# Decidability of variables in constructive logics

#### Satoru Niki

School of Information Science, Japan Advanced Institute of Science and Technology

#### 22/Mar/2021

<ロ>< 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆 のへで 1/42

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ Ishihara's problem of decidable variables asks what class  $\Pi_V$  of propositional instances of *decidability*  $p \lor \neg p$  suffices for  $\Pi_V$ ,  $\Gamma \vdash_i A$  when  $\Gamma \vdash_c A$ .

- ► Ishihara's problem of decidable variables asks what class  $\Pi_V$  of propositional instances of *decidability*  $p \lor \neg p$  suffices for  $\Pi_V$ ,  $\Gamma \vdash_i A$  when  $\Gamma \vdash_c A$ .
- (Ishihara 2014) and (Ishii 2018) proposed two incomparable classes.

- ► Ishihara's problem of decidable variables asks what class  $\Pi_V$  of propositional instances of *decidability*  $p \lor \neg p$  suffices for  $\Pi_V$ ,  $\Gamma \vdash_i A$  when  $\Gamma \vdash_c A$ .
- (Ishihara 2014) and (Ishii 2018) proposed two incomparable classes.
- We shall see how we can refine Ishii's class by using weaker principles than decidability.

- ► Ishihara's problem of decidable variables asks what class  $\Pi_V$  of propositional instances of *decidability*  $p \lor \neg p$  suffices for  $\Pi_V$ ,  $\Gamma \vdash_i A$  when  $\Gamma \vdash_c A$ .
- (Ishihara 2014) and (Ishii 2018) proposed two incomparable classes.
- We shall see how we can refine Ishii's class by using weaker principles than decidability.
- This will also allow us to extend the result to weaker logics.

### Outline

#### Preliminary

Decidability of variables

Refining Ishii's class

Extension to minimal logic

4 ロ ト 4 回 ト 4 直 ト 4 直 ト 直 の Q ()
4/42

Classical propositional calculus (CPC) has the following axiomatisation.

Classical propositional calculus (CPC) has the following axiomatisation.

$$\begin{array}{l} \text{Definition (CPC)} \\ A \to (B \to A); (A \to (B \to C)) \to ((A \to B) \to (A \to C)); \\ (A \land B) \to A; (A \land B) \to B; A \to (B \to A \land B); \\ A \to (A \lor B); B \to (A \lor B); \\ (A \to C) \to ((B \to C) \to ((A \lor B) \to C)); \\ A \lor \neg A \text{[LEM]}; \\ \bot \to A \text{[EFQ]}. \end{array}$$

$$\frac{A \to B \qquad A}{B}$$
 (MP)

Classical propositional calculus (CPC) has the following axiomatisation.

$$\begin{array}{l} \text{Definition (CPC)} \\ A \to (B \to A); (A \to (B \to C)) \to ((A \to B) \to (A \to C)); \\ (A \land B) \to A; (A \land B) \to B; A \to (B \to A \land B); \\ A \to (A \lor B); B \to (A \lor B); \\ (A \to C) \to ((B \to C) \to ((A \lor B) \to C)); \\ A \lor \neg A \text{[LEM]}; \\ \bot \to A \text{[EFQ]}. \end{array}$$

$$\frac{A \to B}{B}$$
 (MP)

We write  $\Gamma \vdash_c A$  for the derivability in **CPC**.

Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.

- Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.
- We shall use  $\vdash_i$  for the derivability.

- Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.
- We shall use  $\vdash_i$  for the derivability.
- Minimal propositional calculus (MPC) is obtained from IPC by further eliminating EFQ.

- Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.
- We shall use  $\vdash_i$  for the derivability.
- Minimal propositional calculus (MPC) is obtained from IPC by further eliminating EFQ.
- We shall use  $\vdash_m$  for the derivability.

4 ロ ト 4 回 ト 4 直 ト 4 直 ト 直 の Q ()
6/42

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000).

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000).

Definition (G3cp)

 $\begin{array}{l} \rho, \Gamma \Rightarrow \Delta, \rho \left( \mathsf{Ax} \right) & \bot, \Gamma \Rightarrow \Delta \left( \mathsf{L} \bot \right) \\ \hline \begin{array}{c} A, B, \Gamma \Rightarrow \Delta \\ \hline A \land B, \Gamma \Rightarrow \Delta \end{array} \left( \mathsf{L} \land \right) & \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A & \Gamma \Rightarrow \Delta, B \\ \hline \Gamma \Rightarrow \Delta, A \land B \end{array} \left( \mathsf{R} \land \right) \\ \hline \begin{array}{c} A, \Gamma \Rightarrow \Delta \\ \hline A \lor B, \Gamma \Rightarrow \Delta \end{array} \left( \mathsf{L} \lor \right) & \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A \land B \\ \hline \Gamma, \Rightarrow, \Delta, A \land B \end{array} \left( \mathsf{R} \lor \right) \\ \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A & B, \Gamma \Rightarrow \Delta \\ \hline A \lor B, \Gamma \Rightarrow \Delta \end{array} \left( \mathsf{L} \lor \right) & \hline \begin{array}{c} A, \Gamma \Rightarrow \Delta, A \\ \hline \Gamma, \Rightarrow \Delta, A \lor B \end{array} \left( \mathsf{R} \lor \right) \\ \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A & B, \Gamma \Rightarrow \Delta \\ \hline A \to B, \Gamma \Rightarrow \Delta \end{array} \left( \mathsf{L} \to \right) & \hline \begin{array}{c} A, \Gamma \Rightarrow \Delta, B \\ \hline \Gamma \Rightarrow \Delta, A \to B \end{array} \left( \mathsf{R} \to \right) \end{array}$ 

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000).

Definition (G3cp)

 $\begin{array}{c} \rho, \Gamma \Rightarrow \Delta, \rho \ (\mathsf{Ax}) & \bot, \Gamma \Rightarrow \Delta \ (\mathsf{L}\bot) \\ \\ \hline \begin{array}{c} A, B, \Gamma \Rightarrow \Delta \\ \hline A \land B, \Gamma \Rightarrow \Delta \end{array} (\mathsf{L}\land) & \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A & \Gamma \Rightarrow \Delta, B \\ \hline \Gamma \Rightarrow \Delta, A \land B \end{array} (\mathsf{R}\land) \\ \hline \begin{array}{c} A, \Gamma \Rightarrow \Delta \\ \hline A \lor B, \Gamma \Rightarrow \Delta \end{array} (\mathsf{L}\lor) & \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A \land B \\ \hline \Gamma, \Rightarrow, \Delta, A \lor B \end{array} (\mathsf{R}\lor) \\ \hline \begin{array}{c} \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} \\ \hline \begin{array}{c} \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} \\ \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A & B, \Gamma \Rightarrow \Delta \\ \hline A \lor B, \Gamma \Rightarrow \Delta \end{array} (\mathsf{L}\lor) & \hline \begin{array}{c} A, \Gamma \Rightarrow \Delta, B \\ \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} \end{array}$ 

• We write  $\vdash_{3c} \Gamma \Rightarrow \Delta$  for the derivability in **G3cp**.

