methods are

widely used to approve in advance that designed systems satisfy all specifica-

tion requirements, such as reliability, safety and reachability. Historically, there

have been two main approaches to deal with non-linear constrains: the sym-

bolic one originated by Tarski’s decision procedure for the real closed fields and

the numerical one based on interval constraint propagations. It is well known

that both approaches have their strength and weakness concerning complete-

ness, e�ciency and expressiveness. Nowdays, merging strengths of symbolical

and numerical approaches is one of the challenging research aria in theoretical

and applied computer science.

The ksmt calculus successfully integrates strengths of symbolical and nu-

merical methods. The key steps of the decision procedure based on this calculus

contain assignment refinements, inferences of linear resolvents driven by linear

conflicts, backjumping and constructions of local linearisations of non-linear com-

ponents initiated by non-linear conflicts. In [BKKM19] we showed that the pro-

cedure is sound and makes progress by reducing the search space. This approach

is applicable to a large number of constraints involving computable non-linear

functions, piecewise polynomial splines, transcendental functions and solutions

of polynomial di↵erential equations.

In this setting we discuss resent and future research work.
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Generalizing Taylor models
for multivariate real functions ?
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We discuss data structures and algorithms for the approximation of multi-

variate real functions f : ✓Rk ! R. From the viewpoint of TTE[Wei00], these

approximations can be viewed as building blocks for representations. To this

end, we apply ideas from the field of Taylor models [MB01], thus generalizing

the approach taken in [BKM15]: On domains given as polytopes, functions are

approximated by polynomials with (possibly unbounded) interval coefficients. In

[DFKT14], there has been a related approach of a ‘function interval arithmetic’,

still lacking the aspects of data reduction in Taylor models.

As an application we aim at the field of SMT solving and present a prototypical

implementation: From a (symbolically defined) function f and a value c with

f(c) > 0 it derives a polytope P and a linear g with c 2 P , g(c) > 0 and 8x 2 P :
f(x) > g(x) thus separating the graph of f and the point (c, 0). This property

is a core requirement for recent CDCL-style SMT solvers [BKKM19,CGI
+
18].
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On the transferability of results between

subcategories of spaces and locales
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Let ⌦ : Top ! Loc be the usual functor mapping topological spaces to
locales. It is well known that ⌦ restricts to an equivalence between the category
of sober spaces and the category of spatial locales, but this does not mean that
there is an equivalence between topological results on sober spaces and locale
theoretical results on spatial locales. For example:

(1) (Q,+) is a topological subgroup of (R,+).
(2) Every localic subgroup of a localic group is a closed sublocale [4].

It follows that (Q,+) is not a localic subgroup of (R,+), even though Q and R
are included in the sober space ⇠ spatial locale categorical equivalence. These
discrepancies can occur because ⌦ does not preserve products, and the existence
of group operations such as +: Q⇥Q ! Q depends on the product structure.

A further restriction of ⌦ yields an equivalence between the category QPol
of quasi-Polish spaces [1] and the category of countably presented locales [3].
Under this restriction, ⌦ now preserves all countable limits, and the categorical
equivalence starts to look more like an actual equivalence:

(3) Every quasi-Polish subgroup of a quasi-Polish group is a closed subspace.

Are there any extensions of QPol where the equivalence between spaces and
locales still behaves so well? At least for countably based spaces we have a partial
answer. Based on the results presented in [2], we argue that QPol is the largest
“reasonable” subcategory of countably based spaces where we can hope for such
a natural transfer of results between topology and locale theory.
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Completion and the Infeasibility Problem
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We present a new completion procedure for word problems. While the stan-

dard completion procedure [1] solves problems by constructing complete term

rewrite systems, our approach employs complete conditional term rewriting sys-

tems. We anticipate that the new procedure is useful when solving infeasibility

problems of conditional term rewrite systems automatically [2].
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Decomposition of König’s lemma and its unique
variants in constructive reverse mathematics
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König’s lemma KL states that any infinite finitely-branching tree has an
infinite path. In the context of classical reverse mathematics [4], König’s lemma
KL is equivalent to the arithmetical comprehension axiom ACA over RCA0. On
the other hand, weak König’s lemmaWKL, which is KL restricted to {0, 1}-trees,
is strictly weaker than KL but still unprovable in RCA0.

