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Introduction

» Ishihara’s problem of decidable variables asks what class
My of propositional instances of decidability p v —p suffices
for My, M= AwhenT ¢ A.

» (Ishihara 2014) and (Ishii 2018) proposed two
incomparable classes.

» We shall see how we can refine Ishii’s class by using
weaker principles than decidability.

» This will also allow us to extend the result to weaker logics.
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A-(B—-A);(A-(B—C)— (A= B)— (A— C));
(ANB) - A, (AANB) - B;A— (B— AAB);

A— (AvB);B— (AV B);

(A=-C)—=(B—C)— ((AvB)— 0));

AV —A[LEM];

1 — A[EFQ].

A—B A
A (MP)

We write I' - A for the derivability in CPC.
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Schwichtenberg 2000).

Definition (G3cp)

p, I = A, p (AX) 1,r=A(LL)

ABT=A N=AA r=AB

ANBT o (N r>aArE 0N
AT=A BTl=A = AAB

AVB.T = A W T A ave RV
r=AA B.Ir=A L ATl=AB (R—)

AsBTron ) ToAALEB

» We write 3. ' = A for the derivability in G3cp.
» Note 3. = Aifandonly ifT ¢ A.
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Ishihara’s problem

(Ishihara 2014) asked the following question (for
My :={pVv-p:pecV}):

“What set V of propositional variables suffices for
My,rt; Awheneverl ;. A?”

A solution to this question implies the conservativity of a
classical consequence to IPC, if V turns out to be empty for
some I and A.

9/42



Positive / negative occurrence of variables

10/42



Positive / negative occurrence of variables

Given a formula A, we define the sets V*(A)/V~(A) of
variables positively / negatively occurring in A.

10/42



Positive / negative occurrence of variables

Given a formula A, we define the sets V*(A)/V~(A) of
variables positively / negatively occurring in A.

V*(p) = {p} Vo(p) =
VH(L) =0 V(L
VI(AAB)=VH(A)UVT(B) V (AAB
VI(AvB)=VH(A)uVvH(B) V (AVB
VH(A—=B)=V (AUVT(B) V (A— B)=V (A UV (B)

10/42



Positive / negative occurrence of variables

Given a formula A, we define the sets V*(A)/V~(A) of
variables positively / negatively occurring in A.

Vi(p) = {p} Vo(p)=10

V(L) =10 Vo(L)=10
VH(AAB)=VHA)UVH(B) V (AAB)=V (A)UV (B)
VAV B) =V A UVH(B) V (AVB)=V (AUV (B)
V(A= B)=V (A)UVT(B) V (A— B)=VT(A)uV (B)

For a set of formulae I', V(') and V(") are similarly defined.
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Ishihara’s solution

» Ishihara showed V = (V= () U V*(A)) N (Vi(MN) UV~ (A))
suffices.

» The argument is by induction on the depth of proof in
G3cp.

» Write - A:={B— A:BeTl}.

» He showed If 5. I, A = %, then
Fai My, T, A — %, X — x = x. for a place-holder x.

» Then if ¥ = {A}, substitute x by A to obtain -3; My, = A
(with A = 0).
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» (Ishii 2018) offers an alternative solution.
> he appealed to Glivenko’s theorem:

Theorem (Glivenko 1929)
IfIrt+; AthenTl ; ——A.

» Then it is a matter of finding V so that I, ; -——A — A.
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> Let&x:={pV-p:pecV(A)} where V(A) is the set of
propositional variables that occur in A.
Definition (Ishii 2018)
We define &4 inductively.
p:={pV-p}
E =0
Eang =E4UER
Eavg :=EaUEgoOréqUép
EasBi=¢Ep

(Ea is therefore non-deterministic.)

Theorem (Ishii 2018)
I [ ¢ A, then Ea4,T j A.
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Comparing the solutions

> |shii observes that each of the solutions can perform better
than the other, depending on I' U {A}.
» Very roughly, If I ¢ A:
» Ishihara’s class: can drop strictly positive occurrences in T;

> |shii’s class: only needs strictly positive occurrences in A
(except for disjunctions).
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» If we recall, Ishii’s class has the clause

Ep = 1{pV -p}

» We assume p V —p in order to infer -—p — p.
» But for this assuming ——p — p surely suffices.

