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Computable analysis in Coq

• Incone is a library for doing computable analysis in the Coq
proof assistant.

• Definitions closely follow those from computable analysis.

• The internal logic of Coq is constructive.

• Axioms can be added to allow e.g. classical reasoning.

• Coq is often used for classical program verification
Program → Specification → Correctness Proof
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Real analysis in Coq

• The Coq standard library
• Axiomatic definition of the reals
• Not computational
• Assumes existence of non-computable functions e.g.

up : R→ N.

• CoRN
• Completely constructive
• Executable inside Coq
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The incone library

• The incone library formalizes results from computable analysis
in Coq.

• Definitions closely follow those from computable analysis.

• Distinguishes between an algorithm and its specification.

• Correctness proofs can use classical mathematics (e.g. use the
real numbers from the Coq standard library).

• Computability is not formalized and only reasoned about on
the meta-level.
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Computable analysis and
representations



Representations

(N→ N)

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5 ...

X

x1

x2

x3...

names for x3

δX

Represented space X := (X , δX ).
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Represented spaces

Computable analysis uses explicit encodings by natural numbers or
finite binary strings.
However, here we consider more general encodings by “basic types”.

Represented space

A represented space X consists of

• An abstract base type X .

• A space of names BX := Q → A

with questions Q and answers A
and proofs that they are countable.

• A partial, surjective function
δ :⊆ BX → X called representation.
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Example: RQ

A representation for the reals is given by choosing questions and
answers to be Q and ϕ : Q→ Q is a name for x ∈ R if
∀ε > 0, |ϕ(ε)− x | ≤ ε.

ϕ

ε ε-approx. to x
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Cauchy Representation in Coq

Easy to define in Coq using the axiomatization of the reals in the
standard library:
ϕ is name for x : ∀ε > 0, |x − ϕ(ε)| ≤ ε.

(* A name for x encodes x by rational approximations *)
Definition is_name (phi : (Q -> Q)) (x : R) :=

forall eps, (0 < (Q2R eps)) ->
Rabs (x - (phi eps)) <= eps.

Example: ε 7→ ε is a name for 0.

(* A name for zero *)
Lemma zero_name : (is_name (fun eps => eps) 0).
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Realizers

Definition (Realizer)
Let X, Y be represented spaces. F :⊆ BX → BY is a realizer for
f :⊆ X→ Y if

δY ◦ F (ϕ) = f (x) for all ϕ ∈ δ−1
X (x) and x ∈ X .

X
f // Y

BX F
//

δX

OO

BY

δY

OO
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Realizers for reals in coq

(* A realizer maps names to names *)
Definition is_realizer

(F: (Q -> Q) -> Q -> Q) (f : R -> R) :=
forall phi x, (is_name phi x) ->

(is_name (F phi) (f x)).

• Realizers specify algorithms

• Correctness can be proven using classical mathematics
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Basic constructions on represented spaces

For represented spaces X and Y we can automatically define
representations for

• The product space X× Y.

• The co-product space X + Y.

• Infinite sequences Xω.

• Spaces of subsets A ⊆ X.

• The space of (continuous) functions X→ Y.
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Multivalued functions

A (partial) multivalued function f :⊆ X ⇒ Y is just a relation or a
set-valued function. The intuitive meaning is that several valid
values exist.

a

b

c

d

1

2

3

4

A realizer for a multivalued function f : X ⇒ Y has to return a
name for any y ∈ f (x) when given a name for x ∈ X .
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Finite spaces and operations on
multifunctions



Example: Sierpiński space

Definition (Sierpiński space)

Sierpiński space is the topological space with point set {>,⊥}
and open sets ∅, {>} and {>,⊥}.

Example (Representation for Sierpiński space)

• Question space QS := N.

• Answer space AS := bool.

• δS(ϕ) = > ⇐⇒ ∃n, ϕ(n) = true.

s ∈ S

m ∈ N true/false
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The Kleeneans

Kleene’s three-valued logic is the logic on {0, 1,⊥}. It can be
turned into a represented space as follows.

• Question space QK := N.

• Answer space AK := {0, 1,None}.
• Representation δK such that δK(ϕ) is

the first value of ϕ different from None

or ⊥ if no such value exists.

• Can define realizers for logical
operations

k ∈ K

m ∈ N 0, 1,None

The Kleeneans can be used to define a computable total real

comparison x <K y :=

(x < y)B if x 6= y

⊥K otherwise.

14



Parallelization and Selection

For multifunctions f : X ⇒ Y , f ′ : X ′ ⇒ Y ′ we can define
f + f ′ : X + X ′ ⇒ Y + Y ′ and f × f ′ : X × X ′ ⇒ Y × Y ′:

(f × f ′)(x , x ′) := f (x)× f ′(x ′).