In contrast to the situation in classical reverse mathematics, from the con-
structive viewpoint, KL is derived from WKL. This is because the unique choice
principle is (normally) assumed in the axiomatic basis of constructive mathe-
matics (cf. [5, Section 4.1.6]). In this talk, we introduce a weak variant of the
unique choice principle which is necessary and sufficient to derive KL from WKL
constructively. Combining this with a known decomposition of WKL, KL is de-
composed into a logical principle and two choice principles. In addition, we de-
termine a variant of the unique choice principle which captures the difference
between WKL!! and KL!!, where WKL!! and KL!! are WKL and KL with a
uniqueness hypothesis in the sense of Moschovakis [2] respectively. Furthermore,
generalizing the arguments in Schwichtenberg [3], we obtain a similar decompo-
sition result on WKL! and KL!, where WKL! and KL! are WKL and KL with
a uniqueness hypothesis in the sense of Berger and Ishihara [1]. In the end, we
overview the relation between the variants of the unique choice principle, König’s
lemma and its unique variants.
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Extending supervaluation-style Frege structure
by the limit axiom
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Feferman [4] introduced explicit mathematics (EM) as a framework of Bishop’s
constructive mathematics. Especially, Feferman gave an impredicative theory T0

of EM which has the inductive generation axioms (IG). As a similar framework
of set theory, Aczel’s Frege structure (FS) [1] has been studied as truth theories
over applicative theories (cf. e.g. [2]). As Aczel already expected [1], EM and FS
as formal theories are closely related, that is, for many weaker variants of T0 we
can find a proof-theoretically equivalent one of FS (cf. e.g. [5]).

Therefore, the purpose of this talk is to find a theory of FS as strong as T0.
Especially, we give a theory VFU, which is an extension of Cantini’s theory VF
[2, 5] by the limit axiom [5]. Here, the theory VF has the axioms stating that the
internal logic of the truth predicate follows supervaluation scheme. For example,
VF can derive the formula T!A ∨ ¬A", the truth of the law of excluded middle
A ∨ ¬A, without assuring neither T!A" nor T!¬A".
Theorem 1. VFU and T0 are proof-theoretically equivalent.

The proof of the theorem consists of two parts. To obtain the lower-bound of
VFU, we give a relative interpretation of T0 into VFU. As for the upper-bound
of VFU, we generalize Cantini’s truth-as-provability interpretation [2]. To put it
simply, the truth T!A" of a sentence A in VFU is interpreted as the derivability
of A in a certain infinitary derivation system.

This work is partially supported by JSPS Core-to-Core Program “Mathe-
matical Logic and its Applications.”
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Some Lifschitz-like realizability notions
separating non-constructive principles!
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Abstract. There is a way of assigning a realizability notion to each
degree of incomputability. In our setting, we make use of Weihrauch
degrees (degrees of incomputability of partial multi-valued functions)
to obtain Lifschitz-like relative realizability toposes. In particular, we lift
some separation results on Weihrauch degrees to those over intuitionistic
Zermelo-Fraenkel set theory IZF.

Keywords: Realizability topos · Constructive reverse mathematics ·
Weihrauch degree.

This is a contribution to constructive reverse mathematics initiated by Ishihara.
Here we do not include the axiom of countable choice ACω,ω in our base system of
constructive reverse mathematics, because including ACω,ω makes it difficult to
compare the results with Friedman/Simpson-style classical reverse mathematics.
Our aim is to separate various non-constructive principles which are equivalent
under countable choice, and our main tool is (a topological version of) Weihrauch
reducibility.

We discuss a hierarchy between LLPO and WKL which collapses under count-
able choice:

– The lessor limited principle of omniscience LLPO states that for any reals
x, y ∈ R, either x ≤ y or y ≤ x holds.

– The binary expansion principle BE states that every real has a binary ex-
pansion.

– The robust division principle RDIV states that for any reals 0 ≤ x ≤ y ≤ 1
there is z ∈ [0, 1] such that x = yz.

– The intermediate value theorem IVT states that for any continuous function
f : [0, 1] → [−1, 1] if f(0) and f(1) have different signs then there is a real
x ∈ [0, 1] such that f(x) = 0.

– Weak König’s lemma WKL states that every infinite binary tree has an infi-
nite path.

! The author was partially supported by JSPS KAKENHI Grant 19K03602, 15H03634,
and the JSPS Core-to-Core Program (A. Advanced Research Networks).



2 T. Kihara

The principle RDIV is known to be related to problems of finding Nash equi-
libria in bimatrix games and of executing Gaussian elimination. The following
implications hold in Troelstra’s elementary analysis EL0:

BE
!!!!!

!!!!

WKL "" IVT
!!"""

