Decomposition of König's lemma and its unique variants in constructive reverse mathematics

Makoto Fujiwara
JSPS Research Fellow (PD), Meiji University/LMU Munich

> MLA 2021, Online 23 March 2020

This work is supported by JSPS KAKENHI Grant Numbers JP18K13450, JP19J01239 and JP20K14354, as well as JSPS Core-to-Core Program (A. Advanced Research Networks).

KL and WKL in Classical Reverse Mathematics

■ König's lemma states that any infinite finitely-branching tree has an infinite path.
■ König's lemma (over \mathbb{N}) KL is formalized naturally in second-order arithmetic. Weak König's lemma WKL is KL restricted to $\{0,1\}^{*}$-trees.
■ In classical reverse mathematics (Friedman, Simpson and many others, 1970's-), many theorems in ordinary mathematics are provable in RCA_{0}, equivalent to WKL, or equivalent to the arithmetical comprehension ACA, which is equivalent (over RCA_{0}) to KL and strictly stronger than WKL.

KL and WKL in Constructive Mathematics

■ In constructive/intuitionistic Mathematics (1900's-), the decidable fan theorem plays an important role (e.g. it is used to prove the uniform continuity theorem).

- The decidable fan theorem $\mathrm{FAN}_{\mathrm{D}}$ is the (sort of) contrapositive of KL and its instance $\mathrm{FAN}_{\mathrm{D}}\left(\mathrm{T}_{01}\right)$ for $\{0,1\}^{*}$ is the (sort of) contrapositive of WKL.
■ Nevertheless, it is widely known that $\mathrm{FAN}_{\mathrm{D}}$ is constructively equivalent to $\mathrm{FAN}_{\mathrm{D}}\left(\mathrm{T}_{01}\right)$.
■ This is because the countable choice principle

$$
\mathrm{AC}^{0,0}: \forall x^{\mathbb{N}} \exists y^{\mathbb{N}} A(x, y) \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N}} \forall x^{\mathbb{N}} A(x, f(x))
$$

is accepted in constructive/intuitionistic mathematics.
■ For the same reason, KL is equivalent to bounded König's lemma BKL (in Classical RM), which is derived from WKL constructively.

For the connection between classical reverse mathematics and constructive mathematics, it is valuable to see what kind of choice principle is needed to derive KL from WKL constructively.

Framework

- Our base theory $E L_{0}$ is a subsystem of intuitionistic analysis EL (Kreisel/Troelstra 1970), which has two-sorted (natural numbers/functions over natural numbers) variables in its language.
The subscript 0 of $E L_{0}$ denotes the restriction of induction scheme to \sum_{1}^{0}-formulas $\exists x^{\mathbb{N}} A_{\mathrm{qf}}$ in this context.
- This system $E L_{0}$ is employed as a base theory in (recent) constructive reverse mathematics.
- One may obtain (the equivalents of) RCA_{0} and RCA in classical reverse mathematics from EL_{0} and EL respectively by adding the law of excluded middle scheme $A \vee \neg A$ into the axioms.
- $E L_{0}$ contains only

$$
\text { QF-AC }{ }^{0,0}: \forall x^{\mathbb{N}} \exists y^{\mathbb{N}} A_{\mathrm{qf}}(x, y) \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N}} \forall x^{\mathbb{N}} A_{\mathrm{qf}}(x, f(x)) .
$$

Definition

- KL: For all infinite finitely-branching trees $T \subseteq \mathbb{N}^{*}$, there exists $p^{\mathbb{N} \rightarrow \mathbb{N}}$ s.t. $\forall i^{\mathbb{N}}(\bar{p} i \in T)$.
■ BKL: For all infinite bounded trees $T \subseteq \mathbb{N}^{*}$, there exists $p^{\mathbb{N} \rightarrow \mathbb{N}}$ s.t. $\forall i^{\mathbb{N}}(\bar{p} i \in T)$.
- WKL: For all infinite trees $T \subseteq\{0,1\}^{*}$, there exists $p^{\mathbb{N} \rightarrow \mathbb{N}}$ s.t. $\forall \mathbb{N}^{\mathbb{N}}(\bar{p} i \in T)$.

