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Introduction

▶ Ishihara’s problem of decidable variables asks what class
ΠV of propositional instances of decidability p ∨ ¬p suffices
for ΠV , Γ ⊢i A when Γ ⊢c A.

▶ (Ishihara 2014) and (Ishii 2018) proposed two
incomparable classes.

▶ We shall see how we can refine Ishii’s class by using
weaker principles than decidability.

▶ This will also allow us to extend the result to weaker logics.
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Classical propositional calculus

Classical propositional calculus (CPC) has the following
axiomatisation.

Definition (CPC)
A → (B → A); (A → (B → C)) → ((A → B) → (A → C));
(A ∧ B) → A; (A ∧ B) → B; A → (B → A ∧ B);
A → (A ∨ B); B → (A ∨ B);
(A → C) → ((B → C) → ((A ∨ B) → C));
A ∨ ¬A [LEM];
⊥ → A [EFQ].

A → B A (MP)
B

We write Γ ⊢c A for the derivability in CPC.
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Intuitionistic/minimal propositional calculus

▶ Intuitionistic propositional calculus (IPC) is defined by
taking away LEM from the axioms of CPC.

▶ We shall use ⊢i for the derivability.
▶ Minimal propositional calculus (MPC) is obtained from IPC

by further eliminating EFQ.
▶ We shall use ⊢m for the derivability.
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Sequent calculus for CPC

We shall also employ sequent calculi from (Troelstra and
Schwichtenberg 2000).

Definition (G3cp)

p, Γ ⇒ ∆, p (Ax) ⊥, Γ ⇒ ∆ (L⊥)

A,B, Γ ⇒ ∆
(L∧)

A ∧ B, Γ ⇒ ∆

Γ ⇒ ∆,A Γ ⇒ ∆,B
(R∧)

Γ ⇒ ∆,A ∧ B

A, Γ ⇒ ∆ B, Γ ⇒ ∆
(L∨)

A ∨ B, Γ ⇒ ∆

Γ ⇒ ∆,A,B
(R∨)

Γ,⇒,∆,A ∨ B

Γ ⇒ ∆,A B, Γ ⇒ ∆
(L→)

A → B, Γ ⇒ ∆

A, Γ ⇒ ∆,B
(R→)

Γ ⇒ ∆,A → B

▶ We write ⊢3c Γ ⇒ ∆ for the derivability in G3cp.
▶ Note ⊢3c Γ ⇒ ∆ if and only if Γ ⊢c ∆.
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Sequent calculus for IPC

For IPC, we disallow multiple formulae in the succedent.

Definition (G3ip)

p, Γ ⇒ p (Ax) ⊥, Γ ⇒ A (L⊥) [A prime]

A,B, Γ ⇒ C
(L∧)

A ∧ B, Γ ⇒ C
Γ ⇒ A Γ ⇒ B (R∧)

Γ ⇒ A ∧ B

A, Γ ⇒ C B, Γ ⇒ C
(L∨)

A ∨ B, Γ ⇒ C
Γ ⇒ Ai (R∨) [i ∈ {1, 2}]

Γ ⇒ A1 ∨ A2

A → B, Γ ⇒ A B, Γ ⇒ C
(L→)

A → B, Γ ⇒ C
A, Γ ⇒ B

(R→)
Γ ⇒ A → B

▶ We write ⊢3i Γ ⇒ C for the derivability in G3ip.
▶ Note ⊢3i Γ ⇒ C if and only if Γ ⊢i C.

7 / 42



Sequent calculus for IPC
For IPC, we disallow multiple formulae in the succedent.