"""

#########
LLPO

RDIV

##$$$$$$

We use the infinite game version of Weihrauch reducibility. The game closure
of a Weihrauch degree d always induces a monad on the category Rep of rep-
resented spaces and relatively continuous functions, and the Kleisli morphisms
for this monad yield a realizability notion which obeys the original Weihrauch
degree d if d has the “unique choice” property. Combining Weihrauch separation
results with the above idea, we obtain the following:

Theorem 1. Each of the following items is internally valid in some realizability
models:

1. LLPO+ ¬RDIV + ¬BE.
2. RDIV + ¬BE.
3. BE+ ¬RDIV.
4. RDIV + BE+ ¬IVT.
5. IVT+ ¬WKL.



Computable analysis and exact real computation
in Coq?
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We present some of our recent work on the Incone library [2], a formaliza-

tion of ideas from computable analysis in the Coq proof assistant. The library

provides a generalized notion of a represented space [1] that can be used to assign

computational content to infinite objects such as real numbers and functions.

A representation for real numbers via rational approximations and realizers

for arithmetic operations and a limiting procedure can be defined by using the

types for real and rational numbers from Coq’s standard library. However, this

representation is not very useful for doing actual computations as it is extremely

ine�cient. We develop a framework to easily study and compare more e�cient

representations for exact real computation. We use this to give a fully formally

verified and e�cient implementation of exact real computation in Coq based

on interval computation and consider several examples. As our algorithms rely

on Sierpinski space and the space of Kleeneans, we have developed some of

their theory too. To capture the semantics of non-sequential operations on these

spaces, such as the “parallel or”, we make use of the theory of multivalued

functions.

As we do not work in a constructive setting and make use of some of the more

complicated parts of Coq’s dependent type system, maintaining executability

required some e↵ort. In particular, it has lead us to develop a framework of

continuous machines that captures the exact information about a continuous

function that is considered appropriate in computable analysis and may be of

separate theoretical interest.
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Labelled sequent calculi for relevant logics
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Abstract. Relevant logics have been one of the major classes of non-
classical logics extensively studied. Although in the earlier stage of devel-
opment they were studied axiomatically, relevant logics have also been
studied by a variety of semantic methods since a certain period in its his-
tory. Among them, Routley-Meyer’s ternary relational semantics intro-
duced in [4], where a ternary relation as a kind of “accessibility” relation
is used, has been one of the best known semantic methods for relevant
logics. Proof theory of relevant logics has also been developed, we have
practically no approach so far in proof theory of relevant logics in which
the following two items are combined: i) labelled sequent calculi in the
sense of [1], which use ternary relation symbols for expressing accessibil-
ity relations; ii) structural proof theory in the sense of [2] and [5], i.e.,
G3-style sequent calculi are used in which structural rules are admissible.
In this talk, we try to fill this gap in the literature. We first formulate G3-
style labelled sequent calculi for systems of relevant logics in [3] by way
of the indexed modality and canonical geometric formulas. Secondly, we
discuss semantic soundness and completeness of the labelled sequent cal-
culi with respect to Routley-Meyer semantics. Thirdly, we present some
lemmas, such as invertibility, admissibility of structural rules, and then
‘syntactic’ cut-elimination. One interesting feature of our approach is
that our labelled sequent calculi enjoy admissibility of structural rules,
although relevant logics are known as their substructural features. This
may raise a question: ‘structural rules are features a logic or a proof
system?’ (This talk is based on a joint work with Sara Negri.)

Keywords: relevant logic · Routley-Meyer semantics · labelled sequent
calculus · structural proof theory.
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Degrees of Second and Higher Order
Polynomials?
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The classical theory of computational complexity measures cost in (worst-

case) dependence on one integer parameter n = |x| denoting the length of the in-

put x 2 {0, 1}⇤. E�cient computation according to Cobham means cost bounded

by a polynomial in n. Function inputs f : {0, 1}⇤ ! {0, 1}⇤, presented for ex-

ample as oracles, are not captured by one natural number only, but instead by

number function ` : N ! N with |f(y)|  `(|y|). Here, e�cient computation is

understood as cost bounded by a so-called second-order polynomial: depending

on both n = |x| and ` [4]. These characterize the ‘basic feasible functionals’ [1]

and have applications in complexity theory of operators in analysis [2, 5].

We consider syntax and semantics of second-order polynomials. The syntax

is given by the rule P,Q ::= 1 | n | P + Q | P ⇤ Q | `(P ). The semantics

JP K : NN ⇥ N ! N is the canonical interpretation as a second-order function.

We prove that the syntax and the semantics coincide: JP K = JQK if and only if

P and Q are related under a suitable notion of syntactic equivalence. Work in

progress generalizes this to higher-order polynomials in terms of typed lambda

calculus.