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000).

Definition (G3cp)

 $\begin{array}{c} \rho, \Gamma \Rightarrow \Delta, \rho \ (\mathsf{Ax}) & \bot, \Gamma \Rightarrow \Delta \ (\mathsf{L}\bot) \\ \\ \hline \begin{array}{c} A, B, \Gamma \Rightarrow \Delta \\ \hline A \land B, \Gamma \Rightarrow \Delta \end{array} (\mathsf{L}\land) & \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A & \Gamma \Rightarrow \Delta, B \\ \hline \Gamma \Rightarrow \Delta, A \land B \end{array} (\mathsf{R}\land) \\ \hline \begin{array}{c} A, \Gamma \Rightarrow \Delta \\ \hline A \lor B, \Gamma \Rightarrow \Delta \end{array} (\mathsf{L}\lor) & \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A \land B \\ \hline \Gamma, \Rightarrow, \Delta, A \lor B \end{array} (\mathsf{R}\lor) \\ \hline \begin{array}{c} \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} \\ \hline \begin{array}{c} \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} \\ \hline \begin{array}{c} \Gamma \Rightarrow \Delta, A & B, \Gamma \Rightarrow \Delta \\ \hline A \lor B, \Gamma \Rightarrow \Delta \end{array} (\mathsf{L}\lor) & \hline \begin{array}{c} A, \Gamma \Rightarrow \Delta, B \\ \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} (\mathsf{R} \lor) \\ \hline \end{array} \end{array}$ 

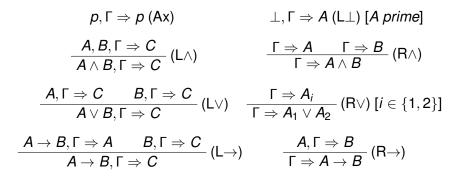
• We write  $\vdash_{3c} \Gamma \Rightarrow \Delta$  for the derivability in **G3cp**.

▶ Note  $\vdash_{3c} \Gamma \Rightarrow \Delta$  if and only if  $\Gamma \vdash_{c} \Delta$ .

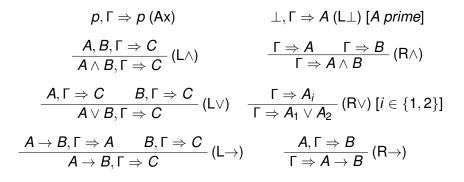
<ロ><□><□><□><□><□><□><□><□><□><□><□><□><0<○ 7/42

For IPC, we disallow multiple formulae in the succedent.

# For **IPC**, we disallow multiple formulae in the succedent. Definition (**G3ip**)

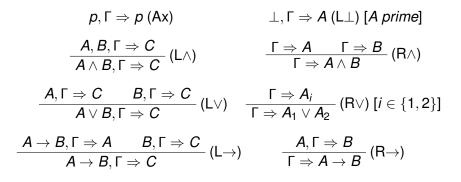


# For **IPC**, we disallow multiple formulae in the succedent. Definition (**G3ip**)



• We write  $\vdash_{3i} \Gamma \Rightarrow C$  for the derivability in **G3ip**.

# For **IPC**, we disallow multiple formulae in the succedent. Definition (**G3ip**)



We write ⊢<sub>3i</sub> Γ ⇒ C for the derivability in G3ip.
Note ⊢<sub>3i</sub> Γ ⇒ C if and only if Γ ⊢<sub>i</sub> C.



Preliminary

#### Decidability of variables

**Refining Ishii's class** 

Extension to minimal logic

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 9 代 8/42

# Ishihara's problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Ishihara 2014) asked the following question (for  $\Pi_V := \{ p \lor \neg p : p \in V \}$ ):

(Ishihara 2014) asked the following question (for  $\Pi_V := \{ p \lor \neg p : p \in V \}$ ):

"What set V of propositional variables suffices for  $\Pi_V, \Gamma \vdash_i A$  whenever  $\Gamma \vdash_c A$ ?"

(Ishihara 2014) asked the following question (for  $\Pi_V := \{ p \lor \neg p : p \in V \}$ ):

"What set V of propositional variables suffices for  $\Pi_V, \Gamma \vdash_i A$  whenever  $\Gamma \vdash_c A$ ?"

A solution to this question implies the conservativity of a classical consequence to **IPC**, if *V* turns out to be empty for some  $\Gamma$  and *A*.

Given a formula *A*, we define the sets  $\mathcal{V}^+(A)/\mathcal{V}^-(A)$  of variables positively / negatively occurring in *A*.

Given a formula *A*, we define the sets  $\mathcal{V}^+(A)/\mathcal{V}^-(A)$  of variables positively / negatively occurring in *A*.

$$\begin{array}{ll} \mathcal{V}^+(p) = \{p\} & \mathcal{V}^-(p) = \emptyset \\ \mathcal{V}^+(\bot) = \emptyset & \mathcal{V}^-(\bot) = \emptyset \\ \mathcal{V}^+(A \land B) = \mathcal{V}^+(A) \cup \mathcal{V}^+(B) & \mathcal{V}^-(A \land B) = \mathcal{V}^-(A) \cup \mathcal{V}^-(B) \\ \mathcal{V}^+(A \lor B) = \mathcal{V}^+(A) \cup \mathcal{V}^+(B) & \mathcal{V}^-(A \lor B) = \mathcal{V}^-(A) \cup \mathcal{V}^-(B) \\ \mathcal{V}^+(A \to B) = \mathcal{V}^-(A) \cup \mathcal{V}^+(B) & \mathcal{V}^-(A \to B) = \mathcal{V}^+(A) \cup \mathcal{V}^-(B) \end{array}$$

(日)

Given a formula *A*, we define the sets  $\mathcal{V}^+(A)/\mathcal{V}^-(A)$  of variables positively / negatively occurring in *A*.

$$\begin{array}{ll} \mathcal{V}^+(p) = \{p\} & \mathcal{V}^-(p) = \emptyset \\ \mathcal{V}^+(\bot) = \emptyset & \mathcal{V}^-(\bot) = \emptyset \\ \mathcal{V}^+(A \land B) = \mathcal{V}^+(A) \cup \mathcal{V}^+(B) & \mathcal{V}^-(A \land B) = \mathcal{V}^-(A) \cup \mathcal{V}^-(B) \\ \mathcal{V}^+(A \lor B) = \mathcal{V}^+(A) \cup \mathcal{V}^+(B) & \mathcal{V}^-(A \lor B) = \mathcal{V}^-(A) \cup \mathcal{V}^-(B) \\ \mathcal{V}^+(A \to B) = \mathcal{V}^-(A) \cup \mathcal{V}^+(B) & \mathcal{V}^-(A \to B) = \mathcal{V}^+(A) \cup \mathcal{V}^-(B) \end{array}$$

For a set of formulae  $\Gamma$ ,  $\mathcal{V}^+(\Gamma)$  and  $\mathcal{V}^-(\Gamma)$  are similarly defined.