Definition (G3ip)

p, Γ ⇒ p (Ax) ⊥, Γ ⇒ A (L⊥) [A prime]

A,B, Γ ⇒ C
(L∧)

A ∧ B, Γ ⇒ C
Γ ⇒ A Γ ⇒ B (R∧)

Γ ⇒ A ∧ B

A, Γ ⇒ C B, Γ ⇒ C
(L∨)

A ∨ B, Γ ⇒ C
Γ ⇒ Ai (R∨) [i ∈ {1, 2}]

Γ ⇒ A1 ∨ A2

A → B, Γ ⇒ A B, Γ ⇒ C
(L→)

A → B, Γ ⇒ C
A, Γ ⇒ B

(R→)
Γ ⇒ A → B

▶ We write ⊢3i Γ ⇒ C for the derivability in G3ip.
▶ Note ⊢3i Γ ⇒ C if and only if Γ ⊢i C.

7 / 42



Sequent calculus for IPC
For IPC, we disallow multiple formulae in the succedent.

Definition (G3ip)

p, Γ ⇒ p (Ax) ⊥, Γ ⇒ A (L⊥) [A prime]

A,B, Γ ⇒ C
(L∧)

A ∧ B, Γ ⇒ C
Γ ⇒ A Γ ⇒ B (R∧)

Γ ⇒ A ∧ B

A, Γ ⇒ C B, Γ ⇒ C
(L∨)

A ∨ B, Γ ⇒ C
Γ ⇒ Ai (R∨) [i ∈ {1, 2}]

Γ ⇒ A1 ∨ A2

A → B, Γ ⇒ A B, Γ ⇒ C
(L→)

A → B, Γ ⇒ C
A, Γ ⇒ B

(R→)
Γ ⇒ A → B

▶ We write ⊢3i Γ ⇒ C for the derivability in G3ip.
▶ Note ⊢3i Γ ⇒ C if and only if Γ ⊢i C.

7 / 42



Sequent calculus for IPC
For IPC, we disallow multiple formulae in the succedent.

Definition (G3ip)

p, Γ ⇒ p (Ax) ⊥, Γ ⇒ A (L⊥) [A prime]

A,B, Γ ⇒ C
(L∧)

A ∧ B, Γ ⇒ C
Γ ⇒ A Γ ⇒ B (R∧)

Γ ⇒ A ∧ B

A, Γ ⇒ C B, Γ ⇒ C
(L∨)

A ∨ B, Γ ⇒ C
Γ ⇒ Ai (R∨) [i ∈ {1, 2}]

Γ ⇒ A1 ∨ A2

A → B, Γ ⇒ A B, Γ ⇒ C
(L→)

A → B, Γ ⇒ C
A, Γ ⇒ B

(R→)
Γ ⇒ A → B

▶ We write ⊢3i Γ ⇒ C for the derivability in G3ip.

▶ Note ⊢3i Γ ⇒ C if and only if Γ ⊢i C.

7 / 42



Sequent calculus for IPC
For IPC, we disallow multiple formulae in the succedent.

Definition (G3ip)

p, Γ ⇒ p (Ax) ⊥, Γ ⇒ A (L⊥) [A prime]

A,B, Γ ⇒ C
(L∧)

A ∧ B, Γ ⇒ C
Γ ⇒ A Γ ⇒ B (R∧)

Γ ⇒ A ∧ B

A, Γ ⇒ C B, Γ ⇒ C
(L∨)

A ∨ B, Γ ⇒ C
Γ ⇒ Ai (R∨) [i ∈ {1, 2}]

Γ ⇒ A1 ∨ A2

A → B, Γ ⇒ A B, Γ ⇒ C
(L→)

A → B, Γ ⇒ C
A, Γ ⇒ B

(R→)
Γ ⇒ A → B

▶ We write ⊢3i Γ ⇒ C for the derivability in G3ip.
▶ Note ⊢3i Γ ⇒ C if and only if Γ ⊢i C.

7 / 42



Outline

Preliminary

Decidability of variables

Refining Ishii’s class

Extension to minimal logic

8 / 42



Ishihara’s problem

(Ishihara 2014) asked the following question (for
ΠV := {p ∨ ¬p : p ∈ V}):

“What set V of propositional variables suffices for
ΠV , Γ ⊢i A whenever Γ ⊢c A?”