We consider a notion of degree of a second-order polynomial to be a (first-

order) polynomial; we show it to be well-defined, and such that the degree of

the degree coincides with the nesting depth of ` [3].
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A cyclic proof system, whose proof figures are finite trees with cycles, is an
alternative proof system to the proof system with explicit induction. Brother-
ston proposed the cyclic proof system CLKID! for first-order logic with inductive
definitions [1]. He also conjectured the cut-elimination property of CLKID! does
not hold [2]. This talk shows the conjecture is correct by giving a counterexam-
ple. The counterexample uses two di↵erent inductive predicates, each of which
defines the addition in natural numbers. Our goal of this talk is to show a se-
quent with these predicates is not provable without the cut rule but is provable
in the system with the cut rule.
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Decidability of variables in constructive logics
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Heyting’s intuitionistic logic di↵ers from classical logic in its rejection of the
law of excluded middle (LEM). Consequently, to assure that a classical theorem

is always derivable intuitionistically, some instances of LEM have to be assumed.

For instance, it is well-known that A _ ¬A is derivable in intuitionistic proposi-

tional logic once we assume each propositional variable p in A is decidable, i.e.
p _ ¬p is assumed. It is from this direction that Ishihara [1] questioned:

What set V of propositional variables su�ces for ⇧V ,� `i A whenever
� `c A? (where ⇧V = {p _ ¬p : p 2 V })

The answer to this problem in [1] is that V = (V�
(� )[V+

(A))\(V+
ns(� )[V�

(A))

su�ces. (V+
(A),V�

(A) and V+
ns(A) are sets of positive, negative and non-strictly

positive propositional variables in A)

Later, Ishii [2] presented di↵erent classes (that are incomparable with that

of [1]). These are any V 2 V ⇤
(A) where V ⇤

(A) is defined inductively, by:

(V(A) denotes the set of all propositional variables in A.)

V ⇤
(p) = {{p}},

V ⇤
(?) = {;},

V ⇤
(A ^B) = {V1 [ V2 : V1 2 V ⇤

(A), V2 2 V ⇤
(B)},

V ⇤
(A _B) = {V1 [ V(B) : V1 2 V ⇤

(A)} [ {V(A) [ V2 : V2 2 V ⇤
(B)},

V ⇤
(A ! B) = V ⇤

(B).

In this talk, we shall discuss some refinements on the result in [2]. We shall

observe that a full LEM in the assumption can often be replaced with weaker

axioms ¬¬p _ ¬p (WLEM) or ¬¬p ! p (DNE) for the preservation of classical

theorem. This replacement in turn allows us to extend Ishii’s result to Glivenko’s
logic, a logic obtained by weakening the ex falso quodlibet axiom ? ! A (EFQ)

to its double negation ¬¬(? ! A) [3]. The talk will also discuss what classes of

atomic EFQ in addition to classes for LEM would su�ce for the preservation.
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Cyclic proof systems [1–3] are sequent-calculus style proof systems that al-

low circular structures representing induction, and they are considered suitable

for automated inductive reasoning. However, Kimura et al. [4] have shown that

the cyclic proof system for the symbolic heap separation logic does not satisfy

the cut-elimination property, one of the most fundamental properties of proof

systems. They guessed in [4] that the cut-elimination would not hold for the

bunched logic [5, 1] either, but it is hard to adapt the existing proof technique,

where chasing contradictory paths in cyclic proofs, since the bunched logic con-

tains the structural rules, the weakening and the contraction rules.

This study proposes a new proof technique called proof unrolling for proving

that the cyclic proof system for the bunched logic with only nullary inductive

predicates does not satisfy the cut-elimination property. The proof unrolling can

be adapted to the symbolic heap separation logic, and it also‘ shows that the

cut-elimination fails even if we restrict the inductive predicates to nullary ones

in the symbolic heap separation logic.
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Classical descriptive set theory (DST) was extended by M. de Brecht from

the usual context of Polish spaces to the much larger class of quasi-Polish spaces

which contains many important non-Hausdor↵ spaces. Computable analysis es-

pecially needs an e↵ective DST for reasonable e↵ective versions of topological

spaces. E↵ective versions of classical Borel, Hausdor↵ and Luzin hierarchies are

naturally defined for every e↵ective space but, as also in the classical case, they

behave well only for spaces of special kinds. Recently, a convincing version of

a computable quasi-Polish space (CQP-space for short) was suggested indepen-

dently in [1, 2].

