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1. Monads

Definition

Let C be a category. A monad consists of an endofunctor

F: C — C together with two natural transformations 7: Id, — F
and pu: F? — F so that for any X € C,

pxoF (px) = pxoprx) and  pxonzx) = pxoF (x) = ldzx) .

Example

Let P: SET — SET be the powerset functor. Define
nx(x) = {x} and px(X)= UX,

where X is a set and X € P(P(X)). Then (P,n, u) is a monad.



Theorem (E. Michael (1951))

Let (X, T) be compact Hausdorff and IC(X) the set of all
non-empty compact subsets of X. Then:

1. K(X) is compact Hausdorff w.r.t. the Vietoris topology Tv,
generated by the sets

[UiVe, ..., V] ={AeK(X)|Ac U~
Vi<i<mAnVi+ @),

for U, V1,...,V, open in X.
2. For compact subsets K of K(X), | JK is compact.

Lemma

For compact metric space X, K(X) is a compact metric space with
the Hausdorff metric. The metric topology coincides with the
Vietoris topology.



Let CM be the category of all compact metric spaces with
continuous maps as morphisms. For morphisms f: X — Y let

that is, KC(f)(A) the direct image of A under f. Then it follows for
n and p as above that (K, 7, 1) is a monad.

Our aim is to derive an analogous result in a framework that allows
to compute with the elements of the spaces under consideration.
We will follow the line of research of U. Berger et al. in which one
works in an intuitionistic logic extended by inductive and
co-inductive definitions.

Spaces under consideration will have a co-inductive
characterisation from which by a suitable realisability interpretation
trees representing the elements of the spaces can be extracted with
which one computes.



2. lterated function systems

Let (X,d) be a compact metric space and D be a finite set of
contractions d: X — X. Then (X, D) is called iterated function
system (IFS).

Definition
An IFS (X, D) is said to be covering if

X = U{range )| deD}.

The covering condition allows to characterise X co-inductively.
Definition

Define Cx co-inductively to be the largest subset of X such that
for all x e X,

xeCx — (3de D)y e Cx) x = d(y).



Lemma
Let (X, D) be a covering IFS. Then

X =Cx.

Proof.
By definition, Cx < X. The converse inclusion follows by

co-induction. Because (X, D) is covering, the defining implication
of Cx remains correct if Cx is replaced by X. O



The existential quantifiers in the definition of Cx need to be
interpreted constructively. Then by applying the definition of Cx
again and again, one obtains a sequence dp, di, ... of maps in D so
that

X € ﬂn range(dp o ---odp_1).

Note that since X is compact,
ﬂnrange(do o--ody1) £ .
Contractivity of the d, on the other hand, implies that

I, range(ao o0 an )| < 1.

Hence, the sequence « := dp, di, ... uniquely determines x.



3. The case K(X)

In case of points x, we characterised x by determining a d € D
with x € range(d). In the case of compact sets K, we will
characterise K by a finite subset D’ of D such that d € D’ exactly
if K hits range(d).

For di,...,d, € D define

[, d](Keseno Ke) o= . dilKi] = |, K(d)(K)).
Note that [d1,...,d,]: K(X)" — K(X) is contracting. Let
K(D):={[di,...,d] | di,...,dr € D pairwise distinct }.

Then IC(D) is finite and (K(X), (D)) is an extended IFS.



Lemma

If (X, D) is covering, so is (K(X),K(D)).

Definition

Define Cy(x) co-inductively to be the largest subset of (X)) such
that for all K € K(X),

K e Cxx) — (3[dr,....d ] € K(D))
(E|K1,. . .,Kr S (CIC(X)) K= [dl,...,dr](Kl,...,Kr).

Lemma
Let (X, D) be a covering IFS. Then



4. Products

Let Xi,..., X, be compact metric spaces and X; x --- x X,
endowed with the maximum metric. Then X7 x --- x X, is
compact as well.

Assume that (X1, D1), ..., (Xs, Dp) are extended IFS and let
sp :=max{ar(d) | del|Jl_; Di}.
Replace d € D; by d with

~

d(xi,. . Xsp) = d(x1,. s Xar(d))
for x1,...,xs, € Xi. For di € D; (1 < i < n) define

. dnd (A, xS, ) )y
= (X, L xR,



Set
|_|7:1D,' = {<d1,...,dn> | (dl,...,dn) € ><7:1 D,}

Proposition
Let (X1,D1),...,(Xn, Dn) be extended IFS. Then also

X (Xi, D) = (X X;, M_1 D)
=1 i=1

is an extended IFS. Moreover,
1. If (Xi, D;) is compact, for all 1 < i< n, sois Xi_i(Xi, D;).
2. If (Xi, Dj) is covering, for all 1 < i< n, sois X7_;(X;, D;).



5. The case K(K(X))

In order to obtain a finite set of covering maps it seems natural to
iterate the above construction. Consider

1 1 n n
[, dP, ™, AR, K

A set K € K?(X) is covered by the range of this map, just if its

elements K are such that for some 1 </ < n, K hits exactly the
()

ranges of the maps dli . ..,d,(ii).
The map [[d\", ..., dM], ..., [d\™,. ... d\]] has type
KC(C(X)™) x -+ x K(KK(X)™) — K2(X).

Thus (K2(X),K?(D)) is not an extended IFS.