» Hence there seems to be a room for improvement for Ishii’s
class.

» In particular, it appears promising to use a weaker principle
than LEM.
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Rieger-Nishimura lattice

Recall Rieger-Nishimura lattice (Rieger 1949, Nishimura 1960),
the Lindenbaum algebra of one-variable formulae.

—=pV (==p — p) &

From this it seems reasonable to consider classes of ——p Vv —p
(WLEM) and ——p — p (DNE).
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Glivenko’s theorem, revisited

Theorem (Glivenko 1929)
IfIrt+; AthenTl - ——A.

» Glivenko’s theorem does not hold with respect to MPC.

» This is because the double negation of EFQ is not provable
in it.

» Can we then add =—(_L — A) to MPC without making it
IPC?

» The answer is in the affirmative.
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Glivenko’s logic

» Glivenko’s logic (originally called JP’) is defined by
(Segerberg 1968).

» It is defined by adding —-—(L — A) [AVQ] to MPC.
» Equivalently one can add -A — ——(A — B).
» We shall call it GPC (derivability ).

> it is the smallest extension of MPC with respect to which
Glivenko’s theorem holds.
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A thing about WLEM

>

v

Let us write

> Ea={pV-p:peV(A}.
> Wa={——-pVv-p:peV(A)}

Ishii’s method makes use of the fact £4 - AV —A.
Similarly we have Wj =g ~—AV -A.

For this, we use AVQ to infer -B — ——(B — C) for the
case A=(B— C).

Note we cannot use LEM, because ¥y -B — (B — C).

So extension of Ishii’s method to Glivenko’s logic requires
us to think in terms of WLEM and DNE.
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Class of WLEM

We define a class of propositional WLEM W inductively.
i&ag — iXZL — @
Warg = WaUWpg
WA\/B = WA UWpg or Wx U WB
Wa 8 = Ws

So we take an instance from one of the disjuncts for each
disjunction occurring strictly positively.
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We borrow a notion from (Troelstra and van Dalen 1988) with
modification.
Definition (multiple formula contexts)

Let x4, %o, ... be a countable set of symbols. The class F of
multiple formula contexts is defined inductively as follows.
(where F,F’ € F and A a formula.)

(i) *p, LLA— F € F.
(i) Assume no *, occurs in both F and F’. Then
FAF ,FVF eF.

Note any formula can be written as F[py, ..., pn].
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Class of WLEM

Proposition
Let Fl#4,...,xp] € F. Then
onl g 7 F 1Pt -+ pn] = F[==py, ..., ==pn).

-----

That is to say, we can push the double negations inside, to the
front of strictly positive propositional variables.
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Example

» We have -; ——(pV q) = (——pV Q).
» We choose
> W (pvq)+(~-pva) = {~PV =P}
» D~ (pvg)—(——pvg) = {77q — q}.
» Then ——pV —p,~~q — qtg ~=(pV q) = (-=pV q).
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> W (o) (--pva) = (7P V =P
» D~ (pvg)—(——pvg) = {77q — q}.
> Then ~=pV —-p,=~q = gty ~=(pVq) = (-—pV Q).
» With the same choice of disjuncts, Ishii’s class gives
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Example

» We have -, =—(pV q) — (m—pV q).
» We choose
> W (o) (--pva) = (7P V =P
» D~ (pvg)—(——pvg) = {77q — q}.
> Then ——pV —=p,==q = qFg ==(pV q) = (==pV Q).
» With the same choice of disjuncts, Ishii’s class gives
{pV-=p,qVv—q}.
» For the other possible choice, the classes give
{-—9 — g,—-—q Vv —q} and {q V —q}, respectively.
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strictly better, solutions compared to Ishii’s.
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Example

» So our class always give at least as good, and sometimes
strictly better, solutions compared to Ishii’s.