■ $T \subseteq \mathbb{N}^{*}(\approx \mathbb{N})$ is an infinite tree if $\forall u, v(u \in T \wedge v \preceq u$ $\rightarrow v \in T)$ and $\forall i^{\mathbb{N}} \exists u^{\mathbb{N}^{*}}(|u|=i \wedge u \in T)$.
■ A tree T is finitely-branching if

$$
\forall u \in T \exists k^{\mathbb{N}} \forall x^{\mathbb{N}}(u *\langle x\rangle \in T \rightarrow x \leq k) .
$$

- A tree T is bounded if T has a height-wise bounding function $h^{\mathbb{N} \rightarrow \mathbb{N}}$ which satisfies

$$
\forall u \in T \forall j<|u|\left(u_{j} \leq h(j)\right)
$$

Fact

$1 \mathrm{EL}_{0} \vdash \mathrm{WKL} \leftrightarrow \mathrm{BKL}$.

$2 \mathrm{EL}_{0} \vdash \mathrm{WKL}+\mathrm{BT}_{\mathrm{fb}} \rightarrow \mathrm{KL}$.
$\mathrm{BT}_{\mathrm{fb}}$: Every infinite finitely-branching tree has a height-wise bounding function.

Fact

■ $\mathrm{EL}_{0} \vdash \mathrm{WKL} \leftrightarrow \mathrm{BKL}$.
2 $\mathrm{EL}_{0} \vdash \mathrm{WKL}+\mathrm{BT}_{\mathrm{fb}} \rightarrow \mathrm{KL}$.
$\mathrm{BT}_{\mathrm{fb}}$: Every infinite finitely-branching tree has a height-wise bounding function.

Proposition (cf. Kohlenbach 2008, F. 2020)

$\mathrm{EL}_{0}+\Pi_{1}^{0}-\mathrm{AC}^{0,0} \vdash \mathrm{BT}_{\mathrm{fb}}$.
Proposition (cf. Troelstra/van Dalen 1988, F. 2020)
$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC}^{0,0}!\vdash \mathrm{BT}_{\mathrm{fb}}$.
Remark. $\mathrm{RCA}_{0}+\mathrm{BT}_{\mathrm{fb}} \vdash \Sigma_{2}^{0}$-IND (due to Keita Yokoyama).
Note that
$\mathrm{RCA}_{0}\left(=\mathrm{EL}_{0}+\mathrm{LEM}\right) \subsetneq \mathrm{RCA}_{0}+\mathrm{B} \mathrm{\Pi}_{1}^{0} \subsetneq \mathrm{RCA}_{0}+\Sigma_{2}^{0}-\mathrm{IND}$.

- $\mathrm{AC}^{0,0}$! (Countable Unique Choice Principle):
$\forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(A(x, y) \wedge \forall y^{\prime}\left(A\left(x, y^{\prime}\right) \rightarrow y^{\prime}=y\right)\right) \rightarrow \exists f \forall x A(x, f(x))$
- $\Pi_{1}^{0}-\mathrm{AC}^{0,0}$! :

$$
\begin{aligned}
& \forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} A_{\mathrm{qf}}(x, y, z) \wedge \forall y^{\prime}\left(\forall z A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime}=y\right)\right) \\
& \rightarrow \exists f \forall x, z A_{\mathrm{qf}}(x, f(x), z)
\end{aligned}
$$

- B_{1}^{0} :
$\forall n\left(\forall x<n \exists y \forall z A_{\mathrm{qf}}(x, y, z) \rightarrow \exists y^{\prime} \forall x<n \exists y<y^{\prime} \forall z A_{\mathrm{qf}}(x, y, z)\right)$.

