Some Lifschitz-like realizability notions separating non-constructive principles

Takayuki Kihara ${ }^{1}$

Nagoya University, Japan

Fourth Workshop on Mathematical Logic and its Applications
March 23, 2021

[^0]- Reverse mathematics is a program to determine the exact (set-existence) axioms which are needed to prove theorems of ordinary mathematics.
- Usually, we employ a subsystem RCA_{0} of second order arithmetic as our base system, which consists of:
(1) Basic first-order arithmetic (e.g. the first-order theory of the non-negative parts of discretely ordered rings).
(2) Σ_{1}^{0}-induction schema.
(3) Δ_{1}^{0}-comprehension schema.
- Roughly speaking, RCA_{0} corresponds to (non-uniform) computable mathematics (as $\Delta_{1}^{0}=$ computable).

Nonconstructive Principles 1

In this talk, we consider the following principles:

- The lessor limited principle of omniscience LLPO states that for any regular Cauchy real \boldsymbol{x}, either $\boldsymbol{x} \leq \mathbf{0}$ or $\boldsymbol{x} \geq \mathbf{0}$.
- The binary expansion principle BE states that every regular Cauchy real has a binary expansion.
- The intermediate value theorem IVT states that for any continuous function $f:[\mathbf{0 , 1]} \rightarrow[-1,1]$ if $f(\mathbf{0})$ and $f(\mathbf{1})$ have different signs then there is a regular Cauchy real $x \in[0,1]$ such that $f(x)=0$.
- Weak König's lemma WKL states that every infinite binary tree has an infinite path.

Here, a regular Cauchy real is a real \boldsymbol{x} which is represented by a sequence $\left(\boldsymbol{q}_{\boldsymbol{n}}\right)_{n \in \omega}$ of rational numbers such that

$$
\left|q_{n}-q_{m}\right|<2^{-n} \text { for any } m \geq n .
$$

- LLPO, BE, IVT, etc. are considered as a non-constructive principle.
- Nevertheless, LLPO, BE, IVT are provable in $\boldsymbol{R C A} \boldsymbol{A}_{\mathbf{0}}$.
- In this sense, $\boldsymbol{R C A} \boldsymbol{A}_{\mathbf{0}}$ is too strong to be adopted as a base system.
- In order to resolve this issue, it has been proposed to replace the base system with a more constructive one.
- This proposal evolved into what is now known as Constructive Reverse Mathematics (Ishihara, and others).
- Some adopts a formalized version BISH of Bishop's constructive mathematics as a base system of constructive reverse mathematics.
- However, BISH + LLPO \leftrightarrow WKL.
- On the other hand, RCA ${ }_{0} \nsim$ LLPO \leftrightarrow WKL.
- This makes it difficult to compare the results of two Reverse Math.
- BISH is incomparable with $\boldsymbol{R C A} A_{0}$.
- Want a constructive system which is weaker than $\boldsymbol{R C A} \boldsymbol{A}_{\mathbf{0}}$.

Troelstra's $\boldsymbol{E L}_{\mathbf{0}}$

- $\boldsymbol{E L} \boldsymbol{L}_{\mathbf{0}}+$ the law of excluded middle $=\boldsymbol{R C} \boldsymbol{A}_{\mathbf{0}}$.
- $\boldsymbol{E L} \boldsymbol{L}_{\mathbf{0}}+$ the axiom of countable choice $=\boldsymbol{B I S H}$.
- $\boldsymbol{E L} L_{0}$: subsystem of $\boldsymbol{R C A} \boldsymbol{A}_{\mathbf{0}}$ and BISH.
- RCA $_{\mathbf{0}}+$ WKL \leftrightarrow IVT \leftrightarrow BE \leftrightarrow LLPO.
- BISH + WKL \leftrightarrow IVT \leftrightarrow BE \leftrightarrow LLPO

Theorem (Berger-Ishihara-K.-Nemoto 2019)
$\mathrm{EL}_{\mathbf{0}}$ proves $\mathbf{W K L} \rightarrow$ IVT \rightarrow BE \rightarrow LLPO.
[Question] Do the converse implications also hold?