A solution to this question implies the conservativity of a
classical consequence to IPC, if V turns out to be empty for
some Γ and A.
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Positive / negative occurrence of variables

Given a formula A, we define the sets V+(A)/V−(A) of
variables positively / negatively occurring in A.

V+(p) = {p} V−(p) = ∅
V+(⊥) = ∅ V−(⊥) = ∅

V+(A ∧ B) = V+(A) ∪ V+(B) V−(A ∧ B) = V−(A) ∪ V−(B)

V+(A ∨ B) = V+(A) ∪ V+(B) V−(A ∨ B) = V−(A) ∪ V−(B)

V+(A → B) = V−(A) ∪ V+(B) V−(A → B) = V+(A) ∪ V−(B)

For a set of formulae Γ, V+(Γ) and V−(Γ) are similarly defined.
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Strictly positive / non-strictly positive occurrence

We also define the sets V+
s (A)/V+

ns(A) of variables strictly
positively / non-strictly positively occurring in A.

V+
s (p) = {p} V+

ns(p) = ∅
V+

s (⊥) = ∅ V+
ns(⊥) = ∅

V+
s (A ∧ B) = V+

s (A) ∪ V+
s (B) V+

ns(A ∧ B) = V+
ns(A) ∪ V+

ns(B)

V+
s (A ∨ B) = V+

s (A) ∪ V+
s (B) V+

ns(A ∨ B) = V+
ns(A) ∪ V+

ns(B)

V+
s (A → B) = V+

s (B) V+
ns(A → B) = V−(A) ∪ V+

ns(B)
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Ishihara’s solution

▶ Ishihara showed V = (V−(Γ) ∪ V+(A)) ∩ (V+
ns(Γ) ∪ V−(A))

suffices.
▶ The argument is by induction on the depth of proof in

G3cp.
▶ Write Γ → A := {B → A : B ∈ Γ}.
▶ He showed If ⊢3c Γ,∆ ⇒ Σ, then

⊢3i ΠV , Γ,¬∆ → ∗,Σ → ∗ ⇒ ∗. for a place-holder ∗.
▶ Then if Σ = {A}, substitute ∗ by A to obtain ⊢3i ΠV , Γ ⇒ A

(with ∆ = ∅).
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Ishii’s solution

▶ (Ishii 2018) offers an alternative solution.
▶ he appealed to Glivenko’s theorem:

Theorem (Glivenko 1929)
If Γ ⊢c A then Γ ⊢i ¬¬A.

▶ Then it is a matter of finding V so that Πv ⊢i ¬¬A → A.
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Ishii’s solution

▶ Let EA := {p ∨ ¬p : p ∈ V(A)} where V(A) is the set of
propositional variables that occur in A.

Definition (Ishii 2018)
We define ẼA inductively.

Ẽp := {p ∨ ¬p}
Ẽ⊥ := ∅

ẼA∧B := ẼA ∪ ẼB

ẼA∨B := ẼA ∪ EB or EA ∪ ẼB

ẼA→B := ẼB

(ẼA is therefore non-deterministic.)

Theorem (Ishii 2018)
If Γ ⊢c A, then ẼA, Γ ⊢i A.
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Comparing the solutions

▶ Ishii observes that each of the solutions can perform better
than the other, depending on Γ ∪ {A}.

▶ Very roughly, If Γ ⊢c A:

▶ Ishihara’s class: can drop strictly positive occurrences in Γ;
▶ Ishii’s class: only needs strictly positive occurrences in A

(except for disjunctions).
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Outline

Preliminary

Decidability of variables

Refining Ishii’s class

Extension to minimal logic
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The basic idea

▶ If we recall, Ishii’s class has the clause

Ẽp := {p ∨ ¬p}

▶ We assume p ∨ ¬p in order to infer ¬¬p → p.
▶ But for this assuming ¬¬p → p surely suffices.
▶ Hence there seems to be a room for improvement for Ishii’s

class.
▶ In particular, it appears promising to use a weaker principle

than LEM.
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Ẽp := {p ∨ ¬p}

▶ We assume p ∨ ¬p in order to infer ¬¬p → p.
▶ But for this assuming ¬¬p → p surely suffices.

