Degrees of Second and Higher Order Polynomials *

Donghyun Lim?
2KAIST klimdhn@kaist.ac.kr

Fourth Workshop on Mathematical Logic and its Applications
22-24 March 2021 Online

!This work was supported by the National Research Foundation of Korea (grant
2017R1E1A1A03071032) and by the International Research & Development Program of
the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702).

N SN AT

First-order Polynomials

Syntax of First-order Polynomials

p,gi=1|x|p+qlp-q|—p

@ Polynomials defined this way can be transformed into the normal
form.

Example: Normal Form
X (x+x+1+x-(1+1+1)-x)+x+1=3x3+2x>+2x+1

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March

2/18

First-order Polynomials

Two Polynomials in Normal Forms

X"+ -t ax+ 6 =dpx™ + -+ dix+ do

normal forms are equal = values are equal at every x
normal forms are different = values are different at some x

» Proof.

» Suppose that p and g have different normal forms.

» Then p — g cannot be reduced to zero polynomial.

» By fundamental theorem of algebra, the equation p(x) — g(x) = 0 has
only finitely many roots.

» So p(x) — q(x) # 0 at some x.

It needs proof!

One consequence of uniqueness of normal form: degree is well-defined.

@ Our work is something like this, but on second-order polynomials.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 3/18

Motivations for Second-order Polynomials

@ Computational cost is measured in dependence of input size.
@ A first-order function problem {0,1}* — {0,1}"

» Cost:n— max cost(w)
w:lw|<n

» we{0,1}"

» Cost: N—> N

» (First-order) polynomials characterize important subclasses of feasibly
computable functions. [Cobham, 1965]

e A second-order function problem ({0,1}*){%1}" x {0,1}* — {0,1}*

» Cost:¢,n— max cost(¢, w)
é,w:|p| <L, |w|<n

o€ ({0,130 'we{0,1}", ¢ N> N

|¢| < € means |¢(x)| < £(]x]) for every x € {0,1}".

Cost : N x N - N

Second-order polynomials characterize important subclasses of feasibly
computable functions. [Kapron, 1996]

vV vyVvYyy

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 4/18

Overview

Second-order Polynomials

P(¢,n) e N ({:N—N,neN)

Contribution
@ We define syntax and semantics of second-order polynomials.
@ We prove soundness (syntax = semantics).
@ We prove completeness (semantics = syntax).

@ We define degree of second-order polynomials.

Ongoing Work

o Generalization to higher-order.

@ Applications to complexity theory.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 5/18

Syntax
Syntax

P,Q:=1|x|P+Q|PxQ]|f(P)

Example
o1
14 x
f(1 + x)
f(1+x)+xxx*1
f(F(F(1 + x) + x * x*x 1)) * f(1 + x)

Syntactically different, but must be equivalent
@el+xandx+1
@ x+ (x+x) and (x +x) + x
@ 1xxandx

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 6/18

Syntax

Syntactic Equivalence ~,

The equivalence relation ~,, generated from
o (P+Q)+R~sn P+(Q+R)
o P+Qr~gn Q+P

(P*Q)* R ~sn P*(Q*R)

PxQ ~en Q*P

Px(Q+ R) ~sn (P*xQ)+ (PxR)
o Pxl~g, P

which is congruent to +/x/f.

Example
o f(x * x) * f(x) + f(x * x) ~syn f(x * x) * (1 + f(x))
@ f(1+x*x1+1+1)~gnf(x+1+1+1)

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 7/18

Semantics

Syntax
P,Q:=1|x|P+Q|PxQ|f(P)

Semantics

@ Canonical recursive interpretation as a second-order natural number
function [P] : NN x N = N

e [1](¢,n):=1

o [x](¢,n):=n

o [P+ Q[(¢,n) := [PI(£,n) + [QI(£, n)

o [Px Q][4 n):=[P](,n)=*[Q](£, n)

o [f(P)](£, n) := £([P](¢, n))

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 8/18

Soundness

Soundness Theorem

If P ~sn Q, then [P] = [Q]. J

o [P] = [Q] means that [P],[Q] : NN x N — N agree on all
arguments £ : N — N and n € N.

Proof

Induction on the generating rules of ~,. J

@ The proof follows directly from definition.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 9/18

Completeness Theorem
If [P] = [Q]. then P ~gn Q.

Proof Idea
o For example, consider P = f(x + f(x)) * x + f(x + f(x)) = f(1).
o Replace f(x + f(x)) by y1, f(1) by y2, x by x.
@ yikXtyi*x)y2
o We transformed P into a first-order multivariate polynomial.
@ Do it recursively down below to analyze the structure of P as a graph.

@ Suppose P g, Q. Use the following lemma to construct £: N — N
and n € N such that [P](¢, n) # [Q](¥, n).