Another Approach for Deriving $\mathrm{BT}_{\mathrm{fb}}$

Proposition (F. 2020)

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND}+\mathrm{KL}!\vdash \mathrm{BT}_{\mathrm{fb}}$.
KL!: For all infinite finitely-branching trees $T \subseteq \mathbb{N}^{*}$ satisfying
$(!): \forall p^{\mathbb{N} \rightarrow \mathbb{N}}, q^{\mathbb{N} \rightarrow \mathbb{N}}(\exists n(p(n) \neq q(n)) \rightarrow \exists n(\bar{p} n \notin T) \vee \exists n(\bar{q} n \notin T))$,
there exists $p^{\mathbb{N} \rightarrow \mathbb{N}}$ s.t. $\forall i^{\mathbb{N}}(\bar{p} i \in T)$.

Corollary

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{WKL}+\mathrm{BT}_{\mathrm{fb}} \leftrightarrow \mathrm{KL}$.

$$
\pi_{i}^{0}-A C^{0.0}!\rightarrow B T_{f b}
$$

$$
K L!\rightarrow B T_{\mathcal{A L}}
$$

Superfluous part is also contained.

Theorem (Berger/Ishihara 2005, Schwichtenberg 2005)

WKL! $\leftrightarrow \mathrm{FAN}_{\mathrm{D}}\left(\mathrm{T}_{01}\right)$ (which is formalizable in $\left.E L_{0}\right)$.
WKL!: For any infinite tree $T \subseteq\{0,1\}^{*}$ s.t.
$\forall p, q \in\{0,1\}^{\mathbb{N}}(\exists n(p(n) \neq q(n)) \rightarrow \exists n(\bar{p} n \notin T) \vee \exists n(\bar{q} n \notin T))$,
there exists $p^{\mathbb{N} \rightarrow \mathbb{N}}$ s.t. $\forall i^{\mathbb{N}}(\bar{p} i \in T)$.

Theorem (Berger/Ishihara 2005, Schwichtenberg 2005)

WKL! $\leftrightarrow \mathrm{FAN}_{\mathrm{D}}\left(\mathrm{T}_{01}\right)$ (which is formalizable in $\left.E L_{0}\right)$.
WKL!: For any infinite tree $T \subseteq\{0,1\}^{*}$ s.t.
$\forall p, q \in\{0,1\}^{\mathbb{N}}(\exists n(p(n) \neq q(n)) \rightarrow \exists n(\bar{p} n \notin T) \vee \exists n(\bar{q} n \notin T))$,
there exists $p^{\mathbb{N} \rightarrow \mathbb{N}}$ s.t. $\forall i^{\mathbb{N}}(\bar{p} i \in T)$.
Remark. $E L_{0}$ proves that for any bounded tree $T^{h} \subseteq \mathbb{N}^{*},(!)$ is equivalent to the following:

$$
\begin{aligned}
& \forall p, q \in\left\{f^{\mathbb{N} \rightarrow \mathbb{N}} \mid \forall i^{\mathbb{N}}(f(i) \leq h(i))\right\} \\
& \left(\exists n(p(n) \neq q(n)) \rightarrow \exists n\left(\bar{p} n \notin T^{h}\right) \vee \exists n\left(\bar{q} n \notin T^{h}\right)\right) .
\end{aligned}
$$

Thus the uniqueness condition (!) is adapted in the sense of WKL! to any bounded tree.

Another Uniqueness Condition

■ WKL!! (by Moschovakis 2012):
For any infinite tree $T \subseteq\{0,1\}^{*}$ satisfying
$(!!): \forall p^{\mathbb{N} \rightarrow \mathbb{N}}, q^{\mathbb{N} \rightarrow \mathbb{N}}(\forall n(\bar{p} n \in T) \wedge \forall n(\bar{q} n \in T) \rightarrow \forall n(p(n)=q(n)))$,
there exists $p^{\mathbb{N} \rightarrow \mathbb{N}}$ s.t. $\forall i^{\mathbb{N}}(\bar{p} i \in T)$.
■ Define BKL!! and KL!! by using (!!) in the same manner.