» |n addition, our approach enabled to treat Glivenko’s logic
as well.
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Outline

Extension to minimal logic
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Where did we rely on AVQ?

» We relied on AVQ in two places.

1. In Glivenko’s theorem.
2. In showing Wa g =—=AV —A.

» We shall first see how to evade from the former reliance.
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For each formula A, We define its translation ()9 by the
following clauses.

p? =
19=1
(AAB)I = A9 A BY
(AV B)Y = ~(—A9 A BY)
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Godel-Gentzen translation

Definition (Gddel-Gentzen translation)

For each formula A, We define its translation ()9 by the
following clauses.

p=--p

19=1
(AAB)Y = A9 A BY
(AV B)? = ~(—A9 A -B9)
(A— B)9 = A9 — B9

We shall write 19 = {A9: AcT}.

Theorem
(i) Forany A, ;@ ——A9 « A9.
(i) IfT ¢ A, thenT9 Fp, A9.
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Class of AVQ (i)

Let Q4 = {-~(L — p): peV(A)}.
We define Q4 inductively by the following clauses.

ép = @J_ = @
@A/\B = @A U @B
Qavs = QaU Op
OQa.s=QaU 0B

That is, Q4 collects propositional variables occuring in the
conclusions of implications.

31/42
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Class of AVQ (i)

Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if Qa bFm A — A9,
and Q-isolating if Qabm A9 — ——A.

Then we obtain the following result.

Proposition

Any formula is both Q-spreading and Q-isolating.

Corollary
If [ Fc A, then Qrygay, T Fm ——A.

32/42
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Class of AVQ (ii)

We recall (a fragment of) subformula property of G3ip.

Proposition (subformula property)
If a sequent I = p occurs in a derivation in G3ip of ' = C,
then p € V=(A) forsome Ac I, or p € V+(C).
» This means all propositional variables introduced by (L_L)
in a proof of G3i occurs in one of these positions.

» Hence it suffices to assume EFQ for such instances to
preserve the derivation into MPC.

» In particular, for F3; ' = ——A, it turns out that instances of
AVQ are sulfficient.
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Class of AVQ (ii)

Let Bruray :={—~~(L = p): pe V(N UVT(A)}.
Theorem
/f r F_C /4, tl7€9,7 lgrLJ{/4}7 r F_nq _7_7/‘.

Proof.

IfI ¢ A, thenT F; ——A. So

{L—p:peV (NUVT(A}T Fn——A. Thus by contraposing
multiple times, we obtain Brygay, [ Fm —A. O
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Comparisons of the two classes

> For A= (L — p)V-—qwesee Oy = {p} but B4 = {p,q}.
» ForA= 1 — (g — p) we have O = {p, q} but B4 = {p}.

» Hence it depends on the formula which one of @A and B4
gives a better result.

35/42
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Last step

> After obtaining Oriay (Or Brugay), I Fm ——A, we need to
eliminate —— as before.

» We have Q¢, We bm =——C Vv —C.

» So Q in addition to W suffices to enable our argument for
MPC.

36/42
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Last step

Definition _
We define R 4 inductively.
Rp=Ri=0
7§A/\B = 7§A URs N
RavB=RaUOgUWgor OaUWasURR
Rase=TRs
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Last step

Then we obtain

Proposition
(i) If Tt A, then Oripay. Ra, Da, T Fm A.
(ii) If T ¢ A, then Brigay, Ra, Da, [ Fm A

In particular, since -, (-—p — p) — (L — p), denoting
V(Qruiay)s V(Brugay) and V(Da) to be the sets of propositional
variables occurring in the classes:

Corollary

Suppose I ¢ Aand V(Qryay) € V(Da) or

V(BFU{A}) - V(DA) Then ’ﬁ,A, Da, T Fm A.
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Future directions

> |s it possible to use classes of principles weaker than
WLEM and DNE?

» Can we extend Ishihara’s class for Glivenko’s logic and
beyond?
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