Markov's principle (double negation elimination for Σ_{1}^{0}-formulas) \Longleftrightarrow

$$
(\forall x, y \in[0,1])[y \neq 0 \rightarrow(\exists z \in \mathbb{R}) z=x / y] .
$$

For a real \boldsymbol{y}, " $\boldsymbol{y}=\mathbf{0}$ or not" is non-constructive:

$$
\text { LPO } \Longleftrightarrow(\forall y \in \mathbb{R})[y=0 \vee y \neq 0] .
$$

The robust division principle RDIV:

$$
(\forall x, y \in[0,1])[x \leq y \rightarrow(\exists z \in[0,1]) x=y z] .
$$

For reals $\boldsymbol{x}, \boldsymbol{y}$, " $\boldsymbol{x} \leq \boldsymbol{y}$ or not" is non-constructive (LLPO), but we can always replace x with $\min \{x, y\}$ without losing anything.

$$
\text { RDIV } \Longleftrightarrow(\forall x, y \in[0,1])(\exists z \in[0,1]) \min \{x, y\}=y z .
$$

Constructive Reverse Mathematics (3)

The principle RDIV is known to be related to

- The existence of Nash equilibria in bimatrix games.
- Executing Gaussian elimination, etc.

The following implications are known:

Question (Ishihara? Nemoto?)

Are there any other implications in the above diagram?
We will see that the above diagram is complete, via some modifications of Lifshitz realizability.

- A partial magma is a pair ($\boldsymbol{M}, *$) of a set \boldsymbol{M} and a partial binary operation $*$ on M.
- We often write $\boldsymbol{x y}$ instead of $\boldsymbol{x} * \boldsymbol{y}$, and as usual, we consider $*$ as a left-associative operation, that is, $x y z$ stands for $(x y) z$.
[Example] Define $\boldsymbol{e} * \boldsymbol{n}=\boldsymbol{\varphi}_{\boldsymbol{e}}(\boldsymbol{n})$. Then $(\mathbb{N}, *)$ is a called Kleene's first algebra.
- A partial magma $(\boldsymbol{M}, *)$ is combinatory complete if, for any term $t\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, there is $a_{t} \in M$ such that $a_{t} x_{1} x_{2} \ldots x_{n-1} \downarrow$ and $a_{t} x_{1} x_{2} \ldots x_{n} \simeq t\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- For terms $t(x, y)=x$, and $u(x, y, z)=x z(y z)$, the corresponding elements $a_{t}, a_{u} \in \boldsymbol{M}$ are usually written as \mathbf{k} and \mathbf{s}.
- A combinatory complete partial magma is called a partial combinatory algebra (abbreviated as pca).
[Example] Kleene's first algebra is a pca.

Realizability (2)

- A relative pca is a triple $\mathbb{P}=(\boldsymbol{P}, \underset{\sim}{\mathbf{P}}, *)$ such that $\boldsymbol{P} \subseteq \underset{\sim}{\mathbf{P}}$, both $(\underset{\sim}{\mathbf{P}}, *)$ and $(\boldsymbol{P}, * \upharpoonright \boldsymbol{P})$ are pcas, and share combinators \mathbf{s} and \mathbf{k}.
- In this talk, the boldface algebra $\underset{\sim}{\mathbf{P}}$ is always the set ω^{ω} of all infinite sequences.

In descriptive set theory, the idea of a relative pca is ubiquitous, which usually occurs as a pair of lightface and boldface pointclasses.