Fact

Since (!) implies (!!) constructively, we have KL \rightarrow KL!! \rightarrow KL! immediately.

Proposition (F. 2020)
$\mathrm{EL}_{0}+\mathrm{MP} \vdash(!!) \rightarrow(!)$, where MP $: \neg \neg \exists x A_{\mathrm{qf}} \rightarrow \exists x A_{\mathrm{qf}}$.

■ The standard proof of $\mathrm{EL}_{0}+\mathrm{BT}_{\mathrm{fb}} \vdash \mathrm{WKL} \rightarrow \mathrm{BKL}$ also shows $\mathrm{EL}_{0}+\mathrm{BT}_{\mathrm{fb}} \vdash \mathrm{WKL!!} \rightarrow \mathrm{BKL}!!$, and hence, $\mathrm{EL}+\mathrm{MP} \vdash \mathrm{WKL}!+\mathrm{BT}_{\mathrm{fb}} \leftrightarrow \mathrm{WKL}!!+\mathrm{BT}_{\mathrm{fb}} \leftrightarrow \mathrm{KL}!!\leftrightarrow \mathrm{KL}!$.

■ On the other hand, the condition (!) seems not to be preserved by the standard embedding of a bounded tree into a $\{0,1\}$-tree. Then it is not trivial whether KL! is equivalent to WKL ! $+\mathrm{BT}_{\mathrm{fb}}$ in the absence of MP.

■ The standard proof of $\mathrm{EL}_{0}+\mathrm{BT}_{\mathrm{fb}} \vdash \mathrm{WKL} \rightarrow \mathrm{BKL}$ also shows $\mathrm{EL}_{0}+\mathrm{BT}_{\mathrm{fb}} \vdash \mathrm{WKL}!!\rightarrow \mathrm{BKL}!!$, and hence, $\mathrm{EL}+\mathrm{MP} \vdash \mathrm{WKL}!+\mathrm{BT}_{\mathrm{fb}} \leftrightarrow \mathrm{WKL}!!+\mathrm{BT}_{\mathrm{fb}} \leftrightarrow \mathrm{KL}!!\leftrightarrow \mathrm{KL}!$.

■ On the other hand, the condition (!) seems not to be preserved by the standard embedding of a bounded tree into a $\{0,1\}$-tree. Then it is not trivial whether KL! is equivalent to WKL ! $+\mathrm{BT}_{\mathrm{fb}}$ in the absence of MP.

Lemma (Generalization of Schwichtenberg's Argument)

$\mathrm{EL}_{0} \vdash \mathrm{BFAN}_{\mathrm{D}} \rightarrow \mathrm{BKL}$!, where $\mathrm{BFAN}_{\mathrm{D}}$ is the decidable fan theorem restricted to bounded trees.

Corollary

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{WKL}!+\mathrm{BT}_{\mathrm{fb}} \leftrightarrow \mathrm{KL}!$.
Proof. WKL! $+\mathrm{BT}_{\mathrm{fb}} \rightarrow \mathrm{FAN}_{\mathrm{D}}\left(\mathrm{T}_{01}\right)+\mathrm{BT}_{\mathrm{fb}} \rightarrow$
$\mathrm{BFAN}_{\mathrm{D}}+\mathrm{BT}_{\mathrm{fb}} \rightarrow \mathrm{BKL}!+\mathrm{BT}_{\mathrm{fb}} \rightarrow \mathrm{KL}!$.

Proposition (cf. Troelstra/van Dalen 1988, F. 2020, Revisited)

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC}^{0,0}!\vdash \mathrm{BT}_{\mathrm{fb}}$, and hence, $\mathrm{EL}_{0}+\mathrm{B} \mathrm{\Pi}_{1}^{0}+\Sigma_{2}^{0} \mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC}^{0,0}!\vdash \mathrm{WKL}(\leftrightarrow \mathrm{BKL}) \rightarrow \mathrm{KL}$.