## Strictly positive / non-strictly positive occurrence

(ロ)(1/42)

Strictly positive / non-strictly positive occurrence

We also define the sets  $\mathcal{V}_{s}^{+}(A)/\mathcal{V}_{ns}^{+}(A)$  of variables strictly positively / non-strictly positively occurring in *A*.

## Strictly positive / non-strictly positive occurrence

We also define the sets  $\mathcal{V}_{s}^{+}(A)/\mathcal{V}_{ns}^{+}(A)$  of variables strictly positively / non-strictly positively occurring in *A*.

$$\begin{array}{ll} \mathcal{V}_{s}^{+}(p) = \{p\} & \mathcal{V}_{ns}^{+}(p) = \emptyset \\ \mathcal{V}_{s}^{+}(\bot) = \emptyset & \mathcal{V}_{ns}^{+}(\bot) = \emptyset \\ \mathcal{V}_{s}^{+}(A \land B) = \mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{ns}^{+}(A \land B) = \mathcal{V}_{ns}^{+}(A) \cup \mathcal{V}_{ns}^{+}(B) \\ \mathcal{V}_{s}^{+}(A \lor B) = \mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{ns}^{+}(A \lor B) = \mathcal{V}_{ns}^{+}(A) \cup \mathcal{V}_{ns}^{+}(B) \\ \mathcal{V}_{s}^{+}(A \to B) = \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{ns}^{+}(A \to B) = \mathcal{V}^{-}(A) \cup \mathcal{V}_{ns}^{+}(B) \end{array}$$

## Strictly positive / non-strictly positive occurrence

We also define the sets  $\mathcal{V}_{s}^{+}(A)/\mathcal{V}_{ns}^{+}(A)$  of variables strictly positively / non-strictly positively occurring in *A*.

$$\begin{array}{ll} \mathcal{V}_{s}^{+}(p) = \{p\} & \mathcal{V}_{ns}^{+}(p) = \emptyset \\ \mathcal{V}_{s}^{+}(\bot) = \emptyset & \mathcal{V}_{ns}^{+}(\bot) = \emptyset \\ \mathcal{V}_{s}^{+}(A \land B) = \mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{ns}^{+}(A \land B) = \mathcal{V}_{ns}^{+}(A) \cup \mathcal{V}_{ns}^{+}(B) \\ \mathcal{V}_{s}^{+}(A \lor B) = \mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{ns}^{+}(A \lor B) = \mathcal{V}_{ns}^{+}(A) \cup \mathcal{V}_{ns}^{+}(B) \\ \mathcal{V}_{s}^{+}(A \to B) = \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{ns}^{+}(A \to B) = \mathcal{V}^{-}(A) \cup \mathcal{V}_{ns}^{+}(B) \end{array}$$

► Ishihara showed  $V = (\mathcal{V}^-(\Gamma) \cup \mathcal{V}^+(A)) \cap (\mathcal{V}^+_{ns}(\Gamma) \cup \mathcal{V}^-(A))$  suffices.

- ► Ishihara showed  $V = (\mathcal{V}^-(\Gamma) \cup \mathcal{V}^+(A)) \cap (\mathcal{V}^+_{ns}(\Gamma) \cup \mathcal{V}^-(A))$  suffices.
- The argument is by induction on the depth of proof in G3cp.

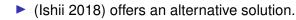
- ► Ishihara showed  $V = (\mathcal{V}^-(\Gamma) \cup \mathcal{V}^+(A)) \cap (\mathcal{V}^+_{ns}(\Gamma) \cup \mathcal{V}^-(A))$  suffices.
- The argument is by induction on the depth of proof in G3cp.

• Write 
$$\Gamma \rightarrow A := \{B \rightarrow A : B \in \Gamma\}.$$

- ► Ishihara showed  $V = (\mathcal{V}^-(\Gamma) \cup \mathcal{V}^+(A)) \cap (\mathcal{V}^+_{ns}(\Gamma) \cup \mathcal{V}^-(A))$  suffices.
- The argument is by induction on the depth of proof in G3cp.
- Write  $\Gamma \rightarrow A := \{B \rightarrow A : B \in \Gamma\}.$
- He showed If ⊢<sub>3c</sub> Γ, Δ ⇒ Σ, then ⊢<sub>3i</sub> Π<sub>V</sub>, Γ, ¬Δ → \*, Σ → \* ⇒ \*. for a place-holder \*.

- ► Ishihara showed  $V = (\mathcal{V}^-(\Gamma) \cup \mathcal{V}^+(A)) \cap (\mathcal{V}^+_{ns}(\Gamma) \cup \mathcal{V}^-(A))$  suffices.
- The argument is by induction on the depth of proof in G3cp.
- Write  $\Gamma \rightarrow A := \{B \rightarrow A : B \in \Gamma\}.$
- ► He showed If  $\vdash_{3c} \Gamma, \Delta \Rightarrow \Sigma$ , then  $\vdash_{3i} \Pi_V, \Gamma, \neg \Delta \rightarrow *, \Sigma \rightarrow * \Rightarrow *$ . for a place-holder \*.
- Then if  $\Sigma = \{A\}$ , substitute \* by A to obtain  $\vdash_{3i} \prod_{V}, \Gamma \Rightarrow A$  (with  $\Delta = \emptyset$ ).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



- (Ishii 2018) offers an alternative solution.
- he appealed to Glivenko's theorem:

- (Ishii 2018) offers an alternative solution.
- he appealed to Glivenko's theorem:
- Theorem (Glivenko 1929) If  $\Gamma \vdash_c A$  then  $\Gamma \vdash_i \neg \neg A$ .

- (Ishii 2018) offers an alternative solution.
- he appealed to Glivenko's theorem:
- Theorem (Glivenko 1929)
- If  $\Gamma \vdash_c A$  then  $\Gamma \vdash_i \neg \neg A$ .
  - Then it is a matter of finding *V* so that  $\Pi_V \vdash_i \neg \neg A \rightarrow A$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let *E<sub>A</sub>* := {*p* ∨ ¬*p* : *p* ∈ V(*A*)} where V(*A*) is the set of propositional variables that occur in *A*.

Let *E<sub>A</sub>* := {*p* ∨ ¬*p* : *p* ∈ V(*A*)} where V(*A*) is the set of propositional variables that occur in *A*.

Definition (Ishii 2018) We define  $\widetilde{\mathcal{E}}_A$  inductively.

$$\widetilde{\mathcal{E}}_{p} := \{ p \lor \neg p \} \\
\widetilde{\mathcal{E}}_{\perp} := \emptyset \\
\widetilde{\mathcal{E}}_{A \land B} := \widetilde{\mathcal{E}}_{A} \cup \widetilde{\mathcal{E}}_{B} \\
\widetilde{\mathcal{E}}_{A \lor B} := \widetilde{\mathcal{E}}_{A} \cup \mathcal{E}_{B} \text{ or } \mathcal{E}_{A} \cup \widetilde{\mathcal{E}}_{B} \\
\widetilde{\mathcal{E}}_{A \rightarrow B} := \widetilde{\mathcal{E}}_{B}$$

 $(\widetilde{\mathcal{E}}_{A}$  is therefore *non-deterministic.*)

Let *E<sub>A</sub>* := {*p* ∨ ¬*p* : *p* ∈ V(*A*)} where V(*A*) is the set of propositional variables that occur in *A*.