By the good parametrization lemma in descriptive set theory:

- Any $\boldsymbol{\Sigma}^{*}$-pointclass (so Spector pointclass) $\boldsymbol{\Gamma}$ yields a relative pca.
- The partial Γ-computable function application form a lightface pca.
- The partial $\underset{\sim}{\Gamma}$-measurable function application form a boldface pca.
[Example 1] If $\boldsymbol{\Gamma}=\boldsymbol{\Sigma}_{1}^{\mathbf{0}}$:
- The induced lightface pca is equivalent to Kleene's first algebra.
- The boldface pca is Kleene's second algebra.
- The induced relative pca is known as the Kleene-Vesley algebra.

Realizability (2)

- A relative pca is a triple $\mathbb{P}=(\boldsymbol{P}, \underset{\sim}{\mathbf{P}}, *)$ such that $\boldsymbol{P} \subseteq \underset{\sim}{\mathbf{P}}$, both $(\underset{\sim}{\mathbf{P}}, *)$ and $(\boldsymbol{P}, * \upharpoonright \boldsymbol{P})$ are pcas, and share combinators \mathbf{s} and \mathbf{k}.
- In this talk, the boldface algebra $\underset{\sim}{\mathbf{P}}$ is always the set ω^{ω} of all infinite sequences.

In descriptive set theory, the idea of a relative pca is ubiquitous, which usually occurs as a pair of lightface and boldface pointclasses.

By the good parametrization lemma in descriptive set theory:

- Any Σ^{*}-pointclass (so Spector pointclass) $\boldsymbol{\Gamma}$ yields a relative pca.
- The partial $\boldsymbol{\Gamma}$-computable function application form a lightface pca.
- The partial $\underset{\sim}{\Gamma}$-measurable function application form a boldface pca.
[Example 2] Π_{1}^{1} is the best-known example of a Spector pointclass.
- The induced lightface pca obviously yields hyperarithmetical realizability.
- For the boldface pca, the associated total realizable functions are exactly the Borel measurable functions.

Realizability (2)

- A relative pca is a triple $\mathbb{P}=(\boldsymbol{P}, \underset{\sim}{\mathbf{P}}, *)$ such that $\boldsymbol{P} \subseteq \underset{\sim}{\mathbf{P}}$, both $(\underset{\sim}{\mathbf{P}}, *)$ and ($\boldsymbol{P}, * \upharpoonright \boldsymbol{P}$) are pcas, and share combinators \mathbf{s} and \mathbf{k}.
- In this talk, the boldface algebra $\underset{\sim}{\mathbf{P}}$ is always the set ω^{ω} of all infinite sequences.

In descriptive set theory, the idea of a relative pca is ubiquitous, which usually occurs as a pair of lightface and boldface pointclasses.

By the good parametrization lemma in descriptive set theory:

- Any Σ^{*}-pointclass (so Spector pointclass) $\boldsymbol{\Gamma}$ yields a relative pca.
- The partial Γ-computable function application form a lightface pca.
- The partial $\underset{\sim}{\Gamma}$-measurable function application form a boldface pca.
[Example 3] The infinite time Turing machines (ITTMs) form a Spector pointclass.
- ITTM-realizability has been studied by Andrej Bauer.
- Lifschitz (and van Oosten) used multifunction applications, instead of single-valued applications, to realize $\mathbf{C T}_{0}!+\neg \mathbf{C T}_{0}$.
- Regard Π_{1}^{0} classes as basic concepts rather than computable functions.
- (Lifschitz 1979) Over the Kleene first algebra ($\omega, *$), consider the partial multifunction $\mathbf{j}_{L}: \subseteq \omega \rightrightarrows \omega$ defined by

$$
\mathbf{j}_{\mathrm{L}}(\langle e, b\rangle)=\{n \in \omega: n<b \wedge e * n \uparrow\}
$$

where $\mathbf{j}_{\mathrm{L}}(\langle\boldsymbol{b}, \boldsymbol{e}\rangle) \downarrow$ if and only if the set is nonempty.

