
Degrees of Second and Higher Order Polynomials 1

Donghyun Lima

aKAIST klimdhn@kaist.ac.kr

Fourth Workshop on Mathematical Logic and its Applications
22-24 March 2021 Online

1This work was supported by the National Research Foundation of Korea (grant
2017R1E1A1A03071032) and by the International Research & Development Program of
the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702).

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 1 / 18

First-order Polynomials

Syntax of First-order Polynomials

p, q ::= 1 | x | p + q | p · q | −p

Polynomials defined this way can be transformed into the normal
form.

Example: Normal Form

x · (x + x + 1 + x · (1 + 1 + 1) · x) + x + 1⇒ 3x3 + 2x2 + 2x + 1

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 2 / 18

First-order Polynomials

Two Polynomials in Normal Forms

cnx
n + · · ·+ c1x + c0 = dmx

m + · · ·+ d1x + d0

normal forms are equal ⇒ values are equal at every x

normal forms are different ⇒ values are different at some x
I Proof.
I Suppose that p and q have different normal forms.
I Then p − q cannot be reduced to zero polynomial.
I By fundamental theorem of algebra, the equation p(x)− q(x) = 0 has

only finitely many roots.
I So p(x)− q(x) 6= 0 at some x .

It needs proof!

One consequence of uniqueness of normal form: degree is well-defined.

Our work is something like this, but on second-order polynomials.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 3 / 18

Motivations for Second-order Polynomials

Computational cost is measured in dependence of input size.

A first-order function problem {0, 1}∗ → {0, 1}∗
I Cost : n 7→ max

w :|w |≤n
cost(w)

I w ∈ {0, 1}∗
I Cost : N→ N
I (First-order) polynomials characterize important subclasses of feasibly

computable functions. [Cobham, 1965]

A second-order function problem ({0, 1}∗){0,1}
∗
× {0, 1}∗ → {0, 1}∗

I Cost : `, n 7→ max
φ,w :|φ|≤`,|w |≤n

cost(φ,w)

I φ ∈ ({0, 1}∗){0,1}∗ , w ∈ {0, 1}∗, ` : N→ N
I |φ| ≤ ` means |φ(x)| ≤ `(|x |) for every x ∈ {0, 1}∗.
I Cost : NN × N→ N
I Second-order polynomials characterize important subclasses of feasibly

computable functions. [Kapron, 1996]

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 4 / 18

Overview

Second-order Polynomials

P(`, n) ∈ N (` : N→ N, n ∈ N)

Contribution

We define syntax and semantics of second-order polynomials.

We prove soundness (syntax ⇒ semantics).

We prove completeness (semantics ⇒ syntax).

We define degree of second-order polynomials.

Ongoing Work

Generalization to higher-order.

Applications to complexity theory.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 5 / 18

Syntax

Syntax

P,Q ::= 1 | x | P + Q | P ∗ Q | f(P)

Example

1

1 + x

f(1 + x)

f(1 + x) + x ∗ x ∗ 1
f(f(f(1 + x) + x ∗ x ∗ 1)) ∗ f(1 + x)

Syntactically different, but must be equivalent

1 + x and x + 1

x + (x + x) and (x + x) + x

1 ∗ x and x

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 6 / 18

Syntax

Syntactic Equivalence ∼syn

The equivalence relation ∼syn generated from

(P + Q) + R ∼syn P + (Q + R)

P + Q ∼syn Q + P

(P ∗ Q) ∗ R ∼syn P ∗ (Q ∗ R)

P ∗ Q ∼syn Q ∗ P
P ∗ (Q + R) ∼syn (P ∗ Q) + (P ∗ R)

P ∗ 1 ∼syn P

which is congruent to +/∗/f.

Example

f(x ∗ x) ∗ f(x) + f(x ∗ x) ∼syn f(x ∗ x) ∗ (1 + f(x))

f(1 + x ∗ 1 + 1 + 1) ∼syn f(x + 1 + 1 + 1)

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 7 / 18

Semantics

Syntax

P,Q ::= 1 | x | P + Q | P ∗ Q | f(P)

Semantics

Canonical recursive interpretation as a second-order natural number
function JPK : NN × N→ N
J1K(`, n) := 1

JxK(`, n) := n

JP + QK(`, n) := JPK(`, n) + JQK(`, n)

JP ∗ QK(`, n) := JPK(`, n) ∗ JQK(`, n)

Jf(P)K(`, n) := `(JPK(`, n))

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 8 / 18

Soundness

Soundness Theorem

If P ∼syn Q, then JPK = JQK.

JPK = JQK means that JPK, JQK : NN × N→ N agree on all
arguments ` : N→ N and n ∈ N.

Proof

Induction on the generating rules of ∼syn.

The proof follows directly from definition.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 9 / 18

Completeness Theorem

If JPK = JQK, then P ∼syn Q.

Proof Idea

For example, consider P = f(x + f(x)) ∗ x + f(x + f(x)) ∗ f(1).

Replace f(x + f(x)) by y1, f(1) by y2, x by x .

y1 ∗ x + y1 ∗ y2
We transformed P into a first-order multivariate polynomial.

Do it recursively down below to analyze the structure of P as a graph.

Suppose P �syn Q. Use the following lemma to construct ` : N→ N
and n ∈ N such that JPK(`, n) 6= JQK(`, n).