Definition (Ishii 2018) We define  $\widetilde{\mathcal{E}}_A$  inductively.

$$\widetilde{\mathcal{E}}_{p} := \{ p \lor \neg p \}$$

$$\widetilde{\mathcal{E}}_{\perp} := \emptyset$$

$$\widetilde{\mathcal{E}}_{A \land B} := \widetilde{\mathcal{E}}_{A} \cup \widetilde{\mathcal{E}}_{B}$$

$$\widetilde{\mathcal{E}}_{A \lor B} := \widetilde{\mathcal{E}}_{A} \cup \mathcal{E}_{B} \text{ or } \mathcal{E}_{A} \cup \widetilde{\mathcal{E}}_{B}$$

$$\widetilde{\mathcal{E}}_{A \to B} := \widetilde{\mathcal{E}}_{B}$$

 $(\widetilde{\mathcal{E}}_{\mathcal{A}}$  is therefore *non-deterministic.*)

Theorem (Ishii 2018) If  $\Gamma \vdash_{c} A$ , then  $\widetilde{\mathcal{E}}_{A}, \Gamma \vdash_{i} A$ .

Ishii observes that each of the solutions can perform better than the other, depending on Γ ∪ {*A*}.

- Ishii observes that each of the solutions can perform better than the other, depending on Γ ∪ {A}.
- Very roughly, If  $\Gamma \vdash_c A$ :

- Ishii observes that each of the solutions can perform better than the other, depending on Γ ∪ {A}.
- Very roughly, If  $\Gamma \vdash_c A$ :
  - Ishihara's class: can drop strictly positive occurrences in Γ;

- Ishii observes that each of the solutions can perform better than the other, depending on Γ ∪ {A}.
- Very roughly, If  $\Gamma \vdash_c A$ :
  - Ishihara's class: can drop strictly positive occurrences in Γ;
  - Ishii's class: only needs strictly positive occurrences in A (except for disjunctions).

## Outline

Preliminary

Decidability of variables

Refining Ishii's class

Extension to minimal logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\widetilde{\mathcal{E}}_{p} := \{ p \lor \neg p \}$$

If we recall, Ishii's class has the clause

$$\widetilde{\mathcal{E}}_{p} := \{ p \lor \neg p \}$$

• We assume  $p \lor \neg p$  in order to infer  $\neg \neg p \rightarrow p$ .

$$\widetilde{\mathcal{E}}_{p} := \{ p \lor \neg p \}$$

- We assume  $p \lor \neg p$  in order to infer  $\neg \neg p \rightarrow p$ .
- But for this assuming  $\neg \neg p \rightarrow p$  surely suffices.

$$\widetilde{\mathcal{E}}_{p} := \{ p \lor \neg p \}$$

- We assume  $p \lor \neg p$  in order to infer  $\neg \neg p \rightarrow p$ .
- But for this assuming  $\neg \neg p \rightarrow p$  surely suffices.
- Hence there seems to be a room for improvement for Ishii's class.

$$\widetilde{\mathcal{E}}_{p} := \{ p \lor \neg p \}$$

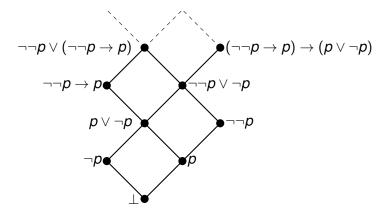
- We assume  $p \lor \neg p$  in order to infer  $\neg \neg p \rightarrow p$ .
- But for this assuming  $\neg \neg p \rightarrow p$  surely suffices.
- Hence there seems to be a room for improvement for Ishii's class.
- In particular, it appears promising to use a weaker principle than LEM.

## **Rieger-Nishimura lattice**

<ロト<団ト<三ト<三ト<三ト<三ト</td>18/42

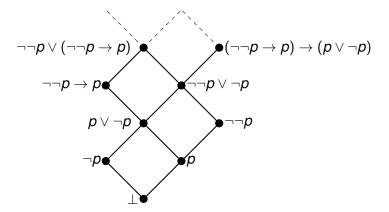
## **Rieger-Nishimura lattice**

Recall *Rieger-Nishimura lattice* (Rieger 1949, Nishimura 1960), the Lindenbaum algebra of one-variable formulae.



## **Rieger-Nishimura lattice**

Recall *Rieger-Nishimura lattice* (Rieger 1949, Nishimura 1960), the Lindenbaum algebra of one-variable formulae.



From this it seems reasonable to consider classes of  $\neg \neg p \lor \neg p$  (WLEM) and  $\neg \neg p \to p$  (DNE).

## Glivenko's theorem, revisited

### Glivenko's theorem, revisited

Theorem (Glivenko 1929) If  $\Gamma \vdash_c A$  then  $\Gamma \vdash_i \neg \neg A$ .

## Glivenko's theorem, revisited

Theorem (Glivenko 1929)

If  $\Gamma \vdash_c A$  then  $\Gamma \vdash_i \neg \neg A$ .

Glivenko's theorem does not hold with respect to MPC.

## Glivenko's theorem, revisited

Theorem (Glivenko 1929)

If  $\Gamma \vdash_c A$  then  $\Gamma \vdash_i \neg \neg A$ .

- Glivenko's theorem does not hold with respect to **MPC**.
- This is because the double negation of EFQ is not provable in it.

# Glivenko's theorem, revisited

Theorem (Glivenko 1929)

- If  $\Gamma \vdash_c A$  then  $\Gamma \vdash_i \neg \neg A$ .
  - Glivenko's theorem does not hold with respect to **MPC**.
  - This is because the double negation of EFQ is not provable in it.
  - Can we then add  $\neg \neg (\bot \rightarrow A)$  to **MPC** without making it **IPC**?

# Glivenko's theorem, revisited

Theorem (Glivenko 1929)

- If  $\Gamma \vdash_c A$  then  $\Gamma \vdash_i \neg \neg A$ .
  - Glivenko's theorem does not hold with respect to **MPC**.
  - This is because the double negation of EFQ is not provable in it.
  - Can we then add  $\neg \neg (\bot \rightarrow A)$  to **MPC** without making it **IPC**?
  - The answer is in the affirmative.

 Glivenko's logic (originally called JP') is defined by (Segerberg 1968).

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- ▶ It is defined by adding  $\neg\neg(\bot \rightarrow A)$  [AVQ] to **MPC**.

