Decidability of variables in constructive logics

Satoru Niki
School of Information Science, Japan Advanced Institute of Science and Technology

22/Mar/2021

Introduction

Introduction

- Ishihara's problem of decidable variables asks what class Π_{V} of propositional instances of decidability $p \vee \neg p$ suffices for $\Pi_{V}, \Gamma \vdash_{i} A$ when $\Gamma \vdash_{c} A$.

Introduction

- Ishihara's problem of decidable variables asks what class Π_{V} of propositional instances of decidability $p \vee \neg p$ suffices for $\Pi_{V}, \Gamma \vdash_{i} A$ when $\Gamma \vdash_{c} A$.
- (Ishihara 2014) and (Ishii 2018) proposed two incomparable classes.

Introduction

- Ishihara's problem of decidable variables asks what class Π_{V} of propositional instances of decidability $p \vee \neg p$ suffices for $\Pi_{V}, \Gamma \vdash_{i} A$ when $\Gamma \vdash_{c} A$.
- (Ishihara 2014) and (Ishii 2018) proposed two incomparable classes.
- We shall see how we can refine Ishii's class by using weaker principles than decidability.

Introduction

- Ishihara's problem of decidable variables asks what class Π_{V} of propositional instances of decidability $p \vee \neg p$ suffices for $\Pi_{V}, \Gamma \vdash_{i} A$ when $\Gamma \vdash_{c} A$.
- (Ishihara 2014) and (Ishii 2018) proposed two incomparable classes.
- We shall see how we can refine Ishii's class by using weaker principles than decidability.
- This will also allow us to extend the result to weaker logics.

Outline

Preliminary

Decidability of variables

Refining Ishii's class

Extension to minimal logic

Classical propositional calculus

Classical propositional calculus

Classical propositional calculus (CPC) has the following axiomatisation.

Classical propositional calculus

Classical propositional calculus (CPC) has the following axiomatisation.
Definition (CPC)

$$
\begin{aligned}
& A \rightarrow(B \rightarrow A) ;(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) ; \\
& (A \wedge B) \rightarrow A ;(A \wedge B) \rightarrow B ; A \rightarrow(B \rightarrow A \wedge B) ; \\
& A \rightarrow(A \vee B) ; B \rightarrow(A \vee B) ; \\
& (A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow((A \vee B) \rightarrow C)) ; \\
& A \vee \neg A[L E M] ; \\
& \perp \rightarrow A[E F Q] . \\
& \frac{A \rightarrow B \quad A}{B}(\mathrm{MP})
\end{aligned}
$$

Classical propositional calculus

Classical propositional calculus (CPC) has the following axiomatisation.
Definition (CPC)

$$
\begin{aligned}
& A \rightarrow(B \rightarrow A) ;(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) ; \\
& (A \wedge B) \rightarrow A ;(A \wedge B) \rightarrow B ; A \rightarrow(B \rightarrow A \wedge B) ; \\
& A \rightarrow(A \vee B) ; B \rightarrow(A \vee B) ; \\
& (A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow((A \vee B) \rightarrow C)) ; \\
& A \vee \neg A[L E M] ; \\
& \perp \rightarrow A[E F Q] . \\
& \frac{A \rightarrow B \quad A}{B}(\mathrm{MP})
\end{aligned}
$$

We write $\Gamma \vdash_{c} A$ for the derivability in CPC.

Intuitionistic/minimal propositional calculus

Intuitionistic/minimal propositional calculus

- Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.

Intuitionistic/minimal propositional calculus

- Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.
- We shall use \vdash_{i} for the derivability.

Intuitionistic/minimal propositional calculus

- Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.
- We shall use \vdash_{i} for the derivability.
- Minimal propositional calculus (MPC) is obtained from IPC by further eliminating EFQ.

Intuitionistic/minimal propositional calculus

- Intuitionistic propositional calculus (IPC) is defined by taking away LEM from the axioms of CPC.
- We shall use \vdash_{i} for the derivability.
- Minimal propositional calculus (MPC) is obtained from IPC by further eliminating EFQ.
- We shall use \vdash_{m} for the derivability.

Sequent calculus for CPC

Sequent calculus for CPC

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000).

Sequent calculus for CPC

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000). Definition (G3cp)

$$
\begin{aligned}
& p, \Gamma \Rightarrow \Delta, p(A x) \\
& \perp, \Gamma \Rightarrow \Delta(\mathrm{L} \perp) \\
& \frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \wedge) \quad \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B}(\mathrm{R} \wedge) \\
& \frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \vee) \quad \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma, \Rightarrow, \Delta, A \vee B}(\mathrm{R} \vee) \\
& \frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \rightarrow) \quad \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B}(\mathrm{R} \rightarrow)
\end{aligned}
$$

Sequent calculus for CPC

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000). Definition (G3cp)

$$
\begin{array}{cc}
p, \Gamma \Rightarrow \Delta, p(\mathrm{Ax}) & \perp, \Gamma \Rightarrow \Delta(\mathrm{L} \perp) \\
\frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \wedge) & \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B}(\mathrm{R} \wedge) \\
\frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \vee) & \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma, \Rightarrow, \Delta, A \vee B}(\mathrm{R} \vee) \\
\frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \rightarrow) & \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B}(\mathrm{R} \rightarrow)
\end{array}
$$

- We write $\vdash_{3 c} \Gamma \Rightarrow \Delta$ for the derivability in G3cp.

Sequent calculus for CPC

We shall also employ sequent calculi from (Troelstra and Schwichtenberg 2000). Definition (G3cp)

$$
\begin{array}{cc}
p, \Gamma \Rightarrow \Delta, p(\mathrm{Ax}) & \perp, \Gamma \Rightarrow \Delta(\mathrm{L} \perp) \\
\frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \wedge) & \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B}(\mathrm{R} \wedge) \\
\frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \vee) & \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma, \Rightarrow, \Delta, A \vee B}(\mathrm{R} \vee) \\
\frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta}(\mathrm{~L} \rightarrow) & \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B}(\mathrm{R} \rightarrow)
\end{array}
$$

- We write $\vdash_{3 c} \Gamma \Rightarrow \Delta$ for the derivability in G3cp.
- Note $\vdash_{3 c} \Gamma \Rightarrow \Delta$ if and only if $\Gamma \vdash_{c} \Delta$.

Sequent calculus for IPC

Sequent calculus for IPC

For IPC, we disallow multiple formulae in the succedent.

