
Computable analysis and verified exact real
computation in Coq

Michal Konečný, Aston University, UK
Florian Steinberg, INRIA Saclay, France
Holger Thies, Kyushu University, Japan

March 23, 2021

Fourth Workshop on Mathematical Logic and its Applications
MLA 2021 (Online)

1

Computable analysis in Coq

• Incone is a library for doing computable analysis in the Coq
proof assistant.

• Definitions closely follow those from computable analysis.

• The internal logic of Coq is constructive.

• Axioms can be added to allow e.g. classical reasoning.

• Coq is often used for classical program verification
Program → Specification → Correctness Proof

2

Real analysis in Coq

• The Coq standard library
• Axiomatic definition of the reals
• Not computational
• Assumes existence of non-computable functions e.g.

up : R→ N.

• CoRN
• Completely constructive
• Executable inside Coq

3

The incone library

• The incone library formalizes results from computable analysis
in Coq.

• Definitions closely follow those from computable analysis.

• Distinguishes between an algorithm and its specification.

• Correctness proofs can use classical mathematics (e.g. use the
real numbers from the Coq standard library).

• Computability is not formalized and only reasoned about on
the meta-level.

4

Computable analysis and
representations

Representations

(N→ N)

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5 ...

X

x1

x2

x3...

names for x3

δX

Represented space X := (X , δX).

5

Represented spaces

Computable analysis uses explicit encodings by natural numbers or
finite binary strings.
However, here we consider more general encodings by “basic types”.

Represented space

A represented space X consists of

• An abstract base type X .

• A space of names BX := Q → A

with questions Q and answers A
and proofs that they are countable.

• A partial, surjective function
δ :⊆ BX → X called representation.

6

x ∈ X

q ∈ Q a ∈ A

Example: RQ

A representation for the reals is given by choosing questions and
answers to be Q and ϕ : Q→ Q is a name for x ∈ R if
∀ε > 0, |ϕ(ε)− x | ≤ ε.

ϕ

ε ε-approx. to x

7

Cauchy Representation in Coq

Easy to define in Coq using the axiomatization of the reals in the
standard library:
ϕ is name for x : ∀ε > 0, |x − ϕ(ε)| ≤ ε.

(* A name for x encodes x by rational approximations *)
Definition is_name (phi : (Q -> Q)) (x : R) :=

forall eps, (0 < (Q2R eps)) ->
Rabs (x - (phi eps)) <= eps.

Example: ε 7→ ε is a name for 0.

(* A name for zero *)
Lemma zero_name : (is_name (fun eps => eps) 0).

8

Realizers

Definition (Realizer)
Let X, Y be represented spaces. F :⊆ BX → BY is a realizer for
f :⊆ X→ Y if

δY ◦ F (ϕ) = f (x) for all ϕ ∈ δ−1
X (x) and x ∈ X .

X
f // Y

BX F
//

δX

OO

BY

δY

OO

9

Realizers for reals in coq

(* A realizer maps names to names *)
Definition is_realizer

(F: (Q -> Q) -> Q -> Q) (f : R -> R) :=
forall phi x, (is_name phi x) ->

(is_name (F phi) (f x)).

• Realizers specify algorithms

• Correctness can be proven using classical mathematics

10

Basic constructions on represented spaces

For represented spaces X and Y we can automatically define
representations for

• The product space X× Y.

• The co-product space X + Y.

• Infinite sequences Xω.

• Spaces of subsets A ⊆ X.

• The space of (continuous) functions X→ Y.

11

Multivalued functions

A (partial) multivalued function f :⊆ X ⇒ Y is just a relation or a
set-valued function. The intuitive meaning is that several valid
values exist.

a

b

c

d

1

2

3

4

A realizer for a multivalued function f : X ⇒ Y has to return a
name for any y ∈ f (x) when given a name for x ∈ X .

12

Finite spaces and operations on
multifunctions

Example: Sierpiński space

Definition (Sierpiński space)

Sierpiński space is the topological space with point set {>,⊥}
and open sets ∅, {>} and {>,⊥}.

Example (Representation for Sierpiński space)

• Question space QS := N.

• Answer space AS := bool.

• δS(ϕ) = > ⇐⇒ ∃n, ϕ(n) = true.

s ∈ S

m ∈ N true/false

13

The Kleeneans

Kleene’s three-valued logic is the logic on {0, 1,⊥}. It can be
turned into a represented space as follows.

• Question space QK := N.

• Answer space AK := {0, 1,None}.
• Representation δK such that δK(ϕ) is

the first value of ϕ different from None

or ⊥ if no such value exists.

• Can define realizers for logical
operations

k ∈ K

m ∈ N 0, 1,None

The Kleeneans can be used to define a computable total real

comparison x <K y :=

(x < y)B if x 6= y

⊥K otherwise.

14

Parallelization and Selection

For multifunctions f : X ⇒ Y , f ′ : X ′ ⇒ Y ′ we can define
f + f ′ : X + X ′ ⇒ Y + Y ′ and f × f ′ : X × X ′ ⇒ Y × Y ′:

(f × f ′)(x , x ′) := f (x)× f ′(x ′).