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- ▶ It is defined by adding  $\neg\neg(\bot \rightarrow A)$  [AVQ] to **MPC**.
- Equivalently one can add  $\neg A \rightarrow \neg \neg (A \rightarrow B)$ .

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- ▶ It is defined by adding  $\neg\neg(\bot \rightarrow A)$  [AVQ] to **MPC**.
- Equivalently one can add  $\neg A \rightarrow \neg \neg (A \rightarrow B)$ .
- We shall call it **GPC** (derivability  $\vdash_g$ ).

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- ▶ It is defined by adding  $\neg\neg(\bot \rightarrow A)$  [AVQ] to **MPC**.
- Equivalently one can add  $\neg A \rightarrow \neg \neg (A \rightarrow B)$ .
- We shall call it **GPC** (derivability  $\vdash_g$ ).
- it is the smallest extension of MPC with respect to which Glivenko's theorem holds.

<ロ><□><□><□><□><□><□><□><□><□><□><□><□><00 21/42

$$\blacktriangleright \mathcal{E}_{\mathcal{A}} = \{ p \lor \neg p : p \in \mathcal{V}(\mathcal{A}) \}.$$

$$\mathcal{E}_{\mathcal{A}} = \{ p \lor \neg p : p \in \mathcal{V}(\mathcal{A}) \}.$$
$$\mathcal{W}_{\mathcal{A}} = \{ \neg \neg p \lor \neg p : p \in \mathcal{V}(\mathcal{A}) \}.$$

#### Let us write

$$\mathcal{E}_{A} = \{ p \lor \neg p : p \in \mathcal{V}(A) \}.$$
$$\mathcal{W}_{A} = \{ \neg \neg p \lor \neg p : p \in \mathcal{V}(A) \}.$$

▶ Ishii's method makes use of the fact  $\mathcal{E}_A \vdash_i A \lor \neg A$ .

#### Let us write

$$\mathcal{E}_{A} = \{ p \lor \neg p : p \in \mathcal{V}(A) \}.$$
$$\mathcal{W}_{A} = \{ \neg \neg p \lor \neg p : p \in \mathcal{V}(A) \}.$$

▶ Ishii's method makes use of the fact  $\mathcal{E}_A \vdash_i A \lor \neg A$ .

Similarly we have 
$$\mathcal{W}_A \vdash_g \neg \neg A \lor \neg A$$
.

- $\mathcal{E}_{A} = \{ p \lor \neg p : p \in \mathcal{V}(A) \}.$  $\mathcal{W}_{A} = \{ \neg \neg p \lor \neg p : p \in \mathcal{V}(A) \}.$
- ▶ Ishii's method makes use of the fact  $\mathcal{E}_A \vdash_i A \lor \neg A$ .
- Similarly we have  $\mathcal{W}_A \vdash_g \neg \neg A \lor \neg A$ .
- For this, we use AVQ to infer ¬B → ¬¬(B → C) for the case A ≡ (B → C).

- $\mathcal{E}_{A} = \{ p \lor \neg p : p \in \mathcal{V}(A) \}.$  $\mathcal{W}_{A} = \{ \neg \neg p \lor \neg p : p \in \mathcal{V}(A) \}.$
- ▶ Ishii's method makes use of the fact  $\mathcal{E}_A \vdash_i A \lor \neg A$ .
- Similarly we have  $\mathcal{W}_A \vdash_g \neg \neg A \lor \neg A$ .
- For this, we use AVQ to infer ¬B → ¬¬(B → C) for the case A ≡ (B → C).
- ▶ Note we cannot use LEM, because  $\nvdash_g \neg B \rightarrow (B \rightarrow C)$ .

- $\mathcal{E}_{A} = \{ p \lor \neg p : p \in \mathcal{V}(A) \}.$  $\mathcal{W}_{A} = \{ \neg \neg p \lor \neg p : p \in \mathcal{V}(A) \}.$
- ▶ Ishii's method makes use of the fact  $\mathcal{E}_A \vdash_i A \lor \neg A$ .
- Similarly we have  $\mathcal{W}_A \vdash_g \neg \neg A \lor \neg A$ .
- For this, we use AVQ to infer ¬B → ¬¬(B → C) for the case A ≡ (B → C).
- ▶ Note we cannot use LEM, because  $\nvdash_g \neg B \rightarrow (B \rightarrow C)$ .
- So extension of Ishii's method to Glivenko's logic requires us to think in terms of WLEM and DNE.

We define a class of propositional WLEM  $\widetilde{\mathcal{W}}_{\textit{A}}$  inductively.

We define a class of propositional WLEM  $\widetilde{\mathcal{W}}_{\text{A}}$  inductively.

$$\widetilde{\mathcal{W}}_{p} = \widetilde{\mathcal{W}}_{\perp} = \emptyset$$
$$\widetilde{\mathcal{W}}_{A \wedge B} = \widetilde{\mathcal{W}}_{A} \cup \widetilde{\mathcal{W}}_{B}$$
$$\widetilde{\mathcal{W}}_{A \vee B} = \widetilde{\mathcal{W}}_{A} \cup \mathcal{W}_{B} \text{ or } \mathcal{W}_{A} \cup \widetilde{\mathcal{W}}_{B}$$
$$\widetilde{\mathcal{W}}_{A \to B} = \widetilde{\mathcal{W}}_{B}$$

We define a class of propositional WLEM  $\widetilde{\mathcal{W}}_{\!\!\mathcal{A}}$  inductively.

$$\widetilde{\mathcal{W}}_{p} = \widetilde{\mathcal{W}}_{\perp} = \emptyset$$
$$\widetilde{\mathcal{W}}_{A \wedge B} = \widetilde{\mathcal{W}}_{A} \cup \widetilde{\mathcal{W}}_{B}$$
$$\widetilde{\mathcal{W}}_{A \vee B} = \widetilde{\mathcal{W}}_{A} \cup \mathcal{W}_{B} \text{ or } \mathcal{W}_{A} \cup \widetilde{\mathcal{W}}_{B}$$
$$\widetilde{\mathcal{W}}_{A \to B} = \widetilde{\mathcal{W}}_{B}$$

So we take an instance from one of the disjuncts for each disjunction occurring strictly positively.

We borrow a notion from (Troelstra and van Dalen 1988) with modification.

We borrow a notion from (Troelstra and van Dalen 1988) with modification.

#### Definition (multiple formula contexts)

Let  $*_1, *_2, \ldots$  be a countable set of symbols. The class  $\mathcal{F}$  of *multiple formula contexts* is defined inductively as follows. (where  $F, F' \in \mathcal{F}$  and A a formula.)

(i)  $*_n, \bot, A \to F \in \mathcal{F}$ . (ii) Assume no  $*_n$  occurs in both *F* and *F'*. Then  $F \wedge F', F \vee F' \in \mathcal{F}$ .

We borrow a notion from (Troelstra and van Dalen 1988) with modification.

#### Definition (multiple formula contexts)

Let  $*_1, *_2, \ldots$  be a countable set of symbols. The class  $\mathcal{F}$  of *multiple formula contexts* is defined inductively as follows. (where  $F, F' \in \mathcal{F}$  and A a formula.)

