Degrees of Second and Higher Order Polynomials ${ }^{1}$

Donghyun Lima
${ }^{a}$ KAIST klimdhn@kaist.ac.kr
Fourth Workshop on Mathematical Logic and its Applications 22-24 March 2021 Online

[^0]
First-order Polynomials

Syntax of First-order Polynomials

$$
p, q::=1|x| p+q|p \cdot q|-p
$$

- Polynomials defined this way can be transformed into the normal form.

Example: Normal Form
$x \cdot(x+x+1+x \cdot(1+1+1) \cdot x)+x+1 \Rightarrow 3 x^{3}+2 x^{2}+2 x+1$

First-order Polynomials

Two Polynomials in Normal Forms

$$
c_{n} x^{n}+\cdots+c_{1} x+c_{0}=d_{m} x^{m}+\cdots+d_{1} x+d_{0}
$$

- normal forms are equal \Rightarrow values are equal at every x
- normal forms are different \Rightarrow values are different at some x
- Proof.
- Suppose that p and q have different normal forms.
- Then $p-q$ cannot be reduced to zero polynomial.
- By fundamental theorem of algebra, the equation $p(x)-q(x)=0$ has only finitely many roots.
- So $p(x)-q(x) \neq 0$ at some x.
- It needs proof!
- One consequence of uniqueness of normal form: degree is well-defined.
- Our work is something like this, but on second-order polynomials.

Motivations for Second-order Polynomials

- Computational cost is measured in dependence of input size.
- A first-order function problem $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- Cost : $n \mapsto \max _{w:|w| \leq n} \operatorname{cost}(w)$
- $w \in\{0,1\}^{*}$
- Cost : $\mathbb{N} \rightarrow \mathbb{N}$
- (First-order) polynomials characterize important subclasses of feasibly computable functions. [Cobham, 1965]
- A second-order function problem $\left(\{0,1\}^{*}\right)^{\{0,1\}^{*}} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- Cost : $\ell, n \mapsto \max _{\phi, w:|\phi| \leq \ell,|w| \leq n} \operatorname{cost}(\phi, w)$
- $\phi \in\left(\{0,1\}^{*}\right)^{\{0,1\}^{*}}, w \in\{0,1\}^{*}, \ell: \mathbb{N} \rightarrow \mathbb{N}$
- $|\phi| \leq \ell$ means $|\phi(x)| \leq \ell(|x|)$ for every $x \in\{0,1\}^{*}$.
- Cost : $\mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}$
- Second-order polynomials characterize important subclasses of feasibly computable functions. [Kapron, 1996]

Overview

Second-order Polynomials

$$
P(\ell, n) \in \mathbb{N} \quad(\ell: \mathbb{N} \rightarrow \mathbb{N}, n \in \mathbb{N})
$$

Contribution

- We define syntax and semantics of second-order polynomials.
- We prove soundness (syntax \Rightarrow semantics).
- We prove completeness (semantics \Rightarrow syntax).
- We define degree of second-order polynomials.

Ongoing Work

- Generalization to higher-order.
- Applications to complexity theory.

Syntax

Syntax

$$
P, Q::=\mathbf{1}|\mathbf{x}| P+Q|P * Q| \mathbf{f}(P)
$$

Example

- 1
- $1+x$
- $f(\mathbf{1}+\mathrm{x})$
- $\mathbf{f}(\mathbf{1}+\mathbf{x})+\mathbf{x} * \mathbf{x} * \mathbf{1}$
- $\mathbf{f}(\mathbf{f}(\mathbf{f}(\mathbf{1}+\mathbf{x})+\mathbf{x} * \mathbf{x} * \mathbf{1})) * \mathbf{f}(\mathbf{1}+\mathbf{x})$

Syntactically different, but must be equivalent

- $\mathbf{1}+\mathbf{x}$ and $\mathbf{x}+\mathbf{1}$
- $\mathbf{x}+(\mathbf{x}+\mathbf{x})$ and $(\mathbf{x}+\mathbf{x})+\mathbf{x}$
- $\mathbf{1 * x}$ and \mathbf{x}