Sequent calculus for IPC

For IPC, we disallow multiple formulae in the succedent.
Definition (G3ip)

$$
\begin{array}{cc}
p, \Gamma \Rightarrow p(\mathrm{Ax}) & \perp, \Gamma \Rightarrow A(\mathrm{~L} \perp)[A \text { prime }] \\
\frac{A, B, \Gamma \Rightarrow C}{A \wedge B, \Gamma \Rightarrow C}(\mathrm{~L} \wedge) & \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B}(\mathrm{R} \wedge) \\
\frac{A, \Gamma \Rightarrow C \quad B, \Gamma \Rightarrow C}{A \vee B, \Gamma \Rightarrow C}(\mathrm{~L} \vee) & \frac{\Gamma \Rightarrow A_{i}}{\Gamma \Rightarrow A_{1} \vee A_{2}}(\mathrm{R} \vee)[i \in\{1,2\}] \\
\frac{A \rightarrow B, \Gamma \Rightarrow A \quad B, \Gamma \Rightarrow C}{A \rightarrow B, \Gamma \Rightarrow C}(\mathrm{~L} \rightarrow) & \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B}(\mathrm{R} \rightarrow)
\end{array}
$$

Sequent calculus for IPC

For IPC, we disallow multiple formulae in the succedent.
Definition (G3ip)

$$
\begin{array}{cc}
p, \Gamma \Rightarrow p(\mathrm{Ax}) & \perp, \Gamma \Rightarrow A(\mathrm{~L} \perp)[A \text { prime }] \\
\frac{A, B, \Gamma \Rightarrow C}{A \wedge B, \Gamma \Rightarrow C}(\mathrm{~L} \wedge) & \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B}(\mathrm{R} \wedge) \\
\frac{A, \Gamma \Rightarrow C \quad B, \Gamma \Rightarrow C}{A \vee B, \Gamma \Rightarrow C}(\mathrm{~L} \vee) & \frac{\Gamma \Rightarrow A_{i}}{\Gamma \Rightarrow A_{1} \vee A_{2}}(\mathrm{R} \vee)[i \in\{1,2\}] \\
\frac{A \rightarrow B, \Gamma \Rightarrow A \quad B, \Gamma \Rightarrow C}{A \rightarrow B, \Gamma \Rightarrow C}(\mathrm{~L} \rightarrow) & \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B}(\mathrm{R} \rightarrow)
\end{array}
$$

- We write $\vdash_{3 i} \Gamma \Rightarrow C$ for the derivability in G3ip.

Sequent calculus for IPC

For IPC, we disallow multiple formulae in the succedent.
Definition (G3ip)

$$
\begin{array}{cc}
p, \Gamma \Rightarrow p(\mathrm{Ax}) & \perp, \Gamma \Rightarrow A(\mathrm{~L} \perp)[A \text { prime }] \\
\frac{A, B, \Gamma \Rightarrow C}{A \wedge B, \Gamma \Rightarrow C}(\mathrm{~L} \wedge) & \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B}(\mathrm{R} \wedge) \\
\frac{A, \Gamma \Rightarrow C \quad B, \Gamma \Rightarrow C}{A \vee B, \Gamma \Rightarrow C}(\mathrm{~L} \vee) & \frac{\Gamma \Rightarrow A_{i}}{\Gamma \Rightarrow A_{1} \vee A_{2}}(\mathrm{R} \vee)[i \in\{1,2\}] \\
\frac{A \rightarrow B, \Gamma \Rightarrow A \quad B, \Gamma \Rightarrow C}{A \rightarrow B, \Gamma \Rightarrow C}(\mathrm{~L} \rightarrow) & \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B}(\mathrm{R} \rightarrow)
\end{array}
$$

- We write $\vdash_{3 i} \Gamma \Rightarrow C$ for the derivability in G3ip.
- Note $\vdash_{3 i} \Gamma \Rightarrow C$ if and only if $\Gamma \vdash_{i} C$.

Outline

Preliminary

Decidability of variables

Refining Ishii's class

Extension to minimal logic

Ishihara's problem

Ishihara's problem

(Ishihara 2014) asked the following question (for
$\left.\Pi_{V}:=\{p \vee \neg p: p \in V\}\right)$:

Ishihara's problem

(Ishihara 2014) asked the following question (for
$\left.\Pi_{V}:=\{p \vee \neg p: p \in V\}\right):$
"What set V of propositional variables suffices for $\Pi_{V}, \Gamma \vdash_{i} A$ whenever $\Gamma \vdash_{c} A$?"

Ishihara's problem

(Ishihara 2014) asked the following question (for
$\left.\Pi_{V}:=\{p \vee \neg p: p \in V\}\right):$
"What set V of propositional variables suffices for $\Pi_{V}, \Gamma \vdash_{i} A$ whenever $\Gamma \vdash_{c} A$?"
A solution to this question implies the conservativity of a classical consequence to IPC, if V turns out to be empty for some Γ and A.

Positive / negative occurrence of variables

Positive / negative occurrence of variables

Given a formula A, we define the sets $\mathcal{V}^{+}(A) / \mathcal{V}^{-}(A)$ of variables positively / negatively occurring in A.

Positive / negative occurrence of variables

Given a formula A, we define the sets $\mathcal{V}^{+}(A) / \mathcal{V}^{-}(A)$ of variables positively / negatively occurring in A.

$$
\begin{aligned}
\mathcal{V}^{+}(p) & =\{p\} & \mathcal{V}^{-}(p) & =\emptyset \\
\mathcal{V}^{+}(\perp) & =\emptyset & \mathcal{V}^{-}(\perp) & =\emptyset \\
\mathcal{V}^{+}(A \wedge B) & =\mathcal{V}^{+}(A) \cup \mathcal{V}^{+}(B) & \mathcal{V}^{-}(A \wedge B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}^{-}(B) \\
\mathcal{V}^{+}(A \vee B) & =\mathcal{V}^{+}(A) \cup \mathcal{V}^{+}(B) & \mathcal{V}^{-}(A \vee B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}^{-}(B) \\
\mathcal{V}^{+}(A \rightarrow B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}^{+}(B) & \mathcal{V}^{-}(A \rightarrow B) & =\mathcal{V}^{+}(A) \cup \mathcal{V}^{-}(B)
\end{aligned}
$$

Positive / negative occurrence of variables

Given a formula A, we define the sets $\mathcal{V}^{+}(A) / \mathcal{V}^{-}(A)$ of variables positively / negatively occurring in A.

$$
\begin{aligned}
\mathcal{V}^{+}(p) & =\{p\} & \mathcal{V}^{-}(p) & =\emptyset \\
\mathcal{V}^{+}(\perp) & =\emptyset & \mathcal{V}^{-}(\perp) & =\emptyset \\
\mathcal{V}^{+}(A \wedge B) & =\mathcal{V}^{+}(A) \cup \mathcal{V}^{+}(B) & \mathcal{V}^{-}(A \wedge B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}^{-}(B) \\
\mathcal{V}^{+}(A \vee B) & =\mathcal{V}^{+}(A) \cup \mathcal{V}^{+}(B) & \mathcal{V}^{-}(A \vee B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}^{-}(B) \\
\mathcal{V}^{+}(A \rightarrow B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}^{+}(B) & \mathcal{V}^{-}(A \rightarrow B) & =\mathcal{V}^{+}(A) \cup \mathcal{V}^{-}(B)
\end{aligned}
$$

For a set of formulae $\Gamma, \mathcal{V}^{+}(\Gamma)$ and $\mathcal{V}^{-}(\Gamma)$ are similarly defined.

Strictly positive / non-strictly positive occurrence

Strictly positive / non-strictly positive occurrence

We also define the sets $\mathcal{V}_{s}^{+}(A) / \mathcal{V}_{n s}^{+}(A)$ of variables strictly positively / non-strictly positively occurring in A.