Proposition (cf. Troelstra/van Dalen 1988, F. 2020, Revisited)

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0} \mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC}^{0,0}!\vdash \mathrm{BT}_{\mathrm{fb}}$, and hence, $\mathrm{EL}_{0}+\mathrm{B} \mathrm{\Pi}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC}^{0,0}!\vdash \mathrm{WKL}(\leftrightarrow \mathrm{BKL}) \rightarrow \mathrm{KL}$.

Question.

Can we characterize the difference of KL and WKL by some fragment of the unique choice principle?

Decomposition of KL

For this purpose, we consider the following variant:
$\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}:$

$$
\begin{aligned}
& \forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} A_{\mathrm{qf}}(x, y, z) \wedge \forall y^{\prime}\left(\forall z \leq x A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime} \leq y\right)\right) \\
& \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N} \forall x, z A_{\mathrm{qf}}(x, f(x), z) .}
\end{aligned}
$$

Theorem

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{WKL}+\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0} \leftrightarrow \mathrm{KL}$.
Remark. $\Pi_{1}^{0}-\mathrm{AC}_{d}^{0,0}$ is a weakening of
$\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{wu}}^{0,0}: \begin{aligned} & \forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} \mathrm{A}_{\mathrm{qf}}(x, y, z) \wedge \forall y^{\prime}\left(\forall z A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime} \leq y\right)\right) \\ & \\ & \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N} \forall x, z A_{\mathrm{qf}}(x, f(x), z),}\end{aligned}$
where "wu" stands for the weakened uniqueness condition:
$\forall y^{\prime}\left(\forall z A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime} \leq y\right)$. Note that $\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{wu}}^{0,0}$ (and hence, $\left.\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}\right)$ is derived from $\mathrm{AC}^{0,0}$!.

Decomposition of KL!!

Lemma

$E L_{0}+$ B $_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND}+\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}!\vdash \mathrm{BT}_{\mathrm{fb}}$.
$\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}!:$
$\forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} A_{\mathrm{qf}}(x, y, z) \wedge \forall y^{\prime}\binom{\left(\forall z A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime}=y\right) \wedge}{\left(\forall z \leq x A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime} \leq y\right)}\right)$
$\rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N}} \forall x, z A_{\text {qf }}(x, f(x), z)$;
Remark. $\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}$! is an obvious weakening of $\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}$ and also of $\Pi_{1}^{0}-\mathrm{AC}^{0,0}$!.

Theorem
$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}$-IND $\vdash \mathrm{WKL}!!+\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}!\leftrightarrow \mathrm{KL}!!$.

Question

Can we characterize $\mathrm{BT}_{\mathrm{fb}}$ by a unique choice principle without using notions on trees?

Decomposition of KL!

For this purpose, we consider (a weakening of) the bounding choice principle

$$
\mathrm{BC}^{0,0}: \forall x^{\mathbb{N}} \exists y{ }^{\mathbb{N}} A(x, y) \rightarrow \exists g^{\mathbb{N} \rightarrow \mathbb{N}} \forall x^{\mathbb{N}} \exists y \leq g(x) A(x, y) .
$$

In particular, we introduce the Π_{1}^{0}-fragment of $\mathrm{BC}^{0,0}$ with a strengthened uniqueness condition as follows:
$\Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0}$:

$$
\begin{aligned}
& \forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} A_{\mathrm{qf}}(x, y, z) \wedge \forall y^{\prime}\left(\forall z \leq y A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime}=y\right)\right) \\
& \rightarrow \exists g^{\mathbb{N} \rightarrow \mathbb{N} \forall x^{\mathbb{N}} \exists y \leq g(x) \forall z^{\mathbb{N}} A_{\mathrm{qf}}(x, y, z) .}
\end{aligned}
$$

Remark. $\Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0}$ is derived from
$\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{su}}^{0,0}$:

$$
\begin{aligned}
& \forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} A_{\mathrm{qf}}(x, y, z) \wedge \forall y^{\prime}\left(\forall z \leq y A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime}=y\right)\right) \\
& \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N} \forall x, z A_{\mathrm{qf}}(x, f(x), z),}
\end{aligned}
$$

which is derived from $\Pi_{1}^{0}-\mathrm{AC}^{0,0}$!.