(i)  $*_n, \bot, A \to F \in \mathcal{F}$ . (ii) Assume no  $*_n$  occurs in both *F* and *F'*. Then  $F \wedge F', F \vee F' \in \mathcal{F}$ .

Note any formula can be written as  $F[p_1, \ldots, p_n]$ .

#### Proposition Let $F[*_1, ..., *_n] \in \mathcal{F}$ . Then $\widetilde{\mathcal{W}}_{F[p_1,...,p_n]} \vdash_g \neg \neg F[p_1, ..., p_n] \rightarrow F[\neg \neg p_1, ..., \neg \neg p_n].$

#### Proposition Let $F[*_1, ..., *_n] \in \mathcal{F}$ . Then $\widetilde{\mathcal{W}}_{F[p_1,...,p_n]} \vdash_g \neg \neg F[p_1, ..., p_n] \rightarrow F[\neg \neg p_1, ..., \neg \neg p_n].$

That is to say, we can push the double negations inside, to the front of strictly positive propositional variables.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Let $\mathcal{D}_{\mathcal{A}} := \{ \neg \neg \rho \rightarrow \rho : \rho \in \mathcal{V}_{\mathcal{S}}^{+}(\mathcal{A}) \}.$

Let 
$$\mathcal{D}_A := \{ \neg \neg \rho \rightarrow \rho : \rho \in \mathcal{V}_{\mathcal{S}}^+(A) \}.$$
  
**Proposition**  
Let  $F[*_1, \dots, *_n] \in \mathcal{F}.$  Then  
 $\mathcal{D}_{F[\rho_1, \dots, \rho_n]} \vdash_g F[\neg \neg \rho_1, \dots, \neg \neg \rho_n] \rightarrow F[\rho_1, \dots, \rho_n].$ 

Let 
$$\mathcal{D}_A := \{\neg \neg p \rightarrow p : p \in \mathcal{V}_s^+(A)\}.$$
  
Proposition  
Let  $F[*_1, \dots, *_n] \in \mathcal{F}.$  Then  
 $\mathcal{D}_{F[p_1, \dots, p_n]} \vdash_g F[\neg \neg p_1, \dots, \neg \neg p_n] \rightarrow F[p_1, \dots, p_n].$ 

Therefore we conclude (with Glivenko's theorem)

Let 
$$\mathcal{D}_{A} := \{ \neg \neg p \rightarrow p : p \in \mathcal{V}_{s}^{+}(A) \}.$$
  
**Proposition**  
Let  $F[*_{1}, \dots, *_{n}] \in \mathcal{F}.$  Then  
 $\mathcal{D}_{F[p_{1}, \dots, p_{n}]} \vdash_{g} F[\neg \neg p_{1}, \dots, \neg \neg p_{n}] \rightarrow F[p_{1}, \dots, p_{n}].$ 

Therefore we conclude (with Glivenko's theorem)

Theorem If  $\Gamma \vdash_{c} A$ , then  $\widetilde{W}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{g} A$ .

# Example

#### Example

#### ▶ We have $\vdash_c \neg \neg (p \lor q) \rightarrow (\neg \neg p \lor q)$ .

• We have  $\vdash_c \neg \neg (p \lor q) \rightarrow (\neg \neg p \lor q)$ .

► We choose

- ▶ We have  $\vdash_c \neg \neg (p \lor q) \rightarrow (\neg \neg p \lor q)$ .
- We choose

$$\blacktriangleright \widetilde{\mathcal{W}}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg p\lor\neg p\};$$

- ▶ We have  $\vdash_c \neg \neg (p \lor q) \rightarrow (\neg \neg p \lor q)$ .
- We choose

$$\widetilde{\mathcal{W}}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg p\lor \neg p\}; \\ \mathcal{D}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg q\to q\}.$$

- We have  $\vdash_c \neg \neg (p \lor q) \rightarrow (\neg \neg p \lor q)$ .
- We choose  $\widetilde{W}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg p\lor \neg p\};$   $\mathcal{D}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg q \to q\}.$ Then  $\neg\neg p\lor \neg p, \neg\neg q \to q\vdash_{a} \neg\neg(p\lor q) \to (\neg\neg p\lor q).$

- We have  $\vdash_c \neg \neg (p \lor q) \rightarrow (\neg \neg p \lor q)$ .
- We choose

$$\widetilde{\mathcal{W}}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg p\lor \neg p\};$$
$$\mathcal{D}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg q\to q\}.$$

- ▶ Then  $\neg \neg p \lor \neg p, \neg \neg q \to q \vdash_g \neg \neg (p \lor q) \to (\neg \neg p \lor q).$
- ▶ With the same choice of disjuncts, Ishii's class gives  $\{p \lor \neg p, q \lor \neg q\}.$

- We have  $\vdash_c \neg \neg (p \lor q) \rightarrow (\neg \neg p \lor q)$ .
- We choose

$$\widetilde{\mathcal{W}}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg p\lor \neg p\};$$
$$\mathcal{D}_{\neg\neg(p\lor q)\to(\neg\neg p\lor q)} = \{\neg\neg q \to q\}.$$

- ► Then  $\neg \neg p \lor \neg p, \neg \neg q \to q \vdash_g \neg \neg (p \lor q) \to (\neg \neg p \lor q).$
- ▶ With the same choice of disjuncts, Ishii's class gives  $\{p \lor \neg p, q \lor \neg q\}.$
- For the other possible choice, the classes give  $\{\neg \neg q \rightarrow q, \neg \neg q \lor \neg q\}$  and  $\{q \lor \neg q\}$ , respectively.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

So our class always give at least as good, and sometimes strictly better, solutions compared to Ishii's.

- So our class always give at least as good, and sometimes strictly better, solutions compared to Ishii's.
- In addition, our approach enabled to treat Glivenko's logic as well.

## Outline

Preliminary

Decidability of variables

Refining Ishii's class

Extension to minimal logic

We relied on AVQ in two places.

#### We relied on AVQ in two places.

1. In Glivenko's theorem.

#### We relied on AVQ in two places.

- 1. In Glivenko's theorem.
- 2. In showing  $\mathcal{W}_A \vdash_g \neg \neg A \lor \neg A$ .

#### We relied on AVQ in two places.

- 1. In Glivenko's theorem.
- 2. In showing  $\mathcal{W}_A \vdash_g \neg \neg A \lor \neg A$ .

#### We shall first see how to evade from the former reliance.

#### Definition (Gödel-Gentzen translation)

For each formula A, We define its translation ()<sup>g</sup> by the following clauses.

$$p^g\equiv \neg \neg p \ \perp^g\equiv \perp \ (A\wedge B)^g\equiv A^g\wedge B^g \ (A\vee B)^g\equiv \neg (\neg A^g\wedge \neg B^g) \ (A
ightarrow B)^g\equiv A^g
ightarrow B^g$$

#### Definition (Gödel-Gentzen translation)

For each formula A, We define its translation ()<sup>g</sup> by the following clauses.