Strictly positive / non-strictly positive occurrence

We also define the sets $\mathcal{V}_{s}^{+}(A) / \mathcal{V}_{n s}^{+}(A)$ of variables strictly positively / non-strictly positively occurring in A.

$$
\begin{aligned}
\mathcal{V}_{s}^{+}(p) & =\{p\} & \mathcal{V}_{n s}^{+}(p) & =\emptyset \\
\mathcal{V}_{s}^{+}(\perp) & =\emptyset & \mathcal{V}_{n s}^{+}(\perp) & =\emptyset \\
\mathcal{V}_{s}^{+}(A \wedge B) & =\mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{n s}^{+}(A \wedge B) & =\mathcal{V}_{n s}^{+}(A) \cup \mathcal{V}_{n s}^{+}(B) \\
\mathcal{V}_{s}^{+}(A \vee B) & =\mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{n s}^{+}(A \vee B) & =\mathcal{V}_{n s}^{+}(A) \cup \mathcal{V}_{n s}^{+}(B) \\
\mathcal{V}_{s}^{+}(A \rightarrow B) & =\mathcal{V}_{s}^{+}(B) & \mathcal{V}_{n s}^{+}(A \rightarrow B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}_{n s}^{+}(B)
\end{aligned}
$$

Strictly positive / non-strictly positive occurrence

We also define the sets $\mathcal{V}_{s}^{+}(A) / \mathcal{V}_{n s}^{+}(A)$ of variables strictly positively / non-strictly positively occurring in A.

$$
\begin{aligned}
\mathcal{V}_{s}^{+}(p) & =\{p\} & \mathcal{V}_{n s}^{+}(p) & =\emptyset \\
\mathcal{V}_{s}^{+}(\perp) & =\emptyset & \mathcal{V}_{n s}^{+}(\perp) & =\emptyset \\
\mathcal{V}_{s}^{+}(A \wedge B) & =\mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{n s}^{+}(A \wedge B) & =\mathcal{V}_{n s}^{+}(A) \cup \mathcal{V}_{n s}^{+}(B) \\
\mathcal{V}_{s}^{+}(A \vee B) & =\mathcal{V}_{s}^{+}(A) \cup \mathcal{V}_{s}^{+}(B) & \mathcal{V}_{n s}^{+}(A \vee B) & =\mathcal{V}_{n s}^{+}(A) \cup \mathcal{V}_{n s}^{+}(B) \\
\mathcal{V}_{s}^{+}(A \rightarrow B) & =\mathcal{V}_{s}^{+}(B) & \mathcal{V}_{n s}^{+}(A \rightarrow B) & =\mathcal{V}^{-}(A) \cup \mathcal{V}_{n s}^{+}(B)
\end{aligned}
$$

Ishihara's solution

Ishihara's solution

- Ishihara showed $V=\left(\mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right) \cap\left(\mathcal{V}_{n s}^{+}(\Gamma) \cup \mathcal{V}^{-}(A)\right)$ suffices.

Ishihara's solution

- Ishihara showed $V=\left(\mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right) \cap\left(\mathcal{V}_{n s}^{+}(\Gamma) \cup \mathcal{V}^{-}(A)\right)$ suffices.
- The argument is by induction on the depth of proof in G3cp.

Ishihara's solution

- Ishihara showed $V=\left(\mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right) \cap\left(\mathcal{V}_{n s}^{+}(\Gamma) \cup \mathcal{V}^{-}(A)\right)$ suffices.
- The argument is by induction on the depth of proof in G3cp.
- Write $\Gamma \rightarrow A:=\{B \rightarrow A: B \in \Gamma\}$.

Ishihara's solution

- Ishihara showed $V=\left(\mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right) \cap\left(\mathcal{V}_{n s}^{+}(\Gamma) \cup \mathcal{V}^{-}(A)\right)$ suffices.
- The argument is by induction on the depth of proof in G3cp.
- Write $\Gamma \rightarrow A:=\{B \rightarrow A: B \in \Gamma\}$.
- He showed If $\vdash_{3 c} \Gamma, \Delta \Rightarrow \Sigma$, then
$\vdash_{3 i} \Pi_{V}, \Gamma, \neg \Delta \rightarrow *, \Sigma \rightarrow * \Rightarrow *$. for a place-holder $*$.

Ishihara's solution

- Ishihara showed $V=\left(\mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right) \cap\left(\mathcal{V}_{n s}^{+}(\Gamma) \cup \mathcal{V}^{-}(A)\right)$ suffices.
- The argument is by induction on the depth of proof in G3cp.
- Write $\Gamma \rightarrow A:=\{B \rightarrow A: B \in \Gamma\}$.
- He showed If $\vdash_{3 c} \Gamma, \Delta \Rightarrow \Sigma$, then
$\vdash_{3 i} \Pi_{V}, \Gamma, \neg \Delta \rightarrow *, \Sigma \rightarrow * \Rightarrow *$. for a place-holder $*$.
- Then if $\Sigma=\{A\}$, substitute $*$ by A to obtain $\vdash_{3 i} \Pi_{V}, \Gamma \Rightarrow A$ (with $\Delta=\emptyset$).

Ishii's solution

Ishii's solution

- (Ishii 2018) offers an alternative solution.

Ishii's solution

- (Ishii 2018) offers an alternative solution.
- he appealed to Glivenko's theorem:

Ishii's solution

- (Ishii 2018) offers an alternative solution.
- he appealed to Glivenko's theorem:

Theorem (Glivenko 1929)
If $\Gamma \vdash_{c} A$ then $\Gamma \vdash_{i} \neg \neg A$.

Ishii's solution

- (Ishii 2018) offers an alternative solution.
- he appealed to Glivenko's theorem:

Theorem (Glivenko 1929)
If $\Gamma \vdash_{c} A$ then $\Gamma \vdash_{i} \neg \neg A$.

- Then it is a matter of finding V so that $\Pi_{v} \vdash_{i} \neg \neg A \rightarrow A$.

Ishii's solution

Ishii's solution

- Let $\mathcal{E}_{A}:=\{p \vee \neg p: p \in \mathrm{~V}(A)\}$ where $\mathrm{V}(A)$ is the set of propositional variables that occur in A.

Ishii's solution

- Let $\mathcal{E}_{A}:=\{p \vee \neg p: p \in \mathrm{~V}(A)\}$ where $\mathrm{V}(A)$ is the set of propositional variables that occur in A.

Definition (Ishii 2018)
We define $\widetilde{\mathcal{E}}_{A}$ inductively.

$$
\begin{aligned}
\widetilde{\mathcal{E}}_{p} & :=\{p \vee \neg p\} \\
\widetilde{\mathcal{E}}_{\perp} & :=\emptyset \\
\widetilde{\mathcal{E}}_{A \wedge B} & :=\widetilde{\mathcal{E}}_{A} \cup \widetilde{\mathcal{E}}_{B} \\
\widetilde{\mathcal{E}}_{A \vee B} & :=\widetilde{\mathcal{E}}_{A} \cup \mathcal{E}_{B} \text { or } \mathcal{E}_{A} \cup \widetilde{\mathcal{E}}_{B} \\
\widetilde{\mathcal{E}}_{A \rightarrow B} & :=\widetilde{\mathcal{E}}_{B}
\end{aligned}
$$

($\widetilde{\mathcal{E}}_{A}$ is therefore non-deterministic.)

Ishii's solution

- Let $\mathcal{E}_{A}:=\{p \vee \neg p: p \in \mathrm{~V}(A)\}$ where $\mathrm{V}(A)$ is the set of propositional variables that occur in A.