Theorem

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{BT}_{\mathrm{fb}} \leftrightarrow \Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0}$, and hence, $\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{WKL}!+\Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0} \leftrightarrow \mathrm{KL}!$.

Theorem

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{BT}_{\mathrm{fb}} \leftrightarrow \Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0}$, and hence, $E L_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{WKL}!+\Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0} \leftrightarrow \mathrm{KL}!$.

Theorem

$\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}-\mathrm{IND} \vdash \mathrm{BT}_{\mathrm{fb}} \leftrightarrow \Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0}$, and hence, $\mathrm{EL}_{0}+\mathrm{B}_{1}^{0}+\Sigma_{2}^{0}$-IND $\vdash \mathrm{WKL}!+\Pi_{1}^{0}-\mathrm{BC}_{\mathrm{su}}^{0,0} \leftrightarrow \mathrm{KL}!$.

Remarks

- We have decomposed KL, KL!! and KL! into their binary variants and some unique choice principles respectively.
- On the other hand, it is known that WKL can be decomposed into a logical principle (Σ_{1}^{0}-DML) and a choice principle ($\Pi_{1}^{0}-\mathrm{AC}^{\vee}$). Hence, KL is decomposed into a logical principle and two choice principles.
- We have a similar decomposition for WKL!! recently. By using the decomposition, it follows that KL!! is decomposed into two logical principles and three choice principles.
- In contrast, we only know a decomposition of WKL! by a logical principle and a choice principle in terms of some notions on trees. It is a remained question how WKL! (equivalently $\mathrm{FAN}_{\mathrm{D}}\left(\mathrm{T}_{01}\right)$) can be decomposed into logical and choice principles without using the notions on trees.

On Proofs

■ Our proofs are modifications of the arguments in Berger/Ishihara/Schuster 2012, which was developed for the direct proof of the above mentioned decomposition of WKL.

■ In particular, for deriving the unique choice principle in question from the corresponding variant of KL, we consider the induced dependent choice principles.

- Here we present the proof of $\mathrm{KL} \rightarrow \Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}$ as a sample.

Proof of KL $\rightarrow \Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}$

Recall that $\Pi_{1}^{0}-\mathrm{AC}_{\mathrm{d}}^{0,0}$ is the following principle:

$$
\begin{aligned}
& \forall x^{\mathbb{N}} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} A_{\mathrm{qf}}(x, y, z) \wedge \forall y^{\prime}\left(\forall z \leq x A_{\mathrm{qf}}\left(x, y^{\prime}, z\right) \rightarrow y^{\prime} \leq y\right)\right) \\
& \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N} \forall x, z A_{\mathrm{qf}}(x, f(x), z) .}
\end{aligned}
$$

The induced dependence choice principle $\Pi_{1}^{0}-\mathrm{DC}_{d}^{0,0}$ is the following:

$$
\begin{aligned}
& \forall u \in \mathbb{N}^{*} \exists y^{\mathbb{N}}\left(\forall z^{\mathbb{N}} A_{\mathrm{qf}}^{\prime}(u, y, z) \wedge \forall y^{\prime}\left(\forall z \leq|u| A_{\mathrm{qf}}^{\prime}\left(u, y^{\prime}, z\right) \rightarrow y^{\prime} \leq y\right)\right) \\
& \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{N} \forall x, z A_{\mathrm{qf}}^{\prime}(\bar{f} x, f(x), z) ;}
\end{aligned}
$$

By taking $A_{\mathrm{qf}}^{\prime}(u, y, z): \equiv A_{\mathrm{qf}}(|u|, y, z)$, we have that $\Pi_{1}^{0}-\mathrm{DC}_{\mathrm{d}}^{0,0}$ implies $\Pi_{1}^{0}-\mathrm{AC}_{d}^{0,0}$.
Then it suffices to show that KL implies $\Pi_{1}^{0}-\mathrm{DC}_{d}^{0,0}$.