- \mathbf{j}_{L} gives a numbering of all bounded Π_{1}^{0} subsets of ω.
- (Van Oosten 1990) Over the Kleene second algebra ($\omega^{\omega}, *$), consider the following partial multifunction $\mathrm{j}_{\mathrm{v} 0}: \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$:

$$
\mathrm{j}_{\mathrm{vo}}(\langle g, h\rangle)=\left\{x \in \omega^{\omega}:(\forall n \in \omega) x(n)<h(n) \wedge g * x \uparrow\right\}
$$

- \mathbf{j}_{vo} gives a representation of all compact subsets of ω^{ω}.

Assume that $\mathbb{P}=(\boldsymbol{P}, \underset{\sim}{\mathbf{P}})$ is a relative pca.
$\mathbf{j}: \subseteq \underset{\sim}{\mathbf{P}} \rightrightarrows \underset{\sim}{\mathbf{P}}$ is an idempotent jump operator on \mathbb{P} if
(1) There is $u \in P$ such that for any $a, x \in \underset{\sim}{\mathbf{P}}, a \mathbf{j}(x)=\mathbf{j}(u a x)$.
(2) There is $\eta \in \boldsymbol{P}$ such that for any $\boldsymbol{x} \in \underset{\sim}{\mathbf{P}}, \boldsymbol{x}=\mathbf{j}(\eta \boldsymbol{x})$.
(3) There is $\mu \in \boldsymbol{P}$ such that for any $\boldsymbol{x} \in \underset{\sim}{\mathbf{P}}, \mathbf{j} \mathbf{j}(\boldsymbol{x})=\mathbf{j}(\mu \boldsymbol{x})$.

Here, the definition of the composition of multifunctions is:

$$
\boldsymbol{h g}(x)=\boldsymbol{h} \circ g(x)= \begin{cases}\bigcup\{h(y): y \in g(x)\} & \text { if } g(x) \downarrow \subseteq \operatorname{dom}(h) \\ \uparrow & \text { otherwise }\end{cases}
$$

Also, if f is a multifunction on $\underset{\sim}{\mathbf{P}}$ and $a, x \in \underset{\sim}{\mathbf{P}}$, then define $a f(x)=\{a y: y \in f(x)\}$.
[Example] \mathbf{j}_{L} and $\mathbf{j}_{v o}$ are idempotent jump operators.
$\mathbf{j}: \subseteq \underset{\sim}{\mathbf{P}} \rightrightarrows \underset{\sim}{\mathbf{P}}$ is an idempotent jump operator on \mathbb{P} if
(1) There is $u \in P$ such that for any $a, x \in \underset{\sim}{\mathbf{P}}, a \mathbf{j}(x)=\mathbf{j}(u a x)$.
(2) There is $\eta \in P$ such that for any $\boldsymbol{x} \in \underset{\sim}{\mathbf{P}}, \boldsymbol{x}=\mathbf{j}(\eta \boldsymbol{x})$.
(3) There is $\mu \in P$ such that for any $\boldsymbol{x} \in \underset{\sim}{\mathbf{P}}, \mathbf{j} \mathbf{j}(\boldsymbol{x})=\mathbf{j}(\mu \boldsymbol{x})$.

We say that $\boldsymbol{f}: \subseteq \underset{\sim}{\mathbf{P}} \rightrightarrows \underset{\sim}{\mathbf{P}}$ is naïvely (\mathbf{P}, \mathbf{j})-realizable if
$(\exists a \in P)(\forall x \in \operatorname{dom}(f)) \mathrm{j}(a x) \subseteq f(x)$.

Remark

- This notion (for operations satisfying (1) and (2)) is implicitly studied in the work on the jump of a represented space, e.g. by de Brecht.
- One may think of \mathbf{j} as an endofunctor on the category Rep of represented spaces and realizable functions.
- Any idempotent jump operator \mathbf{j} yields a monad on the category Rep: (2) monad unit (3) monad multiplication.
- Thus, the naïve \mathbf{j}-realizable functions on represented spaces are exactly the Kleisli morphisms for this monad.
- Let \mathbf{j} be an idempotent jump on a relative pca $\mathbb{P}=(\boldsymbol{P}, \underset{\sim}{\mathbf{P}}, *)$
- Define a new partial application $*_{j}$ on $\underset{\sim}{\mathbf{P}}$ defined by

$$
a *_{\mathrm{j}} b \simeq \begin{cases}a^{\prime} * b & \text { if } \mathrm{j}(a)=\left\{a^{\prime}\right\} \\ \uparrow & \text { otherwise }\end{cases}
$$

