Computation Time Reduction Techniques for Model Predictive Control of Hybrid Systems

Koichi Kobayashi

Japan Advanced Institute of Science and Technology

Outline of This Presentation

- 1. Hybrid Systems
- 2. Model Predictive Control
- 3. Technical Difficulty and Our Approach
- 4. Proposed Method
- 5. Further Extension

Outline of This Presentation

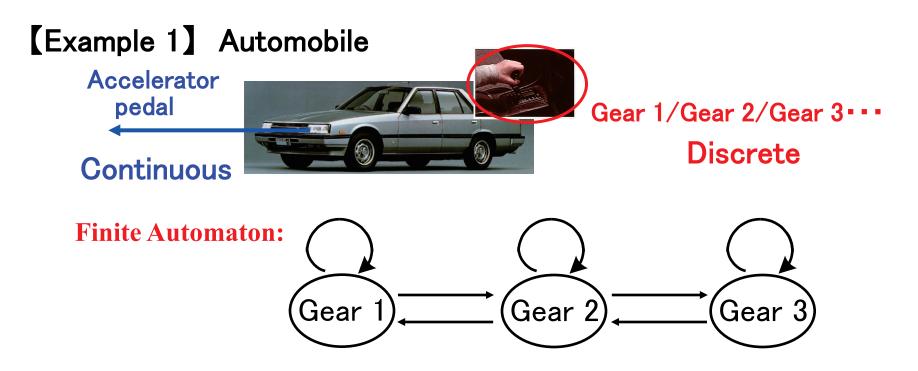
1. Hybrid Systems

- 2. Model Predictive Control
- 3. Technical Difficulty and Our Approach
- 4. Proposed Method
- 5. Further Extension

Hybrid Systems: Dynamical Systems with Continuous Variables and Discrete Variables

- Biped walking robot
- Aircraft autopilot modes
- Air and ground transportation
- Chemical plants

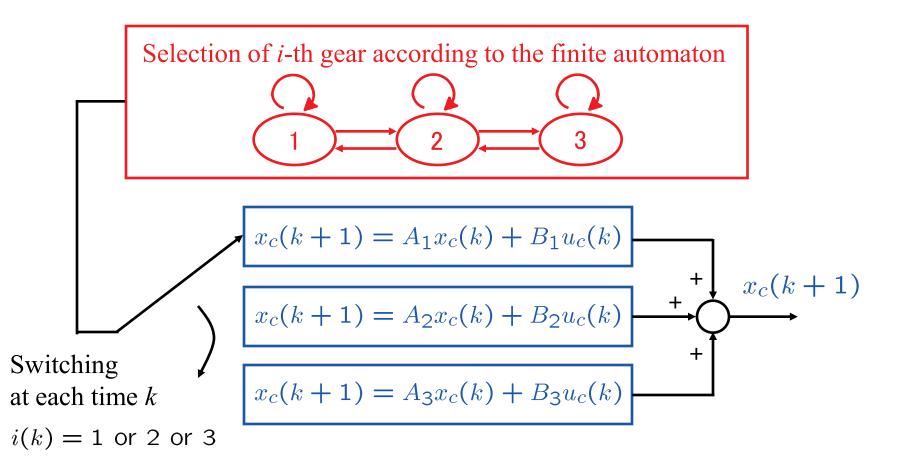
. . .



Dynamics of Automobile in Gear *i* :

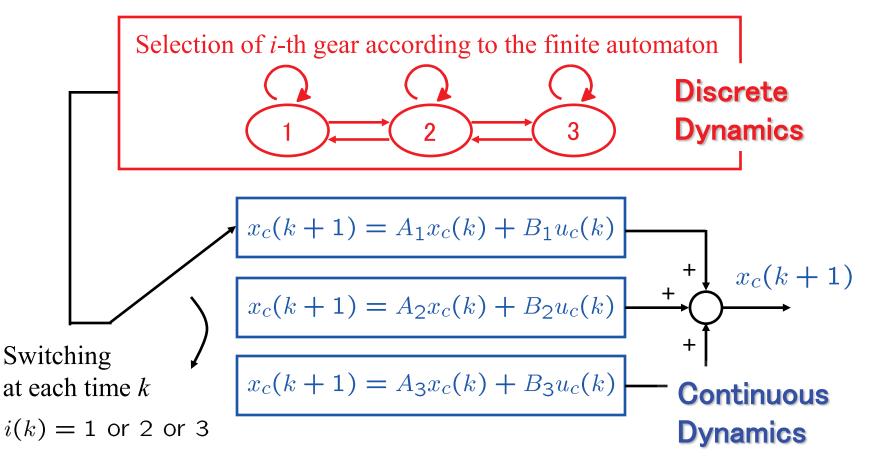
(Discrete-time state equation)