Definition (Ishii 2018)
We define $\widetilde{\mathcal{E}}_{A}$ inductively.

$$
\begin{aligned}
\widetilde{\mathcal{E}}_{p} & :=\{p \vee \neg p\} \\
\widetilde{\mathcal{E}}_{\perp} & :=\emptyset \\
\widetilde{\mathcal{E}}_{A \wedge B} & :=\widetilde{\mathcal{E}}_{A} \cup \widetilde{\mathcal{E}}_{B} \\
\widetilde{\mathcal{E}}_{A \vee B} & :=\widetilde{\mathcal{E}}_{A} \cup \mathcal{E}_{B} \text { or } \mathcal{E}_{A} \cup \widetilde{\mathcal{E}}_{B} \\
\widetilde{\mathcal{E}}_{A \rightarrow B} & :=\widetilde{\mathcal{E}}_{B}
\end{aligned}
$$

($\widetilde{\mathcal{E}}_{A}$ is therefore non-deterministic.)
Theorem (Ishii 2018)
If $\Gamma \vdash_{c} A$, then $\widetilde{\mathcal{E}}_{A}, \Gamma \vdash_{i} A$.

Comparing the solutions

Comparing the solutions

- Ishii observes that each of the solutions can perform better than the other, depending on $\Gamma \cup\{A\}$.

Comparing the solutions

- Ishii observes that each of the solutions can perform better than the other, depending on $\Gamma \cup\{A\}$.
- Very roughly, If $\Gamma \vdash_{c} A$:

Comparing the solutions

- Ishii observes that each of the solutions can perform better than the other, depending on $\Gamma \cup\{A\}$.
- Very roughly, If $\Gamma \vdash_{c} A$:
- Ishihara's class: can drop strictly positive occurrences in Γ;

Comparing the solutions

- Ishii observes that each of the solutions can perform better than the other, depending on $\Gamma \cup\{A\}$.
- Very roughly, If $\Gamma \vdash_{c} A$:
- Ishihara's class: can drop strictly positive occurrences in Γ;
- Ishii's class: only needs strictly positive occurrences in A (except for disjunctions).

Outline

Preliminary
 Decidability of variables

Refining Ishii's class

Extension to minimal logic

The basic idea

The basic idea

- If we recall, Ishii's class has the clause

$$
\widetilde{\mathcal{E}}_{p}:=\{p \vee \neg p\}
$$

The basic idea

- If we recall, Ishii's class has the clause

$$
\widetilde{\mathcal{E}}_{p}:=\{p \vee \neg p\}
$$

- We assume $p \vee \neg p$ in order to infer $\neg \neg p \rightarrow p$.

The basic idea

- If we recall, Ishii's class has the clause

$$
\widetilde{\mathcal{E}}_{p}:=\{p \vee \neg p\}
$$

- We assume $p \vee \neg p$ in order to infer $\neg \neg p \rightarrow p$.
- But for this assuming $\neg \neg p \rightarrow p$ surely suffices.

The basic idea

- If we recall, Ishii's class has the clause

$$
\widetilde{\mathcal{E}}_{p}:=\{p \vee \neg p\}
$$

- We assume $p \vee \neg p$ in order to infer $\neg \neg p \rightarrow p$.
- But for this assuming $\neg \neg p \rightarrow p$ surely suffices.
- Hence there seems to be a room for improvement for Ishii's class.

The basic idea

- If we recall, Ishii's class has the clause

$$
\widetilde{\mathcal{E}}_{p}:=\{p \vee \neg p\}
$$

- We assume $p \vee \neg p$ in order to infer $\neg \neg p \rightarrow p$.
- But for this assuming $\neg \neg p \rightarrow p$ surely suffices.
- Hence there seems to be a room for improvement for Ishii's class.
- In particular, it appears promising to use a weaker principle than LEM.

Rieger-Nishimura lattice

Rieger-Nishimura lattice

Recall Rieger-Nishimura lattice (Rieger 1949, Nishimura 1960), the Lindenbaum algebra of one-variable formulae.

Rieger-Nishimura lattice

Recall Rieger-Nishimura lattice (Rieger 1949, Nishimura 1960), the Lindenbaum algebra of one-variable formulae.

From this it seems reasonable to consider classes of $\neg \neg p \vee \neg p$ (WLEM) and $\neg \neg p \rightarrow p$ (DNE).

Glivenko's theorem, revisited

Glivenko's theorem, revisited

Theorem (Glivenko 1929)
If $\Gamma \vdash_{c} A$ then $\Gamma \vdash_{i} \neg \neg A$.

Glivenko's theorem, revisited

Theorem (Glivenko 1929)
If $\Gamma \vdash_{c} A$ then $\Gamma \vdash_{i} \neg \neg A$.

- Glivenko's theorem does not hold with respect to MPC.

Glivenko's theorem, revisited

Theorem (Glivenko 1929)
If $\Gamma \vdash_{c} A$ then $\Gamma \vdash_{i} \neg \neg A$.

- Glivenko's theorem does not hold with respect to MPC.
- This is because the double negation of EFQ is not provable in it.

Glivenko's theorem, revisited

Theorem (Glivenko 1929)
If $\Gamma \vdash_{c} A$ then $\Gamma \vdash_{i} \neg \neg A$.

- Glivenko's theorem does not hold with respect to MPC.
- This is because the double negation of EFQ is not provable in it.
- Can we then add $\neg \neg(\perp \rightarrow A)$ to MPC without making it IPC?

Glivenko's theorem, revisited

Theorem (Glivenko 1929)
If $\Gamma \vdash_{c} A$ then $\Gamma \vdash_{i} \neg \neg A$.

- Glivenko's theorem does not hold with respect to MPC.
- This is because the double negation of EFQ is not provable in it.
- Can we then add $\neg \neg(\perp \rightarrow A)$ to MPC without making it IPC?
- The answer is in the affirmative.

Glivenko's logic

Glivenko's logic

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).

Glivenko's logic

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- It is defined by adding $\neg \neg(\perp \rightarrow A)$ [AVQ] to MPC.

Glivenko's logic

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- It is defined by adding $\neg \neg(\perp \rightarrow A)$ [AVQ] to MPC.
- Equivalently one can add $\neg A \rightarrow \neg \neg(A \rightarrow B)$.

Glivenko's logic

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- It is defined by adding $\neg \neg(\perp \rightarrow A)$ [AVQ] to MPC.
- Equivalently one can add $\neg A \rightarrow \neg \neg(A \rightarrow B)$.
- We shall call it GPC (derivability \vdash_{g}).

Glivenko's logic

- Glivenko's logic (originally called JP') is defined by (Segerberg 1968).
- It is defined by adding $\neg \neg(\perp \rightarrow A)$ [AVQ] to MPC.
- Equivalently one can add $\neg A \rightarrow \neg \neg(A \rightarrow B)$.
- We shall call it GPC (derivability \vdash_{g}).
- it is the smallest extension of MPC with respect to which Glivenko's theorem holds.

A thing about WLEM

A thing about WLEM

- Let us write

A thing about WLEM

- Let us write
- $\mathcal{E}_{A}=\{p \vee \neg p: p \in \mathcal{V}(A)\}$.