- Hereafter, we always write \boldsymbol{a}^{\prime} for the unique element of $\mathbf{j}(\boldsymbol{a})$ whenever $\mathbf{j}(\boldsymbol{a})$ is a singleton. Then, consider the following:

$$
P_{\mathrm{j}}=\left\{a^{\prime}: a \in P \text { and } \mathrm{j}(a) \text { is a singleton }\right\} .
$$

Lemma

$\mathbb{P}_{\mathbf{j}}=\left(\boldsymbol{P}_{\mathbf{j}}, \underset{\sim}{\mathbf{P}}, *_{\mathbf{j}}\right)$ is a relative pca.
In the later slides, we will define the notion of \boldsymbol{j}-realizability and then:

Theorem

If \boldsymbol{j} is an idempotent jump operator on \mathbb{P}, then all axioms of IZF are \boldsymbol{j}-realizable over $\mathbb{P}_{\boldsymbol{j}}$.

- We say that f is Weihrauch reducible to g (written $f \leq_{w} g$) if there are partial computable functions \boldsymbol{H} and \boldsymbol{K} such that for any $\boldsymbol{x} \in \operatorname{dom}(f), y \in g(\boldsymbol{H}(\boldsymbol{x}))$ implies $K(x, y) \in f(x)$.
- The definition of Weihrauch reducibility $f \leq_{\mathrm{w}} \boldsymbol{g}$ can be viewed as the following perfect information two-player game:

$$
\text { I: } \quad x_{0} \in \operatorname{dom}(f) \quad x_{1} \in g\left(y_{0}\right)
$$

II: $\quad y_{0} \in \operatorname{dom}(g) \quad y_{1} \in f\left(x_{0}\right)$

- Each player chooses an element from ω^{ω} at each round.
- Player II wins if there is a computable strategy τ for II which yields a play described above.
- Note that $\boldsymbol{y}_{\mathbf{0}}$ depends on $\boldsymbol{x}_{\mathbf{0}}$, and $\boldsymbol{y}_{\boldsymbol{1}}$ depends on $\boldsymbol{x}_{\mathbf{0}}$ and $\boldsymbol{x}_{\mathbf{1}}$, and a computable strategy τ for II yields partial computable maps
$H: x_{0} \mapsto y_{0}$ and $K:\left(x_{0}, x_{1}\right) \mapsto y_{1}$.
- Usually, \boldsymbol{H} is called an inner reduction and \boldsymbol{K} is called an outer reduction.
- If reductions \boldsymbol{H} and \boldsymbol{K} are allowed to be continuous, then we say that f is continuously Weihrauch reducible to g (written $f \leq_{\mathrm{w}}^{c} g$).
(Hirschfeldt-Jockusch 2016) For $f, g: \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$, let us consider the following perfect information two-player game $\boldsymbol{G}(f, g)$:

More precisely, each player chooses an element from ω^{ω} at each round. Here, Players I and II need to obey the following rules.