Assume that (X, D) is a compact IFS with ar(d) =
Then the maximal arity of some d € K(D) is m(D)

We write

1(deD).
= [D].

K(X) «—— K(x)mP)
(X) < KX)
to mean that all d € K(D) are of type K(X)™(P) — K(X).
By definition of the product we have that

K(X)mP) (K(X)mP)ym(D),

MK (D)m(®))



Proceeding in this way we obtain a co-chain

K(X)o «—— K(X)1 «—— -+

K(D)o K(D)1
with
KX)o := K(X) K(D)o := K(D)
K(X)i1 = (K(X))™P) K(D)is1 1= NK(D)?)
so that



By the functoriality of X we have

and

K(K(X)1) K (K (X)) mP),

K(K(D)1)

Hence, by the definition of the product

]C(K(X)l)m(’C(D)O) (K(]C(X>2)m(lC(D)o))m(IC(D)l) '
N(K(K(D)1)m (Pl




Again we obtain a co-chain
K2(X)o := K2 K2(Dy) := K?(D)
K3 = K((X)2)mK ) K2(D)y = N(K(K(D)y)"F(P))
K2(X)jg1:=(--- (IC(IC(X),-H)"’(’C(D)O)) e )m(’C(D),-)
K2(D)jyq1 := N(M(--- n(;g(;g(D)iH)m(lC(D)o)) . ..)m(iC(D),-))

Definition
A family (X, Dj)jen is a co-chain structure if for all i € N, X; is a
compact metric space and D; a finite set of contractions
Xit1 — X, that is
Xi ‘E Xit1-



Let ((Xi, pi), Di)ien be a co-chain structure of covering extended
IFS. Set

Z:=|Jtitx X,  D2):=|J{i} x Di.
ieN prd
Define -
p((i,%),(,y)) == {PI(X,}/) if i =,

0 otherwise.

Then p is an co-metric on Z.



Moreover, for (i,d) € D(Z) and (j, x) € Z set

(i, d)(J, x) := (i,d(x))

if j = i + 1. Otherwise, let (i, d) be undefined. Then (Z,D(Z)) is
a covering generalised IFS, that is

Z = U range((/, d)).

(i,d)eD(Z)

Let Cz be the co-inductively defined largest set such that for
(i,x)e Z,

(i,x) e Cz — (3(i,d) e D(2))3(i+1,y) € Z) (i,x) = (i,d)(i+1, y).

Then (classically)
Cz =2

Set Cx, :={x|(0,x)eCz}.



6. Morphisms
Let (Xi, Di)ien, (Y, Ei)ien be co-chain structures and

X = UieN{i} XXy Y= UieN{i} x i, B = UieN{i} x Ei.
Moreover, for m >0, jeN, and j1 < --- < j, € N let
F(X, V)Y = {f:xm Y|
) J1seeeiJm ' '

dom(f) = X {j,} x X, A range(F) < {j} x Y; }
B Y )i = KV, 17 €N,

FX, V)9 = (F(X, V)Y . i< <jmeN},
Jm

FX.Y)= |J U Fx.ny

Jseeedm’
m>0,jeN 1< jm



The following is a generalisation of U. Berger's co-inductive-
inductive characterisation of the uniformly continuous functions on
the unit interval.

Define & : P(F(X, Y)) — (P(F(X,Y)) — P(F(X, Y))) by
O(F)(G) :={feF(X,Y)|
[(3(i,e) e EY3he F nF(X, Y)Y f = (i,e) o h] v
[(311 < - <jar(f) € N) fe IF(X? Y)j17-"7jar(f) A
(31 < v < ar(f))(Vd € D;,)f o (j,, d»* )y e G]}

where

d(y’m)((jlyxl)a ) (jm7xm)) =
((jlvxl)v ) (,/V—lva—l)a (jy, d(XV))7 (jV+17XV+1)7 SRR (jm,Xm))7

for xc € Xj, (k€ {j1,---,Jjm}\Up}) and x, € Xj, 11.



Set
J(F) = pud(F)(G).
Then J(F) is the least subset G of F(X, Y) so that
W If (i,e) € E and he F nF(X, Y)) then

(i,e)ohe G.
R IffeIE‘(X Y) and v,j1,. .., jar(r) € N so that
< <_/ar(f) and f € ]F(X Y)J17 ax(f)

» 1<wv<ar(f) and for all d € D;,,
fodW”“»eG

then f € G.
Set

(CIF(X,Y) =vJ and (CIF(XQ,YO) = C]F(X,Y) N U F(X Y)é(,)n)

m>0

where x(™) := (x,...,x) (m times).



7. Category
» Objects: Cyn(x),, for compact metric IFS (X, D), ne N.
> Morphisms: Hom(Cjcn(x),, Cim(y),) 1= Cr(Crenig Cremivyg)
For a co-chain structure X = (Xj, D;)jen set
1x(0,x) := (0, {x})
nx (i +1,x) := (i + 1, (- - (xMP)Y(m(Da))y .y (m(Di))y

Then nx(i,x) € {i} x K(X;). Moreover,

nx € Crix.k(x))-

where K(X) := Ujearli} x K(X).



In addition, define
Ux(0,K) := (0, JK)
Ux(i +1,K) = (i + 1,

(m(Do))

Then U € Cgie2(x) k(%))

SmD)y N mD)) (R Y),