▶ Hence there seems to be a room for improvement for Ishii’s
class.

▶ In particular, it appears promising to use a weaker principle
than LEM.

17 / 42



The basic idea

▶ If we recall, Ishii’s class has the clause
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Rieger-Nishimura lattice

Recall Rieger-Nishimura lattice (Rieger 1949, Nishimura 1960),
the Lindenbaum algebra of one-variable formulae.

⊥

¬p p

p ∨ ¬p ¬¬p

¬¬p → p ¬¬p ∨ ¬p

¬¬p ∨ (¬¬p → p) (¬¬p → p) → (p ∨ ¬p)

From this it seems reasonable to consider classes of ¬¬p ∨ ¬p
(WLEM) and ¬¬p → p (DNE).
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Glivenko’s theorem, revisited

Theorem (Glivenko 1929)
If Γ ⊢c A then Γ ⊢i ¬¬A.

▶ Glivenko’s theorem does not hold with respect to MPC.
▶ This is because the double negation of EFQ is not provable

in it.
▶ Can we then add ¬¬(⊥ → A) to MPC without making it

IPC?
▶ The answer is in the affirmative.
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Glivenko’s logic

▶ Glivenko’s logic (originally called JP’) is defined by
(Segerberg 1968).

▶ It is defined by adding ¬¬(⊥ → A) [AVQ] to MPC.
▶ Equivalently one can add ¬A → ¬¬(A → B).
▶ We shall call it GPC (derivability ⊢g).
▶ it is the smallest extension of MPC with respect to which

Glivenko’s theorem holds.
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A thing about WLEM

▶ Let us write

▶ EA = {p ∨ ¬p : p ∈ V(A)}.
▶ WA = {¬¬p ∨ ¬p : p ∈ V(A)}.

▶ Ishii’s method makes use of the fact EA ⊢i A ∨ ¬A.
▶ Similarly we have WA ⊢g ¬¬A ∨ ¬A.
▶ For this, we use AVQ to infer ¬B → ¬¬(B → C) for the

case A ≡ (B → C).
▶ Note we cannot use LEM, because ⊬g ¬B → (B → C).
▶ So extension of Ishii’s method to Glivenko’s logic requires

us to think in terms of WLEM and DNE.
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Class of WLEM

We define a class of propositional WLEM W̃A inductively.

W̃p = W̃⊥ = ∅
W̃A∧B = W̃A ∪ W̃B

W̃A∨B = W̃A ∪WB or WA ∪ W̃B

W̃A→B = W̃B

So we take an instance from one of the disjuncts for each
disjunction occurring strictly positively.
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Class of WLEM

We borrow a notion from (Troelstra and van Dalen 1988) with
modification.

Definition (multiple formula contexts)
Let ∗1, ∗2, . . . be a countable set of symbols. The class F of
multiple formula contexts is defined inductively as follows.
(where F ,F ′ ∈ F and A a formula.)

(i) ∗n,⊥,A → F ∈ F .
(ii) Assume no ∗n occurs in both F and F ′. Then
F ∧ F ′,F ∨ F ′ ∈ F .
Note any formula can be written as F [p1, . . . , pn].

23 / 42



Class of WLEM

We borrow a notion from (Troelstra and van Dalen 1988) with
modification.

Definition (multiple formula contexts)
Let ∗1, ∗2, . . . be a countable set of symbols. The class F of
multiple formula contexts is defined inductively as follows.
(where F ,F ′ ∈ F and A a formula.)

(i) ∗n,⊥,A → F ∈ F .
(ii) Assume no ∗n occurs in both F and F ′. Then
F ∧ F ′,F ∨ F ′ ∈ F .
Note any formula can be written as F [p1, . . . , pn].

23 / 42



Class of WLEM

We borrow a notion from (Troelstra and van Dalen 1988) with
modification.