Lemma (well-known elementary fact)

For every distinct multivariate (first-order) polynomials
p, q ∈ Z[y1, · · · , yn], there exist a1, · · · , an ∈ N such that
p(y1 := a1, · · · , yn := an) 6= q(y1 := a1, · · · , yn := an).

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 10 / 18

Degree of Second-order Polynomials

Syntax

P,Q ::= 1 | x | P + Q | P ∗ Q | f(P)

Definition of DEG

DEG(1) := 0

DEG(x) := 1

DEG(P + Q) := max(DEG(P),DEG(Q))

DEG(P ∗ Q) := DEG(P) + DEG(Q)

DEG(f(P)) := DEG(P) · x

It coincides with the usual (first-order) polynomial degree.

For a second-order polynomial P, DEG(P) is a first-order polynomial.

Example

DEG(f(f(x)) ∗ f(x5) ∗ x) = x2 + 5x + 1

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 11 / 18

Degree of Second-order Polynomials

Example

DEG(f(f(x)) ∗ f(x5) ∗ x) = x2 + 5x + 1

DEG(f(x999)) = 999x

DEG(f(f(x))∗f(x5)∗x+f(x999)) = max(x2+5x+1, 999x) = x2+5x+1

max is not pointwise. If it were, the result is not a polynomial.

Take the one with the larger degree; ties are broken by dictionary
order.

max(x5 + x4 + 10x3, x5 + x4 + x3) = x5 + x4 + 10x3

Example

deg(DEG(f(f(x)) ∗ f(x5) ∗ x)) = deg(x2 + 5x + 1) = 2

The (first-order) degree of the (second-order) degree is the largest
nesting depth of f.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 12 / 18

Degree of Second-order Polynomials

If P ∼syn Q, then DEG(P) = DEG(Q)
I Syntactically equivalent polynomials have the same degree.
I Proof is by straightforward induction.

Completeness Theorem

If JPK = JQK, then P ∼syn Q.

JPK = JQK⇒ P ∼syn Q ⇒ DEG(P) = DEG(Q)
I By completeness theorem, semantically the same polynomials have the

same degree.
I It would be absurd if the cost of a second-order algorithm

(({0, 1}∗){0,1}∗ × {0, 1}∗ → {0, 1}∗) is given by a second-order
polynomial (NN × N→ N) which has multiple possible degrees.

I Completeness theorem is crucial in well-defining degree!

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 13 / 18

Compositions

Elementary Fact

For first-order polynomials p 6= 0 and q 6= 0,

deg(p ◦ q) = deg(p)× deg(q).

We generalize this to second-order polynomials.

What is the composition of second-order polynomials?

Two (Semantic) Compositions

For F ,G : NN × N→ N,

λ`.λn.F (`,G (`, n))

λ`.F (G (`)) (as maps of type NN → NN)

We give syntactic definition of each composition.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 14 / 18

x-composition ◦x

Definition

P ◦x Q := replace every occurrence of x in P by Q (at once).

Properties

JP ◦x QK(`, n) = JPK(`, JQK(`, n))

DEG(P ◦x Q) = DEG(P)× DEG(Q)

Proof is by straightforward induction.

Congruent with respect to ∼syn by soundness and completeness.

Elementary Fact

For first-order polynomials p 6= 0 and q 6= 0,

deg(p ◦ q) = deg(p)× deg(q).

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 15 / 18

f-composition ◦f
Definition

P ◦f Q := replace occurrence of subterm f(P ′) in P by Q ◦x (P ′ ◦f Q)
(recursively from below).

Properties

JP ◦f QK(`, n) = JPK(JQK(`), n)

DEG(P ◦f Q) = DEG(P) ◦ DEG(Q)

Proof is by straightforward induction.

Congruent with respect to ∼syn by soundness and completeness.

Elementary Fact

For first-order polynomials p 6= 0 and q 6= 0,

deg(p ◦ q) = deg(p)× deg(q).

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 16 / 18

Generalization to Higher-order (work in progress)

Definition

A higher-order polynomial is a lambda term of simply typed lambda
calculus with base type N and three constants:

1 : N
+ : N→ N→ N
∗ : N→ N→ N

A first-order polynomial is a lambda term of type N→ N.

A second-order polynomial is a lambda term of type
(N→ N)→ (N→ N).

A multivariate first-order polynomial is a lambda term of type
N→ N→ · · · → N.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 17 / 18

Application to Complexity Theory (work in progress)

Cost of computing a string function f : {0, 1}∗ → {0, 1}∗ is measured
by a natural number function p : N→ N

I (First-order) polynomials characterize important subclasses of
computable functions. [Cobham, 1965]

I One can further refine these subclasses by considering degrees of
polynomials. (O(n),O(n2), · · ·)

Cost of computing a second-order string function
F : ({0, 1}∗ → {0, 1}∗)× {0, 1}∗ → {0, 1}∗ is measured by a
second-order natural number function P : NN × N→ N.

I Second-order polynomials characterize important subclasses of
computable functions. [Kapron, 1996]

I One can further refine these subclasses by considering degrees of
second-order polynomials.

Cost of computing a higher-order string function is measured by a
higher-order natural number function.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 18 / 18

