Failure of Cut-Elimination in the Cyclic Proof System of Bunched Logic with Inductive Propositions

Kenji Saotome (Nagoya)

Koji Nakazawa (Nagoya)

Daisuke Kimura (Toho)

MLA 2021 @ online

Cyclic Proof System

Proof with Infinite Paths

- $LKID_{\omega}$ [Brotherston'06] for inductive predicates
 - Extension of LK which admits infinite paths in proofs with some soundness condition (global trace condition)

Global Trace Condition

 Every infinite path has a trace (sequence of predicates on LHS) where unfolding rules are applied infinitely many times

Cyclic Proofs

- CLKID_ω [Brotherston'06]
 - Regular representation of $LKID_{\omega}$ proofs by cyclic structure of proofs
 - Good for automation of (bottom-up) proof search

Cut-Elimination in Cyclic Proof Systems

- Cut-elimination does not hold in the cyclic proof system for the symbolic-heap separation logic [Kimura+'19]
 - separation logic (SL) is for program analysis of pointer programs based on the bunched logic (BI)
 - symbolic heaps are restricted forms of the SL formulas
- Questions:
 - How about the cut-elimination in cyclic proof systems for other logics such as BI, LL, FOL,...?
 - Can we restrict predicates to recover the cut-elimination?

This Talk

- Cut-elimination does not hold in cyclic Bl
 - even if we consider only 0-ary predicates
 - [Kimura+'19]'s counterexample contains
 2-ary predicates
 - using the proof unrolling for cyclic proofs
 - the proof can be adapted to SL and MLL

Cut-Elimination Fails in Cyclic Proof System of Symbolic-Heap SL [Kimura+'19]

SL₀: Core Separation Logic

- Symbolic-heap formulas represent shape of heap memories
 - variables represent addresses of memory cells
 - x → y means "the heap contains exactly one memory cell of address x which stores the value y"
 - A * B means "the heap can be divided to two disjoint subheaps satisfying A and B, respectively"
- Example: $x \mapsto y * y \mapsto x$
 - implies x≠y

Symbolic Heaps in SL₀

$$A ::= x \mapsto (t_1...t_n) | A * A' | P(t_1...t_n)$$
 (t ::= x | nil)

- $P(x_1...x_m)$ is inductively defined by definition clauses
 - $\exists z_1...z_n A(x_1...x_m, z_1...z_n)$
- Examples of inductive definitions
 - $ls(x,y) = (x \mapsto y) \mid \exists z(x \mapsto z * ls(z,y))$
 - $sl(x,y) = (x \mapsto y) \mid \exists z(sl(x,z) * z \mapsto y)$

CSL₀ID_w

- Cyclic-proof system for SL₀
 - $P(x) := \exists z D_1(x,z) \mid \dots \mid \exists z D_n(x,z)$

$$\begin{array}{c|c} \hline A \vdash A & Id & \hline A \vdash B & B \vdash C \\ \hline A \vdash C & Cut & \hline A_1 \vdash B_1 & A_2 \vdash B_2 \\ \hline A_1 * A_2 \vdash B_1 * B_2 \end{array} * \\ \hline \begin{array}{c} \hline A \vdash B * D_i(x,t) \\ \hline A \vdash B * P(x) \end{array} RU \\ \hline \begin{array}{c} \hline D_1(x,z) * A \vdash B & \dots & D_n(x,z) * A \vdash B \\ \hline P(x) * A \vdash B \end{array} LU (z \text{ is fresh}) \end{array}$$