Here we continue to develop e↵ective DST in CQP-spaces where e↵ective

analogues of some important properties of the classical hierarchies hold. Namely,

we develop an e↵ective Wadge hierarchy (including the hierarchy of k-partitions)
in such spaces which subsumes the e↵ective Borel and Hausdor↵ hierarchies (as

well as many others) and is in a sense the finest possible hierarchy of e↵ective

Borel sets. In particular, we show that levels of such hierarchies are preserved

by the computable e↵ectively open surjections, that if the e↵ective Hausdor↵-

Kuratowski theorem holds in the Baire space then it also holds in every CQP-

space, and we extend the e↵ective Hausdor↵ theorem for CQP-spaces [3] to

k-partitions. We hope that these results (together with those already known)

show that e↵ective DST reached the state of maturity.
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As is well known, the collection K(X) of all non-empty compact subsets of a

compact Hausdor↵ space X is a compact Hausdor↵ space again with respect to

the Vietoris topology. The functor K defines a monad (K, ⌘, U), where ⌘X maps

points x 2 X to {x}, and UX compact sets IK 2 K(K(X)) to their union
S

IK.

In this talk a constructive version of the result will be presented. We work

in intuitionistic logic extended by inductive and co-inductive definitions (cf.

Berger/Tsuiki [3]). As in Berger/Spreen [2], only compact metric spaces X are

considered that come equipped with a distinguished finite set D of contracting

functions d : X ! X the ranges of which cover the underlying space.

Let co-inductively CX be the largest subset of X so that

x 2 CX ! (9d 2 D)(9y 2 CX)x = d(y).

Then it follows classically that X = CX . We only work with the subspaces CX .

It is well-known that K(X) equipped with the Hausdor↵ distance function is

a metric space again. For d1, . . . , dr 2 D define [d1, . . . , dr] : K(X)
r ! K(X) by

[d1, . . . , dr](K1, . . . ,Kr) :=

r[

=1

d(K),

and set

K(D) := { [d1, . . . , dr] | d1, . . . , dr 2 D pairwise distinct with r > 0 }.

Now, similarly to above, let co-inductively CK(X) be the largest subset of

K(X) such that

K 2 CK(X) ! (9[d1, . . . , dr] 2 K(D))

(9K1, . . . ,Kr 2 CK(X))K = [d1, . . . , dr](K1, . . . ,Kr).

Then K(X) = CK(X), classically. Again, we only work with CK(X).

Unfortunately, the construction cannot be extended to higher powers Kn
(X),

with n > 1. An extension of the framework that allows doing so is presented in

the talk.
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In [1] a co-inductive inductive characterisation of the uniformly continuous

maps f : [0, 1]n ! [0, 1] has been given. As shown in [4], it can be extended to the

more general case of spaces considered here and is used to define the hom-sets

of the category.

By constructively reasoning on the basis of co-inductive and/or inductive

definitions computational content is derived. Realisability facilitates the extrac-

tion of algorithms from the corresponding proof. The framework presented here

in particular allows to deal with compact-valued maps and their selection func-

tions. Maps of this kind abundantly occur in applied mathematics. They have

applications in areas such as optimal control and mathematical economics, to

mention a few. In addition, they are used to model non-determinism.
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Artemov and Protopopescu (2016) gave an intuitionistic epistemic logic based

on a verification reading of the intuitionistic knowledge in terms of Brouwer-

Heyting-Kolmogorov interpretation. They proposed that a proof of a formula

KA (read “it is known that A”) is the conclusive verification of the existence

of a proof of A. Then A � KA expresses that, when a proof of A is given, the

conclusive verification of the existence of the proof of A can be constructed.

Since a proof of A itself is the conclusive verification of the existence of a proof

of A, they claimed that A � KA is valid. But KA � A (usually called factivity
or reflection) is not valid, since the verification does not always give a proof.

They provided a Hilbert system of intuitionistic epistemic logic IEL as the intu-

itionistic propositional logic plus the axioms schemes K(A � B) � KA � KB,

A � KA and ¬K?. They also gave the Kripke semantics for IEL and proved

the Hilbert system is sound and complete for the semantics.

We study the first-order expansion QIEL of IEL, where Kripke semantics

for QIEL is naturally defined. We propose the sequent calculus for QIEL. The
sequent calculus for propositional IEL has been given by Krupski and Yatmanov

(2016), though one inference rule in their system for IEL does not satisfy the

subformula property. This talk gives a new analytic sequent calculus G(QIEL)
of the first-order intuitionistic epistemic logic.

As corollaries of the syntactic cut-elimination theorem, G(QIEL) enjoys the
disjunction property and the existence property. Furthermore, Craig interpola-

tion theorem of G(QIEL) holds. Finally, with the method of Hermant (2005), we

also establish the cut-free completeness of G(QIEL), which implies a semantic

proof of cut-elimination theorem of G(QIEL).
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