A thing about WLEM

- Let us write
- $\mathcal{E}_{A}=\{p \vee \neg p: p \in \mathcal{V}(A)\}$.
- $\mathcal{W}_{A}=\{\neg \neg p \vee \neg p: p \in \mathcal{V}(A)\}$.

A thing about WLEM

- Let us write
- $\mathcal{E}_{A}=\{p \vee \neg p: p \in \mathcal{V}(A)\}$.
- $\mathcal{W}_{A}=\{\neg \neg p \vee \neg p: p \in \mathcal{V}(A)\}$.
- Ishii's method makes use of the fact $\mathcal{E}_{A} \vdash_{i} A \vee \neg A$.

A thing about WLEM

- Let us write
- $\mathcal{E}_{A}=\{p \vee \neg p: p \in \mathcal{V}(A)\}$.
- $\mathcal{W}_{A}=\{\neg \neg p \vee \neg p: p \in \mathcal{V}(A)\}$.
- Ishii's method makes use of the fact $\mathcal{E}_{A} \vdash_{i} A \vee \neg A$.
- Similarly we have $\mathcal{W}_{A} \vdash_{g} \neg \neg A \vee \neg A$.

A thing about WLEM

- Let us write
- $\mathcal{E}_{A}=\{p \vee \neg p: p \in \mathcal{V}(A)\}$.
- $\mathcal{W}_{A}=\{\neg \neg p \vee \neg p: p \in \mathcal{V}(A)\}$.
- Ishii's method makes use of the fact $\mathcal{E}_{A} \vdash_{i} A \vee \neg A$.
- Similarly we have $\mathcal{W}_{A} \vdash_{g} \neg \neg A \vee \neg A$.
- For this, we use AVQ to infer $\neg B \rightarrow \neg \neg(B \rightarrow C)$ for the case $A \equiv(B \rightarrow C)$.

A thing about WLEM

- Let us write
- $\mathcal{E}_{A}=\{p \vee \neg p: p \in \mathcal{V}(A)\}$.
- $\mathcal{W}_{A}=\{\neg \neg p \vee \neg p: p \in \mathcal{V}(A)\}$.
- Ishii's method makes use of the fact $\mathcal{E}_{A} \vdash_{i} A \vee \neg A$.
- Similarly we have $\mathcal{W}_{A} \vdash_{g} \neg \neg A \vee \neg A$.
- For this, we use AVQ to infer $\neg B \rightarrow \neg \neg(B \rightarrow C)$ for the case $A \equiv(B \rightarrow C)$.
- Note we cannot use LEM, because $\nvdash_{g} \neg B \rightarrow(B \rightarrow C)$.

A thing about WLEM

- Let us write
- $\mathcal{E}_{A}=\{p \vee \neg p: p \in \mathcal{V}(A)\}$.
- $\mathcal{W}_{A}=\{\neg \neg p \vee \neg p: p \in \mathcal{V}(A)\}$.
- Ishii's method makes use of the fact $\mathcal{E}_{A} \vdash_{i} A \vee \neg A$.
- Similarly we have $\mathcal{W}_{A} \vdash_{g} \neg \neg A \vee \neg A$.
- For this, we use AVQ to infer $\neg B \rightarrow \neg \neg(B \rightarrow C)$ for the case $A \equiv(B \rightarrow C)$.
- Note we cannot use LEM, because $\vdash_{g} \neg B \rightarrow(B \rightarrow C)$.
- So extension of Ishii's method to Glivenko's logic requires us to think in terms of WLEM and DNE.

Class of WLEM

Class of WLEM

We define a class of propositional WLEM $\widetilde{\mathcal{W}}_{A}$ inductively.

Class of WLEM

We define a class of propositional WLEM $\widetilde{\mathcal{W}}_{A}$ inductively.

$$
\begin{aligned}
\widetilde{\mathcal{W}}_{p} & =\widetilde{\mathcal{W}}_{\perp}=\emptyset \\
\widetilde{\mathcal{W}}_{A \wedge B} & =\widetilde{\mathcal{W}}_{A} \cup \widetilde{\mathcal{W}}_{B} \\
\widetilde{\mathcal{W}}_{A \vee B} & =\widetilde{\mathcal{W}}_{A} \cup \mathcal{W}_{B} \text { or } \mathcal{W}_{A} \cup \widetilde{\mathcal{W}}_{B} \\
\widetilde{\mathcal{W}}_{A \rightarrow B} & =\widetilde{\mathcal{W}}_{B}
\end{aligned}
$$

Class of WLEM

We define a class of propositional WLEM $\widetilde{\mathcal{W}}_{A}$ inductively.

$$
\begin{aligned}
\widetilde{\mathcal{W}}_{p} & =\widetilde{\mathcal{W}}_{\perp}=\emptyset \\
\widetilde{\mathcal{W}}_{A \wedge B} & =\widetilde{\mathcal{W}}_{A} \cup \widetilde{\mathcal{W}}_{B} \\
\widetilde{\mathcal{W}}_{A \vee B} & =\widetilde{\mathcal{W}}_{A} \cup \mathcal{W}_{B} \text { or } \mathcal{W}_{A} \cup \widetilde{\mathcal{W}}_{B} \\
\widetilde{\mathcal{W}}_{A \rightarrow B} & =\widetilde{\mathcal{W}}_{B}
\end{aligned}
$$

So we take an instance from one of the disjuncts for each disjunction occurring strictly positively.

Class of WLEM

Class of WLEM

We borrow a notion from (Troelstra and van Dalen 1988) with modification.

Class of WLEM

We borrow a notion from (Troelstra and van Dalen 1988) with modification.
Definition (multiple formula contexts)
Let $*_{1}, *_{2}, \ldots$ be a countable set of symbols. The class \mathcal{F} of multiple formula contexts is defined inductively as follows. (where $F, F^{\prime} \in \mathcal{F}$ and A a formula.)
(i) $*_{n}, \perp, A \rightarrow F \in \mathcal{F}$.
(ii) Assume no $*_{n}$ occurs in both F and F^{\prime}. Then
$F \wedge F^{\prime}, F \vee F^{\prime} \in \mathcal{F}$.

Class of WLEM

We borrow a notion from (Troelstra and van Dalen 1988) with modification.
Definition (multiple formula contexts)
Let $*_{1}, *_{2}, \ldots$ be a countable set of symbols. The class \mathcal{F} of multiple formula contexts is defined inductively as follows. (where $F, F^{\prime} \in \mathcal{F}$ and A a formula.)
(i) $*_{n}, \perp, A \rightarrow F \in \mathcal{F}$.
(ii) Assume no $*_{n}$ occurs in both F and F^{\prime}. Then
$F \wedge F^{\prime}, F \vee F^{\prime} \in \mathcal{F}$.
Note any formula can be written as $F\left[p_{1}, \ldots, p_{n}\right]$.

Class of WLEM

Class of WLEM

Proposition

Let $F\left[*_{1}, \ldots, *_{n}\right] \in \mathcal{F}$. Then $\widetilde{\mathcal{W}}_{F\left[p_{1}, \ldots, p_{n}\right]} \vdash_{g} \neg \neg F\left[p_{1}, \ldots, p_{n}\right] \rightarrow F\left[\neg \neg p_{1}, \ldots, \neg \neg p_{n}\right]$.