Example: Is * Is ⊢ Is

$$\frac{\overline{x \mapsto y * |s(y,z) \vdash x \mapsto y * |s(y,z)}}{x \mapsto y * |s(y,z) \vdash sl(x,z)} \stackrel{\text{Id}}{\cup \mathsf{R}} \frac{\overline{x \mapsto v \vdash x \mapsto v} \stackrel{\text{Id}}{x \mapsto v * |s(v,y) * |s(y,z) \vdash x \mapsto v * |s(v,y)}}{x \mapsto v * |s(v,y) * |s(y,z) \vdash |s(x,z)} \stackrel{\text{RU}}{x \mapsto v + |s(y,z) \vdash |s(y,z)} \stackrel{\text{RU}}{x \mapsto v + |s(y,z)} \stackrel{\text{RU}}{x \mapsto v + |s(y,z) \vdash |s(y,z)} \stackrel{\text{RU}}{x \mapsto v + |s(y,z)} \stackrel{\text{RU}}{x \mapsto v + |s(y,z) \vdash |s(y,z$$

Theorem

- Theorem [Kimura+'19]:
 Cut-elimination does not hold in CSL₀ID_ω
- Proof
 - $ls(x,y) \vdash sl(x,y)$ is
 - provable with cuts, and
 - not provable without cuts

No Cut-Free Cyclic Proof

• We can chase a contradictory path in any cyclic proof of $ls(x,y) \vdash sl(x,y)$

- How about other cyclic proof systems?
 - Bunched logic (BI) contains additive conjunctions that admit structural rules (weakening and contraction)
- Can we restrict inductive predicates to recover the cut-elimination?
 - What happens if we restrict the arity to one or zero?

Bunched Logic

Bunched Logic [O'Hearn+'99]

- Logic with multiplicative (*) and additive (^) conjunctions
 - for reasoning compositional properties of resources
 - SL is based on the bunched logic
- Lists of formulas in seugents are extended by bunches

• e.g.)
$$(A, B); (A, C) \vdash A * (B \land C)$$

bunch

• intuitively means $(A * B) \land (A * C) \vdash A * (B \land C)$

• cf.) In LJ, A, B, C \vdash D means A \land B \land C \vdash D

Formulas and Bunches

- Formulas: $A ::= I | T | P | A * A | A \land A$
 - I and T are proposition constants
 - P is an atomic or an inductive propositions (0-ary only)
- Bunches: $\Gamma ::= A | \Gamma, \Gamma | \Gamma; \Gamma$
 - up to commutative monoid equations for (",", I) and (";",T) e.g.) I, $\Gamma \simeq \Gamma \simeq T$; Γ
- Intuitively, a bunch Γ means the formula $\varphi(\Gamma)$:
 - $\phi(A) = A$ $\phi(\Gamma, \Delta) = \phi(\Gamma) * \phi(\Delta)$ $\phi(\Gamma; \Delta) = \phi(\Gamma) \land \phi(\Delta)$

Multiset Models

- A multiset model $M = \{P_M \mid P : an atomic proposition\}$
- For a multiset m consisting of the elements in M,

 $m \models T$ always holds

 $m \models I \Leftrightarrow m = \{ \}$

 $m \models P \Leftrightarrow m = \{P_M\}$ (for an atomic proposition P)

 $m \models A \land B \Leftrightarrow m \models A \text{ and } m \models A$

 $m \models A * B \Leftrightarrow m = m_1 + m_2$ (multiset sum), $m_1 \models A \text{ and } m_2 \models B \text{ hold for some } m_1, m_2$ (the semantics of inductive preds are defined by lfp's)

Multiset Models

- Example: For atomic propositions A, B, and inductive propositions
 P_{AB} ::= P_B | P_{AB} * A P_B ::= I | P_B * B
 - { A_M, A_M, B_M } \= A * A * B
 - { A_M, B_M } ⋡ A * A * B
 - { B_M, B_M } $\models P_B$
 - $\{A_M, A_M, A_M, B_M, B_M, B_M\} \models P_{AB}$

CLBI^ω_{ID} [Brotherston'07]

- A cyclic proof system for BI
- Rules for * and $\land \quad \frac{\Gamma(A, B) \vdash C}{\Gamma(A * B) \vdash C} L^* \quad \frac{\Gamma(A; B) \vdash C}{\Gamma(A \land B) \vdash C} L_{\land}$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A * B} R^* \quad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma; \Delta \vdash A \land B} R \land$$