Lemma (well-known elementary fact)

For every distinct multivariate (first-order) polynomials
P, q € Z[y1,- - ,¥n|, there exist a1, -+ ,a, € N such that

P(YI =d1, ", Yn = an) 7& q(yl =d1, ", Yn = an)'

v

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 10/18

Degree of Second-order Polynomials
Syntax

P,R:=1|x|P+Q|PxQ|f(P)

Definition of DEG

o DEG(1) =0

e DEG(x) :=

° DEG(P+ Q) = max(DEG(P), DEG(Q))
o DEG(P * Q) := DEG(P) + DEG(Q)

o DEG(f(P)) .= DEG(P) - x

@ It coincides with the usual (first-order) polynomial degree.
e For a second-order polynomial P, DEG(P) is a first-order polynomial.

Example
DEG(f(f(x)) * f(x®) * x) = x> + 5x + 1 J
MLA2021 March 11/18

Degree of Second-order Polynomials

Example
o DEG(f(f(x)) * f(x®) * x) = x*> + 5x + 1
o DEG(f(x%)) = 999x
o DEG(f(f(x))*f(x>)*x+f(x?%?)) = max(x?+5x+1,999x) = x>+5x+1

@ max is not pointwise. If it were, the result is not a polynomial.

@ Take the one with the larger degree; ties are broken by dictionary
order.

o max(x® + x* +10x3, x5 + x* + x3) = x® + x* + 10x3

Example
deg(DEG(f(f(x)) * f(x5) * x)) = deg(x?® +5x +1) =2 J

@ The (first-order) degree of the (second-order) degree is the largest
nesting depth of f.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 12/18

Degree of Second-order Polynomials

o If P ~gy Q, then DEG(P) = DEG(Q)

» Syntactically equivalent polynomials have the same degree.
» Proof is by straightforward induction.

Completeness Theorem
If [P] = [Q], then P ~, Q.

o [P]=[Q] = P ~sn Q = DEG(P) = DEG(Q)

» By completeness theorem, semantically the same polynomials have the
same degree.

> It would be absurd if the cost of a second-order algorithm
(({o, 11101} x {0,1}* — {0,1}") is given by a second-order
polynomial (NN x N — N) which has multiple possible degrees.
» Completeness theorem is crucial in well-defining degree!

Donghyun Lim (KAIST) Second-order Polynomials

MLA2021 March 13/18

Compositions

Elementary Fact
For first-order polynomials p # 0 and g # 0,

deg(p o q) = deg(p) x deg(q).

@ We generalize this to second-order polynomials.

@ What is the composition of second-order polynomials?

Two (Semantic) Compositions
For F,G:NNXN%N,
o M.An.F(¢,G(¢,n))
o M.F(G(£)) (as maps of type NN — NN)

@ We give syntactic definition of each composition.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 14 /18

X-composition oy

Definition

P ox Q := replace every occurrence of x in P by Q (at once).

Properties

o [P ox Q](¢, n) = [P](¢, [QI(£, n))
o DEG(P oy Q) = DEG(P) x DEG(Q)

@ Proof is by straightforward induction.

@ Congruent with respect to ~s,, by soundness and completeness.

Elementary Fact
For first-order polynomials p # 0 and g # 0,

deg(p o q) = deg(p) x deg(q).

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 15/18

f-composition of

Definition
P of Q := replace occurrence of subterm f(P’) in P by Q ox (P’ of Q)
(recursively from below).

Properties

o [Pos QI(¢, n) = [PI(IQI(£) n)
e DEG(P of Q) = DEG(P) o DEG(Q)

@ Proof is by straightforward induction.

o Congruent with respect to ~g,, by soundness and completeness.

Elementary Fact
For first-order polynomials p # 0 and g # 0,

deg(p o q) = deg(p) x deg(q).

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 16 /18

Generalization to Higher-order (work in progress)

Definition
A higher-order polynomial is a lambda term of simply typed lambda
calculus with base type N and three constants:

1:N
+:N—-N—>N
*:N—-N-—=-N

@ A first-order polynomial is a lambda term of type N — N.

@ A second-order polynomial is a lambda term of type
(N—N) = (N—N).

@ A multivariate first-order polynomial is a lambda term of type
N->N=...—-N

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 17 /18

Application to Complexity Theory (work in progress)

@ Cost of computing a string function f : {0,1}* — {0,1}* is measured
by a natural number function p: N — N
» (First-order) polynomials characterize important subclasses of
computable functions. [Cobham, 1965]
> One can further refine these subclasses by considering degrees of
polynomials. (O(n), O(n?),---)
@ Cost of computing a second-order string function
F:({0,1}* — {0,1}*) x {0,1}* — {0,1}* is measured by a
second-order natural number function P : N¥ x N — N.
» Second-order polynomials characterize important subclasses of
computable functions. [Kapron, 1996]
» One can further refine these subclasses by considering degrees of
second-order polynomials.

o Cost of computing a higher-order string function is measured by a
higher-order natural number function.

Donghyun Lim (KAIST) Second-order Polynomials MLA2021 March 18/18