Definition (multiple formula contexts)
Let ∗1, ∗2, . . . be a countable set of symbols. The class F of
multiple formula contexts is defined inductively as follows.
(where F ,F ′ ∈ F and A a formula.)

(i) ∗n,⊥,A → F ∈ F .
(ii) Assume no ∗n occurs in both F and F ′. Then
F ∧ F ′,F ∨ F ′ ∈ F .

Note any formula can be written as F [p1, . . . , pn].

23 / 42



Class of WLEM

We borrow a notion from (Troelstra and van Dalen 1988) with
modification.

Definition (multiple formula contexts)
Let ∗1, ∗2, . . . be a countable set of symbols. The class F of
multiple formula contexts is defined inductively as follows.
(where F ,F ′ ∈ F and A a formula.)

(i) ∗n,⊥,A → F ∈ F .
(ii) Assume no ∗n occurs in both F and F ′. Then
F ∧ F ′,F ∨ F ′ ∈ F .
Note any formula can be written as F [p1, . . . , pn].

23 / 42



Class of WLEM

Proposition
Let F [∗1, . . . , ∗n] ∈ F . Then
W̃F [p1,...,pn] ⊢g ¬¬F [p1, . . . , pn] → F [¬¬p1, . . . ,¬¬pn].

That is to say, we can push the double negations inside, to the
front of strictly positive propositional variables.
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Class of DNE

Let DA := {¬¬p → p : p ∈ V+
s (A)}.

Proposition
Let F [∗1, . . . , ∗n] ∈ F . Then
DF [p1,...,pn] ⊢g F [¬¬p1, . . . ,¬¬pn] → F [p1, . . . , pn].

Therefore we conclude (with Glivenko’s theorem)

Theorem
If Γ ⊢c A, then W̃A,DA, Γ ⊢g A.
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Example

▶ We have ⊢c ¬¬(p ∨ q) → (¬¬p ∨ q).
▶ We choose

▶ W̃¬¬(p∨q)→(¬¬p∨q) = {¬¬p ∨ ¬p};
▶ D¬¬(p∨q)→(¬¬p∨q) = {¬¬q → q}.

▶ Then ¬¬p ∨ ¬p,¬¬q → q ⊢g ¬¬(p ∨ q) → (¬¬p ∨ q).
▶ With the same choice of disjuncts, Ishii’s class gives

{p ∨ ¬p, q ∨ ¬q}.
▶ For the other possible choice, the classes give

{¬¬q → q,¬¬q ∨ ¬q} and {q ∨ ¬q}, respectively.
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Example

▶ So our class always give at least as good, and sometimes
strictly better, solutions compared to Ishii’s.

▶ In addition, our approach enabled to treat Glivenko’s logic
as well.
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Outline

Preliminary

Decidability of variables

Refining Ishii’s class

Extension to minimal logic
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Where did we rely on AVQ?

▶ We relied on AVQ in two places.

1. In Glivenko’s theorem.
2. In showing WA ⊢g ¬¬A ∨ ¬A.

▶ We shall first see how to evade from the former reliance.
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Gödel-Gentzen translation

Definition (Gödel-Gentzen translation)
For each formula A, We define its translation ()g by the
following clauses.

pg ≡ ¬¬p
⊥g ≡ ⊥

(A ∧ B)g ≡ Ag ∧ Bg

(A ∨ B)g ≡ ¬(¬Ag ∧ ¬Bg)

(A → B)g ≡ Ag → Bg

We shall write Γg = {Ag : A ∈ Γ}.

Theorem
(i) For any A, ⊢m ¬¬Ag ↔ Ag .
(ii) If Γ ⊢c A, then Γg ⊢m Ag .
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Class of AVQ (i)

Let QA = {¬¬(⊥ → p) : p ∈ V(A)}.
We define Q̃A inductively by the following clauses.