- First, Player I chooses $x_{0} \in \operatorname{dom}(f)$.
- At the nth round, Player II reacts with $z_{n}=\left(a_{n}, y_{n}\right)$.
- The choice $a_{n}=\mathbf{0}$ indicates that Player II makes a new query y_{n} to g. In this case, we require $y_{n} \in \operatorname{dom}(g)$.
- The choice $a_{n}=\mathbf{1}$ indicates that Player II declares victory with y_{n}.
- At the $(\boldsymbol{n}+1)$ st round, Player I responds to the query made by Player II at the previous stage. This means that $\boldsymbol{x}_{\boldsymbol{n}+1} \in \boldsymbol{g}\left(\boldsymbol{y}_{\boldsymbol{n}}\right)$.
Then, Player II wins the game $\boldsymbol{G}(f, g)$ if
- either Player I violates the rule before Player II violates the rule
- or Player II obeys the rule and declares victory with $y_{n} \in f\left(x_{0}\right)$.
- Player Il's strategy is a code τ of a partial continuous function $\boldsymbol{h}_{\tau}: \subseteq\left(\omega^{\omega}\right)^{<\omega} \rightarrow \omega^{\omega}$.
- On the other hand, Player l's strategy is any partial function $\sigma: \subseteq\left(\omega^{\omega}\right)^{<\omega} \rightarrow \omega^{\omega}$ (which is not necessarily continuous).
- Player Il's strategy τ is winning if Player II wins along (σ, τ) whatever Player l's strategy σ is.
- We say that f is generalized Weihrauch reducible to g if Player II has a computable winning strategy for $\boldsymbol{G}(\boldsymbol{f}, \boldsymbol{g})$. In this case, we write f डow g.
- If Player II has a (continuous) winning strategy for $\boldsymbol{G}(\boldsymbol{f}, \boldsymbol{g})$, we write $f \leq_{\text {ow }}^{c} g$.

Lemma (Hirschfeldt-Jockusch 2016)

The relation $\leq \mathrm{Jw}$ is transitive.

- Note that the rule of the above game does not mention f except for Player I's first move. Hence, if we skip Player I's first move, we can judge if a given play follows the rule without specifying f.
- For $g: \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$, we define $g^{\circlearrowright}: \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$ as follows:
- $\left(x_{0}, \tau\right) \in \operatorname{dom}\left(g^{\text {D }}\right) \Longleftrightarrow \tau$ is Player Il's strategy, and for Player l's any strategy σ with first move \boldsymbol{x}_{0}, Player II declares victory at some round along (σ, τ).
- $y \in g^{\supset}\left(x_{0}, \tau\right) \Longleftrightarrow$ Player II declares victory with y at some round along (σ, τ) for some σ with first move $\boldsymbol{x}_{\mathbf{0}}$.
- Here, the statement "Player II declares victory" does not necessarily mean "Player II wins".
- Indeed, the above definition is made before f is specified, so the statement "Player II wins" does not make any sense.
- Again, one can remove x_{0} from an input for \boldsymbol{g}^{\supset} by considering a continuous strategy. The following is obvious by definition.

Observation

$$
f \leq_{\mathrm{w}} g^{\partial} \Longleftrightarrow f \leq \leq_{\mathrm{w}} g .
$$

Westrick (2020) showed that for any partial multifunction f, note that f 號 closed under the compositional product. Using this fact, one can show the following:

Theorem

Let $g: \subseteq \omega^{\omega} \rightarrow \omega^{\omega}$ be a partial multifunction.
Then $g^{\mathcal{D}}$ is an idempotent jump operator on the Kleene-Vesley algebra $\mathbb{P}_{K V}$ such that the naïve ($\mathbb{P}_{K V}, g^{\text {D }}$)-realizable partial multifunctions coincide with the partial multifunctions $\leq_{\partial w} \boldsymbol{g}$.

- LLPO $^{\text {- }}$-realizability $=$ Lifschitz' realizability in 1979.
- WKL ${ }^{\text {- }}$-realizability $=$ van Oosten's realizability in 1990.
- Let's consider $\mathbf{B E}^{\mathrm{D}}$-, RDIV ${ }^{\text {- }}$ - and IVT $^{\text {- }}$-realizability.

Theorem

(1) RDIV $\xi_{\partial w}^{c} B E$.
(2) BE $\neq \partial w_{c}^{c}$ RDIV.
(3) IVT ${\underset{J W}{c}}_{c}$ RDIV \times BE.