Syntax

Syntactic Equivalence $\sim_{\text {syn }}$

The equivalence relation $\sim_{\text {syn }}$ generated from

- $(P+Q)+R \sim_{\text {syn }} P+(Q+R)$
- $P+Q \sim_{\text {syn }} Q+P$
- $(P * Q) * R \sim_{\text {syn }} P *(Q * R)$
- $P * Q \sim_{\text {syn }} Q * P$
- $P *(Q+R) \sim_{\text {syn }}(P * Q)+(P * R)$
- $P * 1 \sim_{\text {syn }} P$
which is congruent to $+/ * / \mathbf{f}$.

Example

- $\mathbf{f}(x * x) * \mathbf{f}(x)+\mathbf{f}(x * x) \sim_{\text {syn }} \mathbf{f}(x * x) *(1+\mathbf{f}(x))$
- $\mathbf{f}(1+x * 1+1+1) \sim_{\text {syn }} \mathbf{f}(x+1+1+1)$

Semantics

Syntax

$$
P, Q::=\mathbf{1}|\mathbf{x}| P+Q|P * Q| \mathbf{f}(P)
$$

Semantics

- Canonical recursive interpretation as a second-order natural number function $\llbracket P \rrbracket: \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}$
- $\llbracket 1 \rrbracket(\ell, n):=1$
- $\llbracket \mathbf{x} \rrbracket(\ell, n):=n$
- $\llbracket P+Q \rrbracket(\ell, n):=\llbracket P \rrbracket(\ell, n)+\llbracket Q \rrbracket(\ell, n)$
- $\llbracket P * Q \rrbracket(\ell, n):=\llbracket P \rrbracket(\ell, n) * \llbracket Q \rrbracket(\ell, n)$
- $\llbracket \mathbf{f}(P) \rrbracket(\ell, n):=\ell(\llbracket P \rrbracket(\ell, n))$

Soundness

Soundness Theorem
If $P \sim_{\text {syn }} Q$, then $\llbracket P \rrbracket=\llbracket Q \rrbracket$.

- $\llbracket P \rrbracket=\llbracket Q \rrbracket$ means that $\llbracket P \rrbracket, \llbracket Q \rrbracket: \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}$ agree on all arguments $\ell: \mathbb{N} \rightarrow \mathbb{N}$ and $n \in \mathbb{N}$.

Proof

Induction on the generating rules of $\sim_{\text {syn }}$.

- The proof follows directly from definition.

Completeness Theorem

If $\llbracket P \rrbracket=\llbracket Q \rrbracket$, then $P \sim_{\text {syn }} Q$.

Proof Idea

- For example, consider $P=\mathbf{f}(\mathbf{x}+\mathbf{f}(\mathbf{x})) * \mathbf{x}+\mathbf{f}(\mathbf{x}+\mathbf{f}(\mathbf{x})) * \mathbf{f}(\mathbf{1})$.
- Replace $\mathbf{f}(\mathbf{x}+\mathbf{f}(\mathbf{x}))$ by $y_{1}, \mathbf{f}(\mathbf{1})$ by y_{2}, \mathbf{x} by x.
- $y_{1} * x+y_{1} * y_{2}$
- We transformed P into a first-order multivariate polynomial.
- Do it recursively down below to analyze the structure of P as a graph.
- Suppose $P \nsim$ syn Q. Use the following lemma to construct $\ell: \mathbb{N} \rightarrow \mathbb{N}$ and $n \in \mathbb{N}$ such that $\llbracket P \rrbracket(\ell, n) \neq \llbracket Q \rrbracket(\ell, n)$.