Class of WLEM

Proposition

Let $F\left[*_{1}, \ldots, *_{n}\right] \in \mathcal{F}$. Then
$\widetilde{\mathcal{W}}_{F\left[p_{1}, \ldots, p_{n}\right]} \vdash_{g} \neg \neg F\left[p_{1}, \ldots, p_{n}\right] \rightarrow F\left[\neg \neg p_{1}, \ldots, \neg \neg p_{n}\right]$.
That is to say, we can push the double negations inside, to the front of strictly positive propositional variables.

Class of DNE

Class of DNE

Let $\mathcal{D}_{A}:=\left\{\neg \neg p \rightarrow p: p \in \mathcal{V}_{s}^{+}(A)\right\}$.

Class of DNE

Let $\mathcal{D}_{A}:=\left\{\neg \neg p \rightarrow p: p \in \mathcal{V}_{s}^{+}(A)\right\}$.

Proposition

Let $F\left[*_{1}, \ldots, *_{n}\right] \in \mathcal{F}$. Then
$\mathcal{D}^{F\left[p_{1}, \ldots, p_{n}\right]} \vdash_{g} F\left[\neg \neg p_{1}, \ldots, \neg \neg p_{n}\right] \rightarrow F\left[p_{1}, \ldots, p_{n}\right]$.

Class of DNE

Let $\mathcal{D}_{A}:=\left\{\neg \neg p \rightarrow p: p \in \mathcal{V}_{s}^{+}(A)\right\}$.
Proposition
Let $F\left[*_{1}, \ldots, *_{n}\right] \in \mathcal{F}$. Then
$\mathcal{D}_{F\left[p_{1}, \ldots, p_{n}\right]} \vdash_{g} F\left[\neg \neg p_{1}, \ldots, \neg \neg p_{n}\right] \rightarrow F\left[p_{1}, \ldots, p_{n}\right]$.
Therefore we conclude (with Glivenko's theorem)

Class of DNE

Let $\mathcal{D}_{A}:=\left\{\neg \neg p \rightarrow p: p \in \mathcal{V}_{s}^{+}(A)\right\}$.
Proposition
Let $F\left[*_{1}, \ldots, *_{n}\right] \in \mathcal{F}$. Then
$\mathcal{D}_{F\left[p_{1}, \ldots, p_{n}\right]} \vdash_{g} F\left[\neg \neg p_{1}, \ldots, \neg \neg p_{n}\right] \rightarrow F\left[p_{1}, \ldots, p_{n}\right]$.
Therefore we conclude (with Glivenko's theorem)
Theorem
If $\Gamma \vdash_{c} A$, then $\widetilde{\mathcal{W}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{g} A$.

Example

Example

- We have $\vdash_{c} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.

Example

- We have $\vdash_{c} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- We choose

Example

- We have $\vdash_{c} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- We choose
- $\widetilde{\mathcal{W}}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg p \vee \neg p\}$;

Example

- We have $\vdash_{c} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- We choose
- $\widetilde{\mathcal{W}}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg p \vee \neg p\}$;
- $\mathcal{D}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg q \rightarrow q\}$.

Example

- We have $\vdash_{c} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- We choose
- $\widetilde{\mathcal{W}}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg p \vee \neg p\}$;
- $\mathcal{D}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg q \rightarrow q\}$.
- Then $\neg \neg p \vee \neg p, \neg \neg q \rightarrow q \vdash_{g} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.

Example

- We have $\vdash_{c} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- We choose
- $\widetilde{\mathcal{W}}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg p \vee \neg p\} ;$
- $\mathcal{D}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg q \rightarrow q\}$.
- Then $\neg \neg p \vee \neg p, \neg \neg q \rightarrow q \vdash_{g} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- With the same choice of disjuncts, Ishii's class gives $\{p \vee \neg p, q \vee \neg q\}$.

Example

- We have $\vdash_{c} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- We choose
- $\widetilde{\mathcal{W}}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg p \vee \neg p\}$;
- $\mathcal{D}_{\neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)}=\{\neg \neg q \rightarrow q\}$.
- Then $\neg \neg p \vee \neg p, \neg \neg q \rightarrow q \vdash_{g} \neg \neg(p \vee q) \rightarrow(\neg \neg p \vee q)$.
- With the same choice of disjuncts, Ishii's class gives $\{p \vee \neg p, q \vee \neg q\}$.
- For the other possible choice, the classes give $\{\neg \neg q \rightarrow q, \neg \neg q \vee \neg q\}$ and $\{q \vee \neg q\}$, respectively.

Example

Example

- So our class always give at least as good, and sometimes strictly better, solutions compared to Ishii's.

Example

- So our class always give at least as good, and sometimes strictly better, solutions compared to Ishii's.
- In addition, our approach enabled to treat Glivenko's logic as well.

Outline

Preliminary
Decidability of variables
\section*{Refining Ishii's class}

Extension to minimal logic

Where did we rely on AVQ?

Where did we rely on AVQ?

- We relied on AVQ in two places.

Where did we rely on AVQ?

- We relied on AVQ in two places.

1. In Glivenko's theorem.

Where did we rely on AVQ?

- We relied on AVQ in two places.

1. In Glivenko's theorem.
2. In showing $\mathcal{W}_{A} \vdash_{g} \neg \neg A \vee \neg A$.

Where did we rely on AVQ?

- We relied on AVQ in two places.

1. In Glivenko's theorem.
2. In showing $\mathcal{W}_{A} \vdash_{g} \neg \neg A \vee \neg A$.

- We shall first see how to evade from the former reliance.

Gödel-Gentzen translation

Gödel-Gentzen translation

Definition (Gödel-Gentzen translation)
For each formula A, We define its translation ()g by the following clauses.

$$
\begin{aligned}
p^{g} & \equiv \neg \neg p \\
\perp^{g} & \equiv \perp \\
(A \wedge B)^{g} & \equiv A^{g} \wedge B^{g} \\
(A \vee B)^{g} & \equiv \neg\left(\neg A^{g} \wedge \neg B^{g}\right) \\
(A \rightarrow B)^{g} & \equiv A^{g} \rightarrow B^{g}
\end{aligned}
$$

Gödel-Gentzen translation

Definition (Gödel-Gentzen translation)
For each formula A, We define its translation ()g by the following clauses.

$$
\begin{aligned}
p^{g} & \equiv \neg \neg p \\
\perp^{g} & \equiv \perp \\
(A \wedge B)^{g} & \equiv A^{g} \wedge B^{g} \\
(A \vee B)^{g} & \equiv \neg\left(\neg A^{g} \wedge \neg B^{g}\right) \\
(A \rightarrow B)^{g} & \equiv A^{g} \rightarrow B^{g}
\end{aligned}
$$

We shall write $\Gamma^{g}=\left\{A^{g}: A \in \Gamma\right\}$.

Gödel-Gentzen translation

Definition (Gödel-Gentzen translation)
For each formula A, We define its translation ()g by the following clauses.

$$
\begin{aligned}
p^{g} & \equiv \neg \neg p \\
\perp^{g} & \equiv \perp \\
(A \wedge B)^{g} & \equiv A^{g} \wedge B^{g} \\
(A \vee B)^{g} & \equiv \neg\left(\neg A^{g} \wedge \neg B^{g}\right) \\
(A \rightarrow B)^{g} & \equiv A^{g} \rightarrow B^{g}
\end{aligned}
$$

We shall write $\Gamma^{g}=\left\{A^{g}: A \in \Gamma\right\}$.
Theorem
(i) For any $A, \vdash_{m} \neg \neg A^{g} \leftrightarrow A^{g}$.
(ii) If $\Gamma \vdash_{c} A$, then $\Gamma^{g} \vdash_{m} A^{g}$.