Q̃p = Q̃⊥ = ∅
Q̃A∧B = Q̃A ∪ Q̃B

Q̃A∨B = Q̃A ∪ Q̃B

Q̃A→B = Q̃A ∪QB

That is, Q̃A collects propositional variables occuring in the
conclusions of implications.
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Class of AVQ (i)

Definition (Q-spreading, Q-isolating)
Given a formula A, we say it is Q-spreading if Q̃A ⊢m A → Ag ,
and Q-isolating if Q̃A ⊢m Ag → ¬¬A.
Then we obtain the following result.

Proposition
Any formula is both Q-spreading and Q-isolating.

Corollary
If Γ ⊢c A, then Q̃Γ∪{A}, Γ ⊢m ¬¬A.
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Class of AVQ (ii)

We recall (a fragment of) subformula property of G3ip.

Proposition (subformula property)
If a sequent Γ ⇒ p occurs in a derivation in G3ip of Γ′ ⇒ C,
then p ∈ V−(A) for some A ∈ Γ′, or p ∈ V+(C).

▶ This means all propositional variables introduced by (L⊥)
in a proof of G3i occurs in one of these positions.

▶ Hence it suffices to assume EFQ for such instances to
preserve the derivation into MPC.

▶ In particular, for ⊢3i Γ ⇒ ¬¬A, it turns out that instances of
AVQ are sufficient.
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Class of AVQ (ii)

Let BΓ∪{A} := {¬¬(⊥ → p) : p ∈ V−(Γ) ∪ V+(A)}.

Theorem
If Γ ⊢c A, then BΓ∪{A}, Γ ⊢m ¬¬A.

Proof.
If Γ ⊢c A, then Γ ⊢i ¬¬A. So
{⊥ → p : p ∈ V−(Γ) ∪ V+(A)}, Γ ⊢m ¬¬A. Thus by contraposing
multiple times, we obtain BΓ∪{A}, Γ ⊢m ¬¬A.
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If Γ ⊢c A, then Γ ⊢i ¬¬A. So
{⊥ → p : p ∈ V−(Γ) ∪ V+(A)}, Γ ⊢m ¬¬A. Thus by contraposing
multiple times, we obtain BΓ∪{A}, Γ ⊢m ¬¬A.
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Comparisons of the two classes

▶ For A ≡ (⊥ → p) ∨ ¬¬q we see Q̃A = {p} but BA = {p, q}.
▶ For A ≡ ⊥ → (q → p) we have Q̃A = {p, q} but BA = {p}.
▶ Hence it depends on the formula which one of Q̃A and BA

gives a better result.
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Last step

▶ After obtaining Q̃Γ∪{A} (or BΓ∪{A}), Γ ⊢m ¬¬A, we need to
eliminate ¬¬ as before.

▶ We have QC ,WC ⊢m ¬¬C ∨ ¬C.
▶ So Q in addition to W suffices to enable our argument for

MPC.
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Last step

Definition
We define R̃A inductively.

R̃P = R̃⊥ = ∅
R̃A∧B = R̃A ∪ R̃B

R̃A∨B = R̃A ∪ QB ∪WB or QA ∪WA ∪ R̃B

R̃A→B = R̃B
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Last step

Then we obtain

Proposition
(i) If Γ ⊢c A, then Q̃Γ∪{A}, R̃A,DA, Γ ⊢m A.
(ii) If Γ ⊢c A, then BΓ∪{A}, R̃A,DA, Γ ⊢m A.

In particular, since ⊢m (¬¬p → p) → (⊥ → p), denoting
V (Q̃Γ∪{A}), V (BΓ∪{A}) and V (DA) to be the sets of propositional
variables occurring in the classes:

Corollary
Suppose Γ ⊢c A and V (Q̃Γ∪{A}) ⊆ V (DA) or
V (BΓ∪{A}) ⊆ V (DA). Then R̃A,DA, Γ ⊢m A.
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Future directions

▶ Is it possible to use classes of principles weaker than
WLEM and DNE?

▶ Can we extend Ishihara’s class for Glivenko’s logic and
beyond?
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