Theorem

(1) IZF + LLPO + $\mathrm{ABE}+\neg$ RDIV is LLPO $^{\text {- }}$-realizable.
(2) IZF $+\mathrm{BE}+\neg$ RDIV is BE^{-}-realizable.
(3) $I Z F+$ RDIV + $\rightarrow B E$ is RDIV ${ }^{\text {-realizable. }}$
(9) IZF + BE + RDIV + -IVT is (BE + RDIV) ${ }^{\text {D}}$-realizable.

McCarty Realizability

- First, we consider a set-theoretic universe with urlements \mathbb{N}.
- For a relative pca $\mathbb{P}=(\boldsymbol{P}, \underset{\sim}{\mathbf{P}})$, as in the usual set-theoretic forcing argument, we consider a \mathbb{P}-name, which is any set \boldsymbol{x} satisfying the following condition:

$$
\boldsymbol{x} \subseteq\{(\boldsymbol{p}, \boldsymbol{u}): \boldsymbol{p} \in \underset{\sim}{\mathbf{P}} \text { and }(\boldsymbol{u} \in \mathbb{N} \text { or } \boldsymbol{u} \text { is a } \mathbb{P} \text {-name })\} .
$$

- The \mathbb{P}-names are used as our universe. This notion can also be defined as the cumulative hierarchy:

$$
V_{0}^{\mathbb{P}}=\emptyset, \quad V_{\alpha}^{\mathbb{P}}=\bigcup_{\beta<\alpha} \mathcal{P}\left(\underset{\sim}{\mathbf{P}} \times\left(V_{\beta}^{\mathbb{P}} \cup \mathbb{N}\right)\right), \text { and } V_{\text {set }}^{\mathbb{P}}=\bigcup_{\alpha \in \mathrm{Ord}} V_{\alpha}^{\mathbb{P}} .
$$

- Note that the urelements \mathbb{N} are disjoint from $V_{\text {set }}^{\mathbb{P}}$. We define $V^{\mathbb{P}}=V_{\text {set }}^{\mathbb{P}} \cup \mathbb{N}$.

Lifschitz-like Realizability for Set Theory

Chen-Rathjen (2012) introduced Lifschitz realizability for IZF. We generalize Chen-Rathjen's realizability to any partial multifunction \mathbf{j}.

- Fix a partial multifunction $\mathbf{j}: \subseteq \underset{\sim}{\mathbf{P}} \rightrightarrows \underset{\sim}{\mathbf{P}}$. For $\boldsymbol{e} \in \underset{\sim}{\mathbf{P}}$ and a sentence φ of IZF from parameters from $\tilde{V^{\mathbb{P}}}$, we define a relation $\boldsymbol{e} \mathbb{I t}_{\mathbb{P}} \boldsymbol{\varphi}$.
- For a primitive recursive relation \boldsymbol{R} :

$$
\begin{aligned}
e \Vdash_{\mathbb{P}} R(\bar{a}) & \Longleftrightarrow \mathbb{N} \vDash R(\bar{a}) \\
e \Vdash_{\mathbb{P}} \mathbf{N}(a) & \Longleftrightarrow a \in \mathbb{N} \& e=a \\
e \Vdash_{\mathbb{P}} \operatorname{Set}(a) & \Longleftrightarrow a \in V_{\mathrm{set}}^{\mathbb{P}}
\end{aligned}
$$

- For set-theoretic symbols

$$
\begin{aligned}
e \Vdash_{\mathbb{P}} a \in b \Longleftrightarrow & \forall^{+} d \in \mathbf{j}(e) \exists c\left[\left(\pi_{0} d, c\right) \in b \wedge \pi_{1} d \Vdash_{\mathbb{P}} a=c\right] \\
e \Vdash_{\mathbb{P}} a=b \Longleftrightarrow & (a, b \in \mathbb{N} \wedge a=b) \vee(\operatorname{Set}(a) \wedge \operatorname{Set}(b) \wedge \\
& \forall^{+} d \in \mathbf{j}(e) \forall p, c\left[(p, c) \in a \rightarrow \pi_{0} d p \Vdash_{\mathbb{P}} c \in b\right] \wedge \\
& \forall^{+} d \in \mathbf{j}(e) \forall p, c\left[(p, c) \in b \rightarrow \pi_{1} d p \mathbb{F}_{\mathbb{P}} c \in a\right] .
\end{aligned}
$$

Here, we write $\forall^{+} x \in X A(x)$ if both $X \neq \emptyset$ and $\forall x \in X A(x)$ hold.