$$x_{c}(k+1) = A_{i(k)}x_{c}(k) + B_{i(k)}u_{c}(k)$$
$$x_{c}(k) = \begin{bmatrix} \text{Position} \\ \text{Velocity} \end{bmatrix} \quad u_{c}(k) = \text{Torque}$$
$$i(k) = 1 \text{ or } 2 \text{ or } 3 \quad k = 0, \ 1, \ 2, \ \cdots \text{ Time}$$



By determining $x_c(k)$, $u_c(k)$, i(k) at time k,

 $x_c(k+1)$ at next time k+1 is uniquely determined.



In general,

(1) Gear 1, Gear 2, Gear 3 \rightarrow mode 1, mode 2, mode 3

(2) Mode transition constraints depend on $x_c(k)$, $u_c(k)$. (Piecewise Affine Systems)

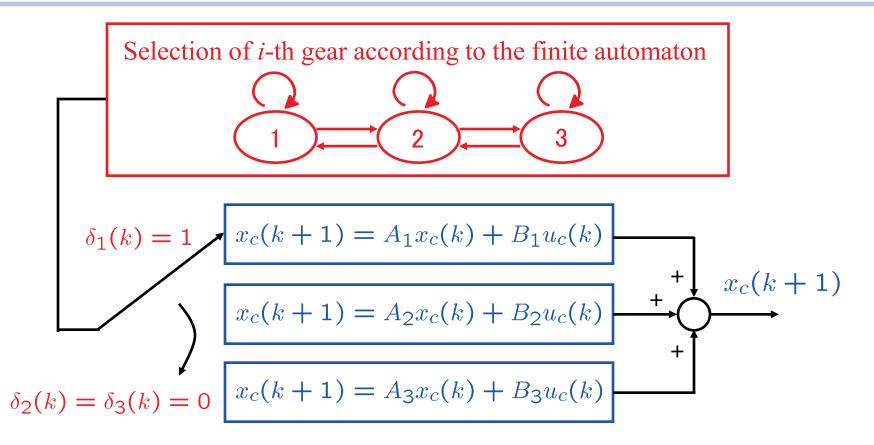
Outline of This Presentation

1. Hybrid Systems

2. Model Predictive Control

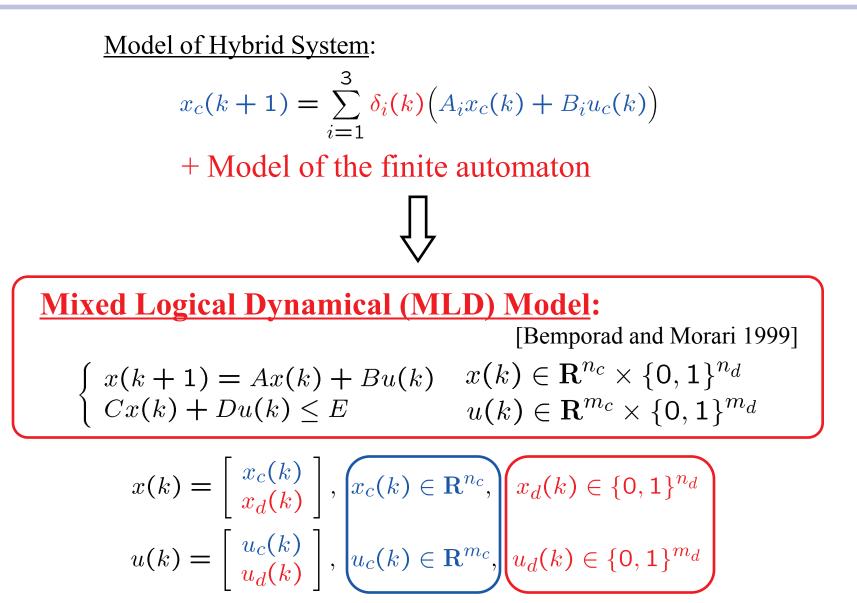
- 3. Technical Difficulty and Our Approach
- 4. Proposed Method
- 5. Further Extension