(f + f ′)(p) :=

inl f (x) if p = inl x

inr f ′(x ′) if p = inr x ′

f × f ′ corresponds to running f and f ′ in parallel, f + f ′

corresponds to selecting either f or f ′.
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Multivalued branching

Let f , g : X ⇒ Y and b : X ⇒ B and consider the expression

if b(x) then f (x) else g(x).

Let ifX : B× X→ X + X be the function defined by

ifX(b, x) :=

inl x if b = true

inr x if b = false.

Then the desired semantics can be expressed by

∇ ◦ (f + g) ◦ ifX ◦(b × id) ◦∆(x).
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Exact real computation in Incone



Verifying exact real computation in Incone

Typically writing and verifying an exact real computation algorithm
in Incone consists of the following steps.

• Give an abstract mathematical description of the problem as a
multifunction using e.g. the axiomatic real numbers from the
Coq standard library.

• Define a representation for the real numbers.

• Define a (computable) function on the naming space.

• Prove that this function is a realizer for the multifunction.
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A structure for computable reals

In exact real computation, basic operations are combined to define
more complicated programs. To do something similar in Coq, we
define a structure computable reals containing the following basic
operations

• Arithmetic operations

• The efficient limit limeff : ⊆ Rω → R, that maps any sequence
(xi ) ∈ Rω that is efficiently Cauchy to its limit lim(xi )

• A Kleenean comparison function <K

• The function FtoR : Z× Z→ R, (m, e) 7→ m · 2−e

• Rational approximation approx : R×Q ⇒ Q

More complicated operations can be defined as composition of
basic operations independently of the underlying representation.
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Interval Reals

Computing with rationals is not very efficient.
Alternative: approximate real numbers by intervals with dyadic
endpoints (numbers of the form m · 2e).

Definition
Let ID be the set of intervals with dyadic endpoints. A
representation RID of the reals is given by QID = N, AID = ID.

δRID((In)n∈N) = x ⇐⇒ x ∈
⋂
n∈N

In and lim
n→∞

|In| = 0.

The Coq Interval Library already provides many operations on
intervals.
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Interval arithmetic in Coq

Correctness in interval arithmetic:

Lemma add_correct prec x y I J:
x \contained_in I -> y \contained_in J ->

(x + y) \contained_in (I.add prec I J).

To define a realizer we additionally need absolute error bounds to
show that intervals get arbitrarily small:

Lemma add_error I J n m p x y N:
diam I <= /2^n -> diam J <= /2^m ->
(x \contained_in I) -> (y \contained_in J) ->
(Rabs x) <= (2 ^ N) -> (Rabs y) <= (2 ^ N)
-> diam (I.add p I J) <= /2 ^ n + /2 ^ m +

(2 ^ (N+5-p)).
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Square root

We give an efficient implementation of
√
x for x ∈ [0,∞).

For this, we define a function sqrt_approx : Rω → R with∣∣sqrt_approx(x , n)−
√
x
∣∣ ≤ 2−n

using only operations from the computable reals structure. Then

sqrt := lim_eff ◦ sqrt_approx.

For x ∈ [0.25, 2] the Heron iteration defined by

x0 := 1

xn+1 :=
1
2

(
xn +

x

xn

)
converges quadratically, i.e.

sqrt_approx|[0.25,2](x , n) = xlog2 n

and then extend to all non-negative reals.
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Soft Comparison

Soft-comparison sc : R× R× N ⇒ B is defined by

true ∈ sc(n, x , y)⇔ x < y and false ∈ sc(n, x , y)⇔ y < x+2−n.

x x + 2−n0

1

y

sc(n, x , y) plotted over y for fixed x and n.
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Magnitude and Scaling

We define a multifunction magnitude : R ⇒ Z such that

z ∈ magnitude(x)⇔ 2z < x < 2z+2.

0 2−n 2 · 2−n 3 · 2−n 2−n+2. . . . . .

2−n <n+2 x may be true

2−n <n+2 x2−n <n+2 x may be false

x <n+2 3 · 2−n + 2−(n+2) may be true
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Code extraction

For faster execution, Coq can extract Haskell or Ocaml code from
proofs and definitions.
The basic extraction mainly performs a straightforward syntactic
translation.
It can be improved by telling Coq how to extract:

Extract Inlined Constant Z.abs => "(Prelude.abs)".
Extract Inlined Constant Z.geb => "(Prelude.>=)".
Extract Inlined Constant Z.opp => "(Prelude.negate)".
Extract Inlined Constant Z.succ => "(Prelude.succ)".
Extract Inlined Constant Z.pow_pos => "(Prelude.^)".
Extract Inlined Constant Z.pow => "(Prelude.^)".
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Conclusion and Future work

• The incone library can be used to implement real number
computations in Coq and do proofs in the style of computable
analysis.

• Our simple implementation is already quite efficient.

• More complicated spaces and operators, e.g., analytic
functions and ODE solving.
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Thank you!
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