- unfolding rules (same as $CSLID_{\omega}$), and
- structural rules and cut

$$\frac{\Gamma(\Delta) \vdash A}{\Gamma(\Delta; \Delta') \vdash A} W \quad \frac{\Gamma(\Delta; \Delta) \vdash A}{\Gamma(\Delta) \vdash A} C \quad \frac{\Gamma \vdash A \quad \Delta(A) \vdash B}{\Delta(\Gamma) \vdash B} Cut$$

Soundness of $CLBI^{\omega}$

Theorem [Brotherston'07]:
 CLBI^ω_{ID} is sound for standard models

• In particular, for every sequent $\Gamma \vdash A$ in a cyclic proof, m $\models \varphi(\Gamma)$ implies m $\models A$ for any multiset m

Cut-Elimination Fails in CLBI^ωID

Theorem

• Theorem:

Cut-elimination does not hold in $CLBI^{\omega}{}_{\text{ID}}$ even if we restrict predicates to 0-ary ones

- Proof
 - A counterexample is $P_{AB} \vdash P_{BA}$ with 0-ary predicates P_{AB} and P_{BA} defined by
 - $P_{AB} ::= P_B | P_{AB} * A P_A ::= I | P_A * A P_{BA} ::= P_A | P_{BA} * B P_B ::= I | P_B * B (A and B are atomic propositions)$

- The leftmost and the rightmost paths contain no contradiction
- We have to chase the contradiction on the middle path

Proof Unrolling

 Proposition: For a cyclic proof of Γ⊢A, and a bunch Δ obtained by unfolding predicates in Γ, we can construct a non-cyclic proof of Δ⊢A

• Example: If we have a cyclic proof of $P_{AB} \vdash P_{BA}$, we can construct non-cyclic proofs of $I * A * A* \dots * A \vdash P_{BA}$ for any number of A's

$P_{AB} \vdash P_{BA}$ is Not Cut-Free Provable

- Assume a cyclic proof π_I of $P_{AB} \vdash P_{BA}$
 - Let N = (the max size of LHS's of sequents in π_1) + I
- By proof unrolling, we get a non-cyclic proof π_2 of $I * A^{N} \vdash P_{BA}$
- Let π'_2 be the right-rule free segment of π_2

$P_{AB} \vdash P_{BA}$ is Not Cut-Free Provable

- For any sequent $\Gamma \vdash P_{BA}$ in π'_2 , we have $\{A_M^N\} \models \Gamma$ in the multiset model
- Let $\Gamma \vdash P_{BA}$ be a top sequent in π'_2 and $\Delta \vdash P_{BA}$ be the corresponding sequent in π_1
 - Then, we have $\{A_{M^N}\} \models \Delta$ (since Γ is obtained by unfolding predicates in Δ)

$P_{AB} \vdash P_{BA}$ is Not Cut-Free Provable

- Lemma: If Δ is a LHS in π_{I} and $\{A_{M^{n}}\} \models \Delta$ for $n > (size of \Delta)$, then $\{A_{M^{n}}, B_{M}\} \models \Delta$
 - Hence, both $\{A_M^N\}$ and $\{A_M^N, B_M\}$ satisfy Δ
- If $\Delta \vdash P_{BA}$ is a bottom sequent of RU, its assumption is either $\Delta \vdash P_A$ or $\Delta \vdash P_{BA} * B$, but both are invalid
- Since P_{BA} contains no *, $\Delta \vdash P_{BA}$ is not a bottom sequent of R^*

Conclusion

- Theorem:
 - Cut is not admissible in the cyclic proof system for BI even if we restrict inductive predicates to 0-ary ones
 - Proof by proof unrolling, easily adapted to SL and MLL
- How about the cyclic proof system for FOL?
 - Cut-elimination fails either
 - Proved by elaborated path chasing (Masuoka's talk!)
 - Can we use proof unrolling technique for FOL?