Lemma

$E L_{0}+\Sigma_{2}^{0}-\mathrm{IND}+\mathrm{KL} \vdash \Pi_{1}^{0}-\mathrm{DC}_{\mathrm{d}}^{0,0}$.
Proof. (cf. Berger/Ishihara/Schuster 2012) Let $A_{\mathrm{qf}}(u, i, k)$ satisfy
$\forall u \in \mathbb{N}^{*} \exists i^{\mathbb{N}}\left(\forall k^{\mathbb{N}} A_{\mathrm{qf}}(u, i, k) \wedge \forall j^{\mathbb{N}}\left(\forall k \leq|u| A_{\mathrm{qf}}(u, j, k) \rightarrow j \leq i\right)\right)$.
Define $T \subseteq \mathbb{N}^{*}$ as $u \in T$ if and only if

$$
\forall n<|u| \forall k<|u| A_{\mathrm{qf}}\left(\bar{u} n, u_{n}, k\right) .
$$

Then T is trivially a tree. For verifying that T is infinite, one can show $\forall i \exists u \in \mathbb{N}^{i} \forall n<|u| \forall k A_{\mathrm{qf}}\left(\bar{u} n, u_{n}, k\right)$ by Σ_{2}^{0}-induction on i.

To show that T is finitely-branching, fix $u \in T$. By (1), there exists $i^{\mathbb{N}}$ such that $\forall j^{\mathbb{N}}\left(\forall k \leq|u| A_{\mathrm{qf}}(u, j, k) \rightarrow j \leq i\right)$. If $u *\langle x\rangle \in T$, then $\forall k<|u *\langle x\rangle| A_{\mathrm{qf}}(u, x, k)$, and hence, $x \leq i$.

By KL, there exists a path $p^{\mathbb{N} \rightarrow \mathbb{N}}$ through T.
In the following, we claim $\forall n^{\mathbb{N}}, k^{\mathbb{N}} A_{\text {qf }}(\bar{p} n, p(n), k)$.
Fix $n^{\mathbb{N}}$ and $k^{\mathbb{N}}$.
Let $i^{\prime}:=n+k+1$. Then $n, k<i^{\prime}$.
Since p is a path through T, we have $\bar{p} i^{\prime} \in T$, and hence,
$A_{\mathrm{qf}}\left(\overline{\left(\bar{p} i^{\prime}\right)} n,\left(\bar{p} i^{\prime}\right)_{n}, k\right)$, namely, $A_{\mathrm{qf}}(\bar{p} n, p(n), k)$.

References

1 A. S. Troelstra and D. van Dalen, Constructivism in Mathematics, vol.1, 1988.
2 J. Berger and H. Ishihara, Brouwer's fan theorem and unique existence in constructive analysis, 2005.
3 H. Schwichtenberg, A direct proof of the equivalence between Brouwer's fan theorem and König's lemma with a uniqueness hypothesis, 2005.
4 J. R. Moschovakis, Another weak König's lemma WKL!!, 2012.

5 J. Berger, H. Ishihara and P. Schuster, The weak Kőnig lemma, Brouwer's fan theorem, De Morgan's law, and dependent choice, 2012.
6 M. Fujiwara, König's lemma, weak König's lemma, and the decidable fan theorem, to appear from MLQ.
7 M. Fujiwara, Decomposition of König's lemma and its unique variants, preprint.