Lemma (well-known elementary fact)

For every distinct multivariate (first-order) polynomials
$p, q \in \mathbb{Z}\left[y_{1}, \cdots, y_{n}\right]$, there exist $a_{1}, \cdots, a_{n} \in \mathbb{N}$ such that
$p\left(y_{1}:=a_{1}, \cdots, y_{n}:=a_{n}\right) \neq q\left(y_{1}:=a_{1}, \cdots, y_{n}:=a_{n}\right)$.

Degree of Second-order Polynomials

Syntax

$$
P, Q::=\mathbf{1}|\mathbf{x}| P+Q|P * Q| \mathbf{f}(P)
$$

Definition of DEG

- DEG(1) $:=0$
- $\operatorname{DEG}(\mathbf{x}):=1$
- $\operatorname{DEG}(P+Q):=\max (\operatorname{DEG}(P), \operatorname{DEG}(Q))$
- $\operatorname{DEG}(P * Q):=\operatorname{DEG}(P)+\operatorname{DEG}(Q)$
- $\operatorname{DEG}(\mathbf{f}(P)):=\operatorname{DEG}(P) \cdot x$
- It coincides with the usual (first-order) polynomial degree.
- For a second-order polynomial $P, \mathrm{DEG}(P)$ is a first-order polynomial.

Example
$\operatorname{DEG}\left(\mathbf{f}(\mathbf{f}(\mathbf{x})) * \mathbf{f}\left(\mathbf{x}^{5}\right) * \mathbf{x}\right)=x^{2}+5 x+1$

Degree of Second-order Polynomials

Example

- $\operatorname{DEG}\left(\mathbf{f}(\mathbf{f}(\mathbf{x})) * \mathbf{f}\left(\mathbf{x}^{5}\right) * \mathbf{x}\right)=x^{2}+5 x+1$
- $\operatorname{DEG}\left(f\left(\mathbf{x}^{999}\right)\right)=999 x$
- $\operatorname{DEG}\left(\mathbf{f}(\mathbf{f}(\mathbf{x})) * \mathbf{f}\left(\mathbf{x}^{5}\right) * \mathbf{x}+\mathbf{f}\left(\mathbf{x}^{999}\right)\right)=\max \left(x^{2}+5 x+1,999 x\right)=x^{2}+5 x+1$
- max is not pointwise. If it were, the result is not a polynomial.
- Take the one with the larger degree; ties are broken by dictionary order.
- $\max \left(x^{5}+x^{4}+10 x^{3}, x^{5}+x^{4}+x^{3}\right)=x^{5}+x^{4}+10 x^{3}$

Example
 $\operatorname{deg}\left(\operatorname{DEG}\left(\mathbf{f}(\mathbf{f}(\mathbf{x})) * \mathbf{f}\left(\mathbf{x}^{5}\right) * \mathbf{x}\right)\right)=\operatorname{deg}\left(x^{2}+5 x+1\right)=2$

- The (first-order) degree of the (second-order) degree is the largest nesting depth of \mathbf{f}.

Degree of Second-order Polynomials

- If $P \sim_{\text {syn }} Q$, then $\operatorname{DEG}(P)=\operatorname{DEG}(Q)$
- Syntactically equivalent polynomials have the same degree.
- Proof is by straightforward induction.

Completeness Theorem

If $\llbracket P \rrbracket=\llbracket Q \rrbracket$, then $P \sim_{\text {syn }} Q$.

- $\llbracket P \rrbracket=\llbracket Q \rrbracket \Rightarrow P \sim_{\text {syn }} Q \Rightarrow \operatorname{DEG}(P)=\operatorname{DEG}(Q)$
- By completeness theorem, semantically the same polynomials have the same degree.
- It would be absurd if the cost of a second-order algorithm $\left(\left(\{0,1\}^{*}\right)^{\{0,1\}^{*}} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}\right)$ is given by a second-order polynomial $\left(\mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}\right)$ which has multiple possible degrees.
- Completeness theorem is crucial in well-defining degree!