(a) < (a) < (b) < (b)

30/42

We shall write  $\Gamma^g = \{ A^g : A \in \Gamma \}.$ 

#### Definition (Gödel-Gentzen translation)

For each formula A, We define its translation ()<sup>g</sup> by the following clauses.

We shall write  $\Gamma^g = \{ A^g : A \in \Gamma \}.$ 

Theorem (i) For any A,  $\vdash_m \neg \neg A^g \leftrightarrow A^g$ . (ii) If  $\Gamma \vdash_c A$ , then  $\Gamma^g \vdash_m A^g$ .

Let 
$$\mathcal{Q}_{A} = \{ \neg \neg (\bot \rightarrow p) : p \in \mathcal{V}(A) \}.$$

Let  $Q_A = \{\neg \neg (\bot \rightarrow p) : p \in \mathcal{V}(A)\}.$ We define  $\tilde{Q}_A$  inductively by the following clauses.

Let  $Q_A = \{\neg \neg (\bot \rightarrow p) : p \in \mathcal{V}(A)\}.$ We define  $\widetilde{Q}_A$  inductively by the following clauses.

$$\begin{split} \widetilde{\mathcal{Q}}_{p} &= \widetilde{\mathcal{Q}}_{\perp} = \emptyset \\ \widetilde{\mathcal{Q}}_{A \wedge B} &= \widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B} \\ \widetilde{\mathcal{Q}}_{A \vee B} &= \widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B} \\ \widetilde{\mathcal{Q}}_{A \to B} &= \widetilde{\mathcal{Q}}_{A} \cup \mathcal{Q}_{B} \end{split}$$

Let  $Q_A = \{\neg \neg (\bot \rightarrow p) : p \in \mathcal{V}(A)\}.$ We define  $\widetilde{Q}_A$  inductively by the following clauses.

$$\widetilde{\mathcal{Q}}_{p} = \widetilde{\mathcal{Q}}_{\perp} = \emptyset$$
$$\widetilde{\mathcal{Q}}_{A \wedge B} = \widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B}$$
$$\widetilde{\mathcal{Q}}_{A \vee B} = \widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B}$$
$$\widetilde{\mathcal{Q}}_{A \to B} = \widetilde{\mathcal{Q}}_{A} \cup \mathcal{Q}_{B}$$

That is,  $\tilde{Q}_A$  collects propositional variables occuring in the conclusions of implications.

#### Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if  $\widetilde{Q}_A \vdash_m A \to A^g$ , and Q-isolating if  $\widetilde{Q}_A \vdash_m A^g \to \neg \neg A$ .

#### Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if  $\widetilde{Q}_A \vdash_m A \to A^g$ , and Q-isolating if  $\widetilde{Q}_A \vdash_m A^g \to \neg \neg A$ .

Then we obtain the following result.

### Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if  $\widetilde{Q}_A \vdash_m A \to A^g$ , and Q-isolating if  $\widetilde{Q}_A \vdash_m A^g \to \neg \neg A$ .

Then we obtain the following result.

#### Proposition

Any formula is both Q-spreading and Q-isolating.

### Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if  $\widetilde{Q}_A \vdash_m A \to A^g$ , and Q-isolating if  $\widetilde{Q}_A \vdash_m A^g \to \neg \neg A$ .

Then we obtain the following result.

#### Proposition

Any formula is both Q-spreading and Q-isolating.

Corollary If  $\Gamma \vdash_{c} A$ , then  $\widetilde{Q}_{\Gamma \cup \{A\}}, \Gamma \vdash_{m} \neg \neg A$ .

We recall (a fragment of) subformula property of G3ip.

We recall (a fragment of) subformula property of G3ip.

Proposition (subformula property) If a sequent  $\Gamma \Rightarrow p$  occurs in a derivation in **G3ip** of  $\Gamma' \Rightarrow C$ ,

then  $p \in \mathcal{V}^-(A)$  for some  $A \in \Gamma'$ , or  $p \in \mathcal{V}^+(C)$ .

We recall (a fragment of) subformula property of G3ip.

#### Proposition (subformula property)

If a sequent  $\Gamma \Rightarrow p$  occurs in a derivation in **G3ip** of  $\Gamma' \Rightarrow C$ , then  $p \in \mathcal{V}^{-}(A)$  for some  $A \in \Gamma'$ , or  $p \in \mathcal{V}^{+}(C)$ .

► This means all propositional variables introduced by (L⊥) in a proof of G3i occurs in one of these positions.

We recall (a fragment of) subformula property of G3ip.

#### Proposition (subformula property)

If a sequent  $\Gamma \Rightarrow p$  occurs in a derivation in **G3ip** of  $\Gamma' \Rightarrow C$ , then  $p \in \mathcal{V}^{-}(A)$  for some  $A \in \Gamma'$ , or  $p \in \mathcal{V}^{+}(C)$ .

- This means all propositional variables introduced by (L⊥) in a proof of G3i occurs in one of these positions.
- Hence it suffices to assume EFQ for such instances to preserve the derivation into MPC.

We recall (a fragment of) subformula property of G3ip.

#### Proposition (subformula property)

If a sequent  $\Gamma \Rightarrow p$  occurs in a derivation in **G3ip** of  $\Gamma' \Rightarrow C$ , then  $p \in \mathcal{V}^{-}(A)$  for some  $A \in \Gamma'$ , or  $p \in \mathcal{V}^{+}(C)$ .

- This means all propositional variables introduced by (L⊥) in a proof of G3i occurs in one of these positions.
- Hence it suffices to assume EFQ for such instances to preserve the derivation into MPC.
- In particular, for ⊢<sub>3i</sub> Γ ⇒ ¬¬A, it turns out that instances of AVQ are sufficient.

# Class of AVQ (ii)

### Let $\mathcal{B}_{\Gamma \cup \{A\}} := \{ \neg \neg (\bot \to p) : p \in \mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A) \}.$

# Class of AVQ (ii)

Let 
$$\mathcal{B}_{\Gamma \cup \{A\}} := \{\neg \neg (\bot \rightarrow p) : p \in \mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\}.$$
  
Theorem  
If  $\Gamma \vdash_{c} A$ , then  $\mathcal{B}_{\Gamma \cup \{A\}}, \Gamma \vdash_{m} \neg \neg A$ .

# Class of AVQ (ii)

Let 
$$\mathcal{B}_{\Gamma \cup \{A\}} := \{\neg \neg (\bot \rightarrow p) : p \in \mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\}.$$
  
Theorem  
If  $\Gamma \vdash_{c} A$ , then  $\mathcal{B}_{\Gamma \cup \{A\}}, \Gamma \vdash_{m} \neg \neg A$ .