Class of AVQ (i)

Class of AVQ (i)

Let $\mathcal{Q}_{A}=\{\neg \neg(\perp \rightarrow p): p \in \mathcal{V}(A)\}$.

Class of AVQ (i)

Let $\mathcal{Q}_{A}=\{\underset{\sim}{\mathcal{D}}(\perp \rightarrow p): p \in \mathcal{V}(A)\}$.
We define $\widetilde{\mathcal{Q}}_{A}$ inductively by the following clauses.

Class of AVQ (i)

Let $\mathcal{Q}_{A}=\{\underset{\widetilde{\mathcal{D}}}{ } \rightarrow(\perp \rightarrow p): p \in \mathcal{V}(A)\}$.
We define \mathcal{Q}_{A} inductively by the following clauses.

$$
\begin{aligned}
\widetilde{\mathcal{Q}}_{p} & =\widetilde{\mathcal{Q}}_{\perp}=\emptyset \\
\widetilde{\mathcal{Q}}_{A} & =\widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B} \\
\widetilde{\mathcal{Q}}_{A \vee B} & =\widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B} \\
\widetilde{\mathcal{Q}}_{A \rightarrow B} & =\widetilde{\mathcal{Q}}_{A} \cup \mathcal{Q}_{B}
\end{aligned}
$$

Class of AVQ (i)

Let $\mathcal{Q}_{A}=\{\widetilde{\widetilde{\sim}} \neg(\perp \rightarrow p): p \in \mathcal{V}(A)\}$.
We define $\widetilde{\mathcal{Q}}_{A}$ inductively by the following clauses.

$$
\begin{aligned}
\widetilde{\mathcal{Q}}_{p} & =\widetilde{\mathcal{Q}}_{\perp}=\emptyset \\
\widetilde{\mathcal{Q}}_{A} \wedge B & =\widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B} \\
\widetilde{\mathcal{Q}}_{A \vee B} & =\widetilde{\mathcal{Q}}_{A} \cup \widetilde{\mathcal{Q}}_{B} \\
\widetilde{\mathcal{Q}}_{A \rightarrow B} & =\widetilde{\mathcal{Q}}_{A} \cup \mathcal{Q}_{B}
\end{aligned}
$$

That is, $\widetilde{\mathcal{Q}}_{A}$ collects propositional variables occuring in the conclusions of implications.

Class of AVQ (i)

Class of AVQ (i)

Definition (Q-spreading, Q-isolating)
Given a formula A, we say it is Q-spreading if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A \rightarrow A^{g}$, and Q-isolating if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A^{g} \rightarrow \neg \neg A$.

Class of AVQ (i)

Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A \rightarrow A^{g}$, and Q-isolating if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A^{g} \rightarrow \neg \neg A$.
Then we obtain the following result.

Class of AVQ (i)

Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A \rightarrow A^{g}$, and Q-isolating if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A^{g} \rightarrow \neg \neg A$.
Then we obtain the following result.
Proposition
Any formula is both Q-spreading and Q-isolating.

Class of AVQ (i)

Definition (Q-spreading, Q-isolating)

Given a formula A, we say it is Q-spreading if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A \rightarrow A^{g}$, and Q-isolating if $\widetilde{\mathcal{Q}}_{A} \vdash_{m} A^{g} \rightarrow \neg \neg A$.
Then we obtain the following result.
Proposition
Any formula is both Q-spreading and Q-isolating.
Corollary
If $\Gamma \vdash_{c} A$, then $\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}, \Gamma \vdash_{m} \neg \neg A$.

Class of AVQ (ii)

Class of AVQ (ii)

We recall (a fragment of) subformula property of G3ip.

Class of AVQ (ii)

We recall (a fragment of) subformula property of G3ip.
Proposition (subformula property)
If a sequent $\Gamma \Rightarrow p$ occurs in a derivation in G3ip of $\Gamma^{\prime} \Rightarrow C$, then $p \in \mathcal{V}^{-}(A)$ for some $A \in \Gamma^{\prime}$, or $p \in \mathcal{V}^{+}(C)$.

Class of AVQ (ii)

We recall (a fragment of) subformula property of G3ip.
Proposition (subformula property)
If a sequent $\Gamma \Rightarrow p$ occurs in a derivation in G3ip of $\Gamma^{\prime} \Rightarrow C$, then $p \in \mathcal{V}^{-}(A)$ for some $A \in \Gamma^{\prime}$, or $p \in \mathcal{V}^{+}(C)$.

- This means all propositional variables introduced by ($\mathrm{L} \perp$) in a proof of G3i occurs in one of these positions.

Class of AVQ (ii)

We recall (a fragment of) subformula property of G3ip.
Proposition (subformula property)
If a sequent $\Gamma \Rightarrow p$ occurs in a derivation in G3ip of $\Gamma^{\prime} \Rightarrow C$, then $p \in \mathcal{V}^{-}(A)$ for some $A \in \Gamma^{\prime}$, or $p \in \mathcal{V}^{+}(C)$.

- This means all propositional variables introduced by ($\mathrm{L} \perp$) in a proof of G3i occurs in one of these positions.
- Hence it suffices to assume EFQ for such instances to preserve the derivation into MPC.

Class of AVQ (ii)

We recall (a fragment of) subformula property of G3ip.
Proposition (subformula property)
If a sequent $\Gamma \Rightarrow p$ occurs in a derivation in G3ip of $\Gamma^{\prime} \Rightarrow C$, then $p \in \mathcal{V}^{-}(A)$ for some $A \in \Gamma^{\prime}$, or $p \in \mathcal{V}^{+}(C)$.

- This means all propositional variables introduced by ($\mathrm{L} \perp$) in a proof of G3i occurs in one of these positions.
- Hence it suffices to assume EFQ for such instances to preserve the derivation into MPC.
- In particular, for $\vdash_{3 i} \Gamma \Rightarrow \neg \neg A$, it turns out that instances of AVQ are sufficient.

Class of AVQ (ii)

Class of AVQ (ii)

Let $\mathcal{B}_{\Gamma \cup\{A\}}:=\left\{\neg \neg(\perp \rightarrow p): p \in \mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right\}$.

Class of AVQ (ii)

Let $\mathcal{B}_{\Gamma \cup\{A\}}:=\left\{\neg \neg(\perp \rightarrow p): p \in \mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right\}$.
Theorem
If $\Gamma \vdash_{c} A$, then $\mathcal{B}_{\Gamma \cup\{A\}}, \Gamma \vdash_{m} \neg \neg A$.