Modeling of Hybrid Systems



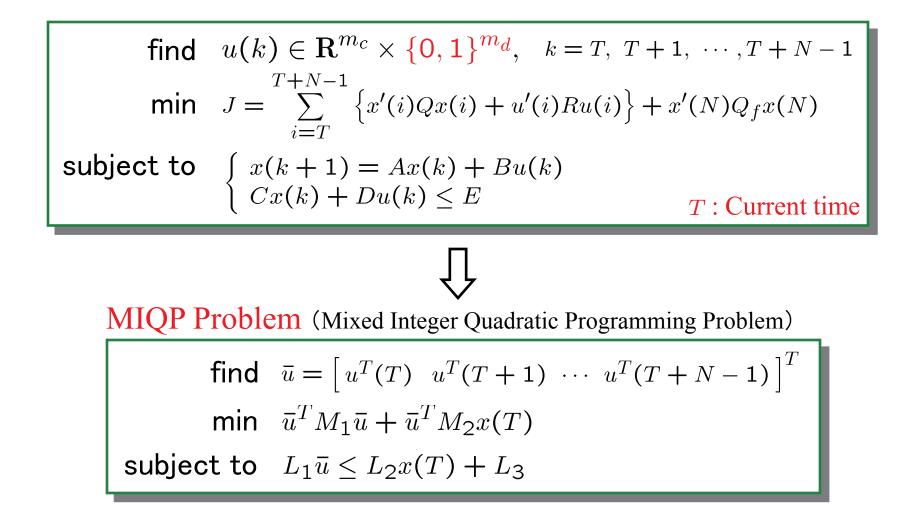
Binary variables δ_1 , δ_2 , δ_3 are used. $\begin{cases} \delta_i(k) = 1 & \text{if Gear } i \\ \delta_i(k) = 0 & \text{otherwise} \end{cases}$ $\implies x_c(k+1) = \sum_{i=1}^3 \delta_i(k) \left(A_i x_c(k) + B_i u_c(k) \right)$ + Model of the finite automaton

Modeling of Hybrid Systems



Continuous Dynamics Discrete Dynamics

Finite-time Optimal Control Problem

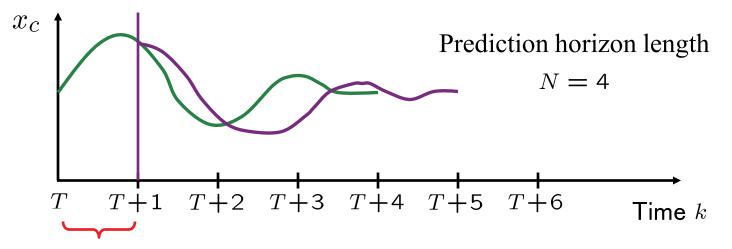


The dim. of continuous variables: $m_c N$ The computation time is too longThe dim. of binary variables: $m_d N$ for practical plants.

Model Predictive Control ...

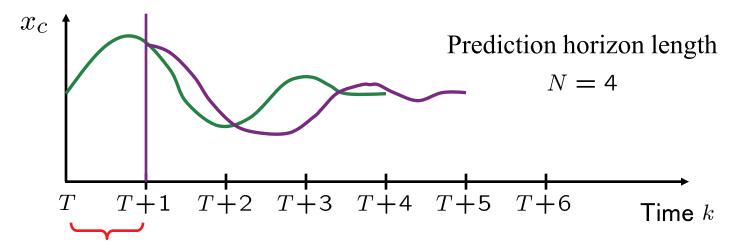
The finite-time optimal control problem is solved at each time.

- **Step 1:** Derive $\bar{u} = \left[u'(T) \quad u'(T+1) \quad \cdots \quad u'(T+N-1) \right]'$ by solving the MIQP problem.
- **Step 2:** Apply only u(T) to the plant.
- **Step 3:** Update $T \rightarrow T + 1$, and go to Step 1.



The MIQP problem must be solved within the sampling period. 'On-line Optimization'

Model Predictive Control



The MIQP problem must be solved within the sampling period. **'On-line Optimization'**

Another Approach... Off-line Optimization

The multi-parametric MIQP problem is solved. Then the explicit controller $u^*(k) = f(x(k))$ is derived.

Practical applications are restricted.

Small size systems, Slow dynamical systems, ...

Outline of This Presentation

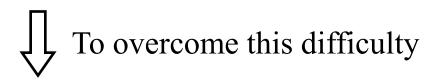
- 1. Hybrid Systems?
- 2. Model Predictive Control

3. Technical Difficulty and Our Approach

- 4. Proposed Method
- 5. Further Extension

Technical Difficulty:

The computation time to solve the MIQP problem is too long.