Compositions

Elementary Fact

For first-order polynomials $p \neq 0$ and $q \neq 0$,

$$
\operatorname{deg}(p \circ q)=\operatorname{deg}(p) \times \operatorname{deg}(q)
$$

- We generalize this to second-order polynomials.
- What is the composition of second-order polynomials?

Two (Semantic) Compositions

For $F, G: \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}$,

- $\lambda \ell . \lambda n . F(\ell, G(\ell, n))$
- $\lambda \ell . F(G(\ell))$ (as maps of type $\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$)
- We give syntactic definition of each composition.

x-composition \circ_{x}

Definition

$P \circ_{\mathrm{x}} Q:=$ replace every occurrence of \mathbf{x} in P by Q (at once).

Properties

- $\llbracket P \circ_{\mathrm{x}} Q \rrbracket(\ell, n)=\llbracket P \rrbracket(\ell, \llbracket Q \rrbracket(\ell, n))$
- $\operatorname{DEG}\left(P \circ_{\mathrm{x}} Q\right)=\operatorname{DEG}(P) \times \operatorname{DEG}(Q)$
- Proof is by straightforward induction.
- Congruent with respect to $\sim_{\text {syn }}$ by soundness and completeness.

Elementary Fact

For first-order polynomials $p \neq 0$ and $q \neq 0$,

$$
\operatorname{deg}(p \circ q)=\operatorname{deg}(p) \times \operatorname{deg}(q)
$$

f-composition \circ_{f}

Definition

$P \circ_{\mathbf{f}} Q:=$ replace occurrence of subterm $\mathbf{f}\left(P^{\prime}\right)$ in P by $Q \circ_{\mathbf{x}}\left(P^{\prime} \circ_{\mathbf{f}} Q\right)$ (recursively from below).

Properties

- $\llbracket P \circ_{\mathbf{f}} Q \rrbracket(\ell, n)=\llbracket P \rrbracket(\llbracket Q \rrbracket(\ell), n)$
- $\operatorname{DEG}\left(P \circ_{\mathbf{f}} Q\right)=\operatorname{DEG}(P) \circ \operatorname{DEG}(Q)$
- Proof is by straightforward induction.
- Congruent with respect to $\sim_{s y n}$ by soundness and completeness.

Elementary Fact

For first-order polynomials $p \neq 0$ and $q \neq 0$,

$$
\operatorname{deg}(p \circ q)=\operatorname{deg}(p) \times \operatorname{deg}(q)
$$

Generalization to Higher-order (work in progress)

Definition

A higher-order polynomial is a lambda term of simply typed lambda calculus with base type \mathbb{N} and three constants:

$$
\begin{aligned}
& 1: \mathbb{N} \\
& +: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
& *: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

- A first-order polynomial is a lambda term of type $\mathbb{N} \rightarrow \mathbb{N}$.
- A second-order polynomial is a lambda term of type $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$.
- A multivariate first-order polynomial is a lambda term of type $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \cdots \rightarrow \mathbb{N}$.

Application to Complexity Theory (work in progress)

- Cost of computing a string function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is measured by a natural number function $p: \mathbb{N} \rightarrow \mathbb{N}$
- (First-order) polynomials characterize important subclasses of computable functions. [Cobham, 1965]
- One can further refine these subclasses by considering degrees of polynomials. $\left(O(n), O\left(n^{2}\right), \cdots\right)$
- Cost of computing a second-order string function $F:\left(\{0,1\}^{*} \rightarrow\{0,1\}^{*}\right) \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is measured by a second-order natural number function $P: \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}$.
- Second-order polynomials characterize important subclasses of computable functions. [Kapron, 1996]
- One can further refine these subclasses by considering degrees of second-order polynomials.
- Cost of computing a higher-order string function is measured by a higher-order natural number function.

[^0]: ${ }^{1}$ This work was supported by the National Research Foundation of Korea (grant 2017R1E1A1A03071032) and by the International Research \& Development Program of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702).