Class of AVQ (ii)

Let $\mathcal{B}_{\Gamma \cup\{A\}}:=\left\{\neg \neg(\perp \rightarrow p): p \in \mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right\}$.
Theorem
If $\Gamma \vdash_{c} A$, then $\mathcal{B}_{\Gamma \cup\{A\}}, \Gamma \vdash_{m} \neg \neg A$.
Proof.
If $\Gamma \vdash_{c} A$, then $\Gamma \vdash_{i} \neg \neg A$. So
$\left\{\perp \rightarrow p: p \in \mathcal{V}^{-}(\Gamma) \cup \mathcal{V}^{+}(A)\right\}, \Gamma \vdash_{m} \neg \neg A$. Thus by contraposing multiple times, we obtain $\mathcal{B}_{\Gamma \cup\{A\}}, \Gamma \vdash_{m} \neg \neg A$.

Comparisons of the two classes

Comparisons of the two classes

- For $A \equiv(\perp \rightarrow p) \vee \neg \neg q$ we see $\widetilde{\mathcal{Q}}_{A}=\{p\}$ but $\mathcal{B}_{A}=\{p, q\}$.

Comparisons of the two classes

- For $A \equiv(\perp \rightarrow p) \vee \neg \neg q$ we see $\widetilde{\mathcal{Q}}_{A}=\{p\}$ but $\mathcal{B}_{A}=\{p, q\}$.
- For $A \equiv \perp \rightarrow(q \rightarrow p)$ we have $\widetilde{\mathcal{Q}}_{A}=\{p, q\}$ but $\mathcal{B}_{A}=\{p\}$.

Comparisons of the two classes

- For $A \equiv(\perp \rightarrow p) \vee \neg \neg q$ we see $\widetilde{\mathcal{Q}}_{A}=\{p\}$ but $\mathcal{B}_{A}=\{p, q\}$.
- For $A \equiv \perp \rightarrow(q \rightarrow p)$ we have $\widetilde{\mathcal{Q}}_{A}=\{p, q\}$ but $\mathcal{B}_{A}=\{p\}$.
- Hence it depends on the formula which one of $\widetilde{\mathcal{Q}}_{A}$ and \mathcal{B}_{A} gives a better result.

Last step

Last step

- After obtaining $\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}\left(\right.$ or $\left.\mathcal{B}_{\Gamma \cup\{A\}}\right), \Gamma \vdash_{m} \neg \neg A$, we need to eliminate $\neg \neg$ as before.

Last step

- After obtaining $\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}\left(\operatorname{or} \mathcal{B}_{\Gamma \cup\{A\}}\right), \Gamma \vdash_{m} \neg \neg A$, we need to eliminate $\neg \neg$ as before.
- We have $\mathcal{Q}_{C}, \mathcal{W}_{C} \vdash_{m} \neg \neg C \vee \neg C$.

Last step

- After obtaining $\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}\left(\right.$ or $\left.\mathcal{B}_{\Gamma \cup\{A\}}\right), \Gamma \vdash_{m} \neg \neg A$, we need to eliminate $\neg \neg$ as before.
- We have $\mathcal{Q}_{C}, \mathcal{W}_{C} \vdash_{m} \neg \neg C \vee \neg C$.
- So \mathcal{Q} in addition to \mathcal{W} suffices to enable our argument for MPC.

Last step

Last step

Definition

We define $\widetilde{\mathcal{R}}_{A}$ inductively.

$$
\begin{aligned}
\widetilde{\mathcal{R}}_{P} & =\widetilde{\mathcal{R}}_{\perp}=\emptyset \\
\widetilde{\mathcal{R}}_{A \wedge B} & =\widetilde{\mathcal{R}}_{A} \cup \widetilde{\mathcal{R}}_{B} \\
\widetilde{\mathcal{R}}_{A \vee B} & =\widetilde{\mathcal{R}}_{A} \cup \mathcal{Q}_{B} \cup \mathcal{W}_{B} \text { or } \mathcal{Q}_{A} \cup \mathcal{W}_{A} \cup \widetilde{\mathcal{R}}_{B} \\
\widetilde{\mathcal{R}}_{A \rightarrow B} & =\widetilde{\mathcal{R}}_{B}
\end{aligned}
$$

Last step

Last step

Then we obtain

Last step

Then we obtain
Proposition
(i) If $\Gamma \vdash_{c} A$, then $\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$.
(ii) If $\Gamma \vdash_{c} A$, then $\mathcal{B}_{\Gamma \cup\{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$.

Last step

Then we obtain
Proposition
(i) If $\Gamma \vdash_{c} A$, then $\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$.
(ii) If $\Gamma \vdash_{c} A$, then $\mathcal{B}_{\Gamma \cup\{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$.

In particular, since $\vdash_{m}(\neg \neg p \rightarrow p) \rightarrow(\perp \rightarrow p)$, denoting
$V\left(\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}\right), V\left(\mathcal{B}_{\Gamma \cup\{A\}}\right)$ and $V\left(\mathcal{D}_{A}\right)$ to be the sets of propositional variables occurring in the classes:

Last step

Then we obtain
Proposition
(i) If $\Gamma \vdash_{c} A$, then $\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$.
(ii) If $\Gamma \vdash_{c} A$, then $\mathcal{B}_{\Gamma \cup\{A\}}, \widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$.

In particular, since $\vdash_{m}(\neg \neg p \rightarrow p) \rightarrow(\perp \rightarrow p)$, denoting
$V\left(\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}\right), V\left(\mathcal{B}_{\Gamma \cup\{A\}}\right)$ and $V\left(\mathcal{D}_{A}\right)$ to be the sets of propositional variables occurring in the classes:
Corollary
Suppose $\Gamma \vdash_{C} A$ and $V\left(\widetilde{\mathcal{Q}}_{\Gamma \cup\{A\}}\right) \subseteq V\left(\mathcal{D}_{A}\right)$ or $V\left(\mathcal{B}_{\Gamma \cup\{A\}}\right) \subseteq V\left(\mathcal{D}_{A}\right)$. Then $\widetilde{\mathcal{R}}_{A}, \mathcal{D}_{A}, \Gamma \vdash_{m} A$.

Future directions

- Is it possible to use classes of principles weaker than WLEM and DNE?
- Can we extend Ishihara's class for Glivenko's logic and beyond?

Reference I

圊 Valerii Glivenko．
On some points of the logic of Mr．Brouwer．
In Paolo Mancosu，editor，From Brouwer to Hilbert：The
Debate on the Foundations of Mathematics in the 1920s，
pages 301－305．Oxford University Press， 1998.
目 Hajime Ishihara．
Classical propositional logic and decidability of variables in intuitionistic propositional logic．
Logical Methods in Computer Science（LMCS），10（3），
2014.

圊 Katsumasa Ishii．
A note on decidability of variables in intuitionistic propositional logic．
Mathematical Logic Quarterly，64（3）：183－184， 2018.

Reference II

目 Satoru Niki．
Decidable variables for constructive logics．
Mathematical Logic Quarterly，66（4）：484－493， 2021.
埥 Iwao Nishimura．
On formulas of one variable in intuitionistic propositional calculus．
The Journal of Symbolic Logic，25（4）：327－331， 1960.
國 Ladislav Rieger．
On the lattice theory of Brouwerian propositional logic．
Acta Faclutatis Rerum Naturalium Universitatis Carolinae，
189， 1949.
圊 Krister Segerberg．
Propositional logics related to Heyting＇s and Johansson＇s． Theoria，34（1）：26－61， 1968.

Reference III

嗇 Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University Press, second edition, 2000.

- Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: An Introduction, volume I. Elsevier, 1988.