- For logical connectives:

$$
\begin{aligned}
& e \Vdash_{\mathbb{P}} \boldsymbol{A} \wedge B \Longleftrightarrow \pi_{0} e \Vdash_{\mathbb{P}} \boldsymbol{A} \wedge \pi_{1} e \Vdash_{\mathbb{P}} B \\
& e \Vdash_{\mathbb{P}} A \vee B \Longleftrightarrow \vee^{+} d \in \mathbf{j}(e)\left[\left(\pi_{0} d=0 \wedge \pi_{1} d \vdash_{\mathbb{P}} A\right)\right. \\
& \left.\vee\left(\pi_{0} d=1 \wedge \pi_{1} d \Vdash_{\mathbb{P}} B\right)\right] \\
& e \Vdash_{\mathbb{P}} \neg A \Longleftrightarrow(\forall a \in \underset{\sim}{\mathbf{P}}) a \Vdash_{\mathbb{P}} A \\
& e \Vdash_{\mathbb{P}} \boldsymbol{A} \rightarrow \boldsymbol{B} \Longleftrightarrow(\forall a \in \underset{\sim}{\mathbf{P}})\left[a \Vdash \boldsymbol{A} \rightarrow e a \Vdash_{\mathbb{P}} \boldsymbol{B}\right] .
\end{aligned}
$$

- For quantifiers:

$$
\begin{aligned}
& e \mathbb{F} \mathbb{P} \forall x A \Longleftrightarrow\left(V^{+} d \in \mathrm{j}(e)\right)\left(\forall c \in V^{\mathbb{P}}\right) e \mathbb{H}_{\mathbb{P}} A[c / x] \\
& e \mathbb{H}_{\mathbb{P}} \exists x A \Longleftrightarrow\left(\forall^{+} d \in \mathrm{j}(e)\right)\left(\exists c \in V^{\mathbb{P}}\right) e \operatorname{ll} \mathbb{P} A[c / x] .
\end{aligned}
$$

- A formula φ is \mathbf{j}-realizable over \mathbb{P} if there is $\boldsymbol{e} \in \boldsymbol{P}$ such that \boldsymbol{e} Ir $_{\mathbb{P}} \boldsymbol{\varphi}$.

Theorem

If \boldsymbol{j} is an idempotent jump operator on \mathbb{P}, then all axioms of IZF are \boldsymbol{j}-realizable over \mathbb{P}_{j}.

Theorem

(1) RDIV $\xi_{\partial w}^{c} B E$.
(2) BE $\neq \partial w_{c}^{c}$ RDIV.
(3) IVT ${\underset{J W}{c}}_{c}$ RDIV \times BE.

Theorem

(1) IZF + LLPO + $\mathrm{ABE}+\neg$ RDIV is LLPO $^{\text {- }}$-realizable.
(2) IZF $+\mathrm{BE}+\neg$ RDIV is BE^{-}-realizable.
(3) $I Z F+$ RDIV + $\rightarrow B E$ is RDIV ${ }^{\text {-realizable. }}$
(9) IZF + BE + RDIV + -IVT is (BE + RDIV) ${ }^{\text {D}}$-realizable.

[^0]: ${ }^{1}$ The speaker's research was partially supported by JSPS KAKENHI Grant 19K03602, 15H03634, the JSPS Core-to-Core Program (A. Advanced Research Networks), and the Young Scholars Overseas Visit Program in Nagoya University