(f + f ′)(p) :=

inl f (x) if p = inl x

inr f ′(x ′) if p = inr x ′

f × f ′ corresponds to running f and f ′ in parallel, f + f ′

corresponds to selecting either f or f ′.

15

Multivalued branching

Let f , g : X ⇒ Y and b : X ⇒ B and consider the expression

if b(x) then f (x) else g(x).

Let ifX : B× X→ X + X be the function defined by

ifX(b, x) :=

inl x if b = true

inr x if b = false.

Then the desired semantics can be expressed by

∇ ◦ (f + g) ◦ ifX ◦(b × id) ◦∆(x).

16

Exact real computation in Incone

Verifying exact real computation in Incone

Typically writing and verifying an exact real computation algorithm
in Incone consists of the following steps.

• Give an abstract mathematical description of the problem as a
multifunction using e.g. the axiomatic real numbers from the
Coq standard library.

• Define a representation for the real numbers.

• Define a (computable) function on the naming space.

• Prove that this function is a realizer for the multifunction.

17

A structure for computable reals

In exact real computation, basic operations are combined to define
more complicated programs. To do something similar in Coq, we
define a structure computable reals containing the following basic
operations

• Arithmetic operations

• The efficient limit limeff : ⊆ Rω → R, that maps any sequence
(xi) ∈ Rω that is efficiently Cauchy to its limit lim(xi)

• A Kleenean comparison function <K

• The function FtoR : Z× Z→ R, (m, e) 7→ m · 2−e

• Rational approximation approx : R×Q ⇒ Q

More complicated operations can be defined as composition of
basic operations independently of the underlying representation.

18

Interval Reals

Computing with rationals is not very efficient.
Alternative: approximate real numbers by intervals with dyadic
endpoints (numbers of the form m · 2e).

Definition
Let ID be the set of intervals with dyadic endpoints. A
representation RID of the reals is given by QID = N, AID = ID.

δRID((In)n∈N) = x ⇐⇒ x ∈
⋂
n∈N

In and lim
n→∞

|In| = 0.

The Coq Interval Library already provides many operations on
intervals.

19

Interval arithmetic in Coq

Correctness in interval arithmetic:

Lemma add_correct prec x y I J:
x \contained_in I -> y \contained_in J ->

(x + y) \contained_in (I.add prec I J).

To define a realizer we additionally need absolute error bounds to
show that intervals get arbitrarily small:

Lemma add_error I J n m p x y N:
diam I <= /2^n -> diam J <= /2^m ->
(x \contained_in I) -> (y \contained_in J) ->
(Rabs x) <= (2 ^ N) -> (Rabs y) <= (2 ^ N)
-> diam (I.add p I J) <= /2 ^ n + /2 ^ m +

(2 ^ (N+5-p)).

20

Square root

We give an efficient implementation of
√
x for x ∈ [0,∞).

For this, we define a function sqrt_approx : Rω → R with∣∣sqrt_approx(x , n)−
√
x
∣∣ ≤ 2−n

using only operations from the computable reals structure. Then

sqrt := lim_eff ◦ sqrt_approx.

For x ∈ [0.25, 2] the Heron iteration defined by

x0 := 1

xn+1 :=
1
2

(
xn +

x

xn

)
converges quadratically, i.e.

sqrt_approx|[0.25,2](x , n) = xlog2 n

and then extend to all non-negative reals.
21

Soft Comparison

Soft-comparison sc : R× R× N ⇒ B is defined by

true ∈ sc(n, x , y)⇔ x < y and false ∈ sc(n, x , y)⇔ y < x+2−n.

x x + 2−n0

1

y

sc(n, x , y) plotted over y for fixed x and n.

22

Magnitude and Scaling

We define a multifunction magnitude : R ⇒ Z such that

z ∈ magnitude(x)⇔ 2z < x < 2z+2.

0 2−n 2 · 2−n 3 · 2−n 2−n+2.

2−n <n+2 x may be true

2−n <n+2 x2−n <n+2 x may be false

x <n+2 3 · 2−n + 2−(n+2) may be true

23

Code extraction

For faster execution, Coq can extract Haskell or Ocaml code from
proofs and definitions.
The basic extraction mainly performs a straightforward syntactic
translation.
It can be improved by telling Coq how to extract:

Extract Inlined Constant Z.abs => "(Prelude.abs)".
Extract Inlined Constant Z.geb => "(Prelude.>=)".
Extract Inlined Constant Z.opp => "(Prelude.negate)".
Extract Inlined Constant Z.succ => "(Prelude.succ)".
Extract Inlined Constant Z.pow_pos => "(Prelude.^)".
Extract Inlined Constant Z.pow => "(Prelude.^)".

24

Conclusion and Future work

• The incone library can be used to implement real number
computations in Coq and do proofs in the style of computable
analysis.

• Our simple implementation is already quite efficient.

• More complicated spaces and operators, e.g., analytic
functions and ODE solving.

25

Thank you!

26

	Computable analysis and representations
	Finite spaces and operations on multifunctions
	Exact real computation in Incone