Proof. If  $\Gamma \vdash_c A$ , then  $\Gamma \vdash_i \neg \neg A$ . So  $\{ \bot \rightarrow p : p \in \mathcal{V}^-(\Gamma) \cup \mathcal{V}^+(A) \}, \Gamma \vdash_m \neg \neg A$ . Thus by contraposing multiple times, we obtain  $\mathcal{B}_{\Gamma \cup \{A\}}, \Gamma \vdash_m \neg \neg A$ .

▶ For 
$$A \equiv (\bot \rightarrow p) \lor \neg \neg q$$
 we see  $\widetilde{Q}_A = \{p\}$  but  $\mathcal{B}_A = \{p, q\}$ .

- ▶ For  $A \equiv (\bot \rightarrow p) \lor \neg \neg q$  we see  $\widetilde{Q}_A = \{p\}$  but  $\mathcal{B}_A = \{p, q\}$ .
- ▶ For  $A \equiv \bot \rightarrow (q \rightarrow p)$  we have  $\widetilde{Q}_A = \{p, q\}$  but  $\mathcal{B}_A = \{p\}$ .
- Hence it depends on the formula which one of *Q*<sub>A</sub> and *B*<sub>A</sub> gives a better result.

• After obtaining  $\widetilde{Q}_{\Gamma \cup \{A\}}$  (or  $\mathcal{B}_{\Gamma \cup \{A\}}$ ),  $\Gamma \vdash_m \neg \neg A$ , we need to eliminate  $\neg \neg$  as before.

► After obtaining  $\widetilde{Q}_{\Gamma \cup \{A\}}$  (or  $\mathcal{B}_{\Gamma \cup \{A\}}$ ),  $\Gamma \vdash_m \neg \neg A$ , we need to eliminate  $\neg \neg$  as before.

• We have 
$$Q_C, W_C \vdash_m \neg \neg C \lor \neg C$$
.

- ► After obtaining  $\widetilde{Q}_{\Gamma \cup \{A\}}$  (or  $\mathcal{B}_{\Gamma \cup \{A\}}$ ),  $\Gamma \vdash_m \neg \neg A$ , we need to eliminate  $\neg \neg$  as before.
- We have  $Q_C, W_C \vdash_m \neg \neg C \lor \neg C$ .
- So Q in addition to W suffices to enable our argument for MPC.

< □ > < 部 > < E > < E > E の Q () 37/42

Definition We define  $\widetilde{\mathcal{R}}_{\mathcal{A}}$  inductively.

$$\begin{split} \widetilde{\mathcal{R}}_{P} &= \widetilde{\mathcal{R}}_{\perp} = \emptyset \\ \widetilde{\mathcal{R}}_{A \wedge B} &= \widetilde{\mathcal{R}}_{A} \cup \widetilde{\mathcal{R}}_{B} \\ \widetilde{\mathcal{R}}_{A \vee B} &= \widetilde{\mathcal{R}}_{A} \cup \mathcal{Q}_{B} \cup \mathcal{W}_{B} \text{ or } \mathcal{Q}_{A} \cup \mathcal{W}_{A} \cup \widetilde{\mathcal{R}}_{B} \\ \widetilde{\mathcal{R}}_{A \to B} &= \widetilde{\mathcal{R}}_{B} \end{split}$$

Then we obtain

#### Then we obtain

### Proposition (i) If $\Gamma \vdash_{c} A$ , then $\widetilde{Q}_{\Gamma \cup \{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$ . (ii) If $\Gamma \vdash_{c} A$ , then $\mathcal{B}_{\Gamma \cup \{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$ .

#### Then we obtain

# Proposition (i) If $\Gamma \vdash_c A$ , then $\widetilde{\mathcal{Q}}_{\Gamma \cup \{A\}}, \widetilde{\mathcal{R}}_A, \mathcal{D}_A, \Gamma \vdash_m A$ . (ii) If $\Gamma \vdash_c A$ , then $\mathcal{B}_{\Gamma \cup \{A\}}, \widetilde{\mathcal{R}}_A, \mathcal{D}_A, \Gamma \vdash_m A$ .

In particular, since  $\vdash_m (\neg \neg p \rightarrow p) \rightarrow (\bot \rightarrow p)$ , denoting  $V(\widetilde{Q}_{\Gamma \cup \{A\}})$ ,  $V(\mathcal{B}_{\Gamma \cup \{A\}})$  and  $V(\mathcal{D}_A)$  to be the sets of propositional variables occurring in the classes:

#### Then we obtain

### Proposition

(i) If  $\Gamma \vdash_{c} A$ , then  $\widetilde{\mathcal{Q}}_{\Gamma \cup \{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$ . (ii) If  $\Gamma \vdash_{c} A$ , then  $\mathcal{B}_{\Gamma \cup \{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$ .

In particular, since  $\vdash_m (\neg \neg p \rightarrow p) \rightarrow (\bot \rightarrow p)$ , denoting  $V(\widetilde{Q}_{\Gamma \cup \{A\}})$ ,  $V(\mathcal{B}_{\Gamma \cup \{A\}})$  and  $V(\mathcal{D}_A)$  to be the sets of propositional variables occurring in the classes:

#### Corollary

Suppose  $\Gamma \vdash_{c} A$  and  $V(\widetilde{\mathcal{Q}}_{\Gamma \cup \{A\}}) \subseteq V(\mathcal{D}_{A})$  or  $V(\mathcal{B}_{\Gamma \cup \{A\}}) \subseteq V(\mathcal{D}_{A})$ . Then  $\widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$ .

# **Future directions**

- Is it possible to use classes of principles weaker than WLEM and DNE?
- Can we extend Ishihara's class for Glivenko's logic and beyond?

# Reference I



#### Valerii Glivenko.

### On some points of the logic of Mr. Brouwer.

In Paolo Mancosu, editor, *From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s*, pages 301–305. Oxford University Press, 1998.

### Hajime Ishihara.

Classical propositional logic and decidability of variables in intuitionistic propositional logic.

*Logical Methods in Computer Science (LMCS)*, 10(3), 2014.

- Katsumasa Ishii.

A note on decidability of variables in intuitionistic propositional logic.

Mathematical Logic Quarterly, 64(3):183–184, 2018.

# Reference II



#### Satoru Niki.

Decidable variables for constructive logics. Mathematical Logic Quarterly, 66(4):484–493, 2021.

# 🔋 Iwao Nishimura.

On formulas of one variable in intuitionistic propositional calculus.

The Journal of Symbolic Logic, 25(4):327–331, 1960.

### Ladislav Rieger.

On the lattice theory of Brouwerian propositional logic. *Acta Faclutatis Rerum Naturalium Universitatis Carolinae*, 189, 1949.

Krister Segerberg. Propositional logics related to Heyting's and Johansson's. *Theoria*, 34(1):26–61, 1968.

# **Reference III**

Anne Sjerp Troelstra and Helmut Schwichtenberg.
 Basic Proof Theory.
 Cambridge University Press, second edition, 2000.

Anne Sjerp Troelstra and Dirk van Dalen. *Constructivism in Mathematics: An Introduction*, volume I. Elsevier, 1988.