- (1) Improvement of the MIQP solver
- (2) Improvement of the modeling of discrete dynamics
 - \rightarrow The computation time depends on the modeling method.

However, few results from the modeling viewpoint

Summary of Our Approach

(2) Improvement of the modeling of discrete dynamics
→ The computation time depends on the modeling method.

The Standard Method: Inequality based modeling [Bemporad and Morari 1999]

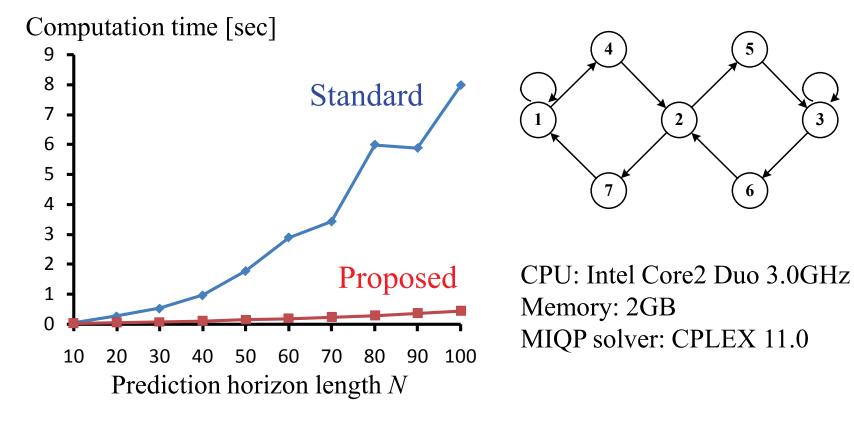
The Proposed Method:

- State-equation based modeling [Kobayashi, Imura 2006, 2007]
- Time-sequence based modeling [Kobayashi, Imura 2007]
- Graph-switching based modeling

Effectiveness of The Proposed Method

Computation time of the finite-time optimal control problem:

• Plant: 2nd-order system with 7-mode switching



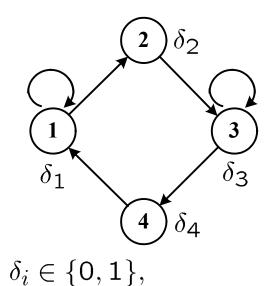
Reduction of the computational time is achieved only by changing from the standard to the proposed representation.

Outline of This Presentation

- 1. Hybrid Systems?
- 2. Model Predictive Control
- 3. Technical Difficulty and Our Approach

- 4. Proposed Method
- 5. Further Extension

The Standard Method: Inequality Based Modeling

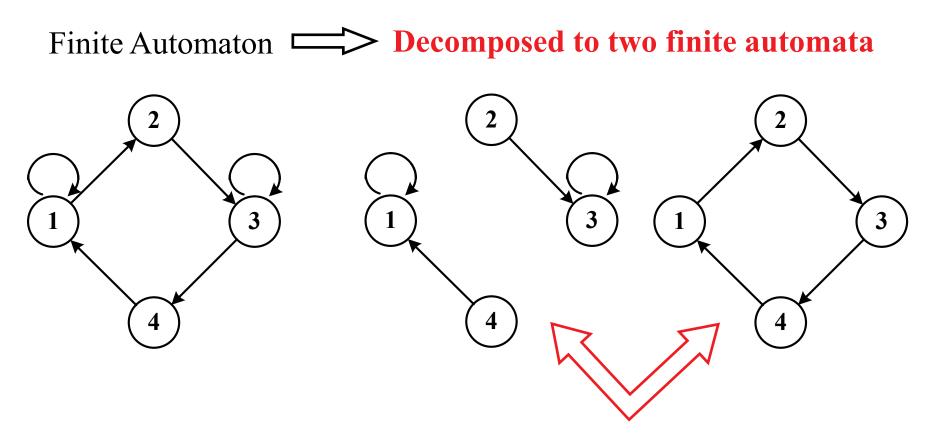


 $\delta_1 + \delta_2 + \delta_3 + \delta_4 = 1$

 $\begin{cases} \delta_i(k) = 1 & \text{if mode } i \\ \delta_i(k) = 0 & \text{otherwise} \end{cases}$

$$\frac{\text{MLD model}}{Cx(k) + Dv(k)} \begin{cases} x(k+1) = Ax(k) + Bv(k) & x \in \mathbb{R}^{n_c} \times \{0,1\}^{n_d} \\ Cx(k) + Dv(k) \le E & v \in \mathbb{R}^{m_c} \times \{0,1\}^{m_d} \end{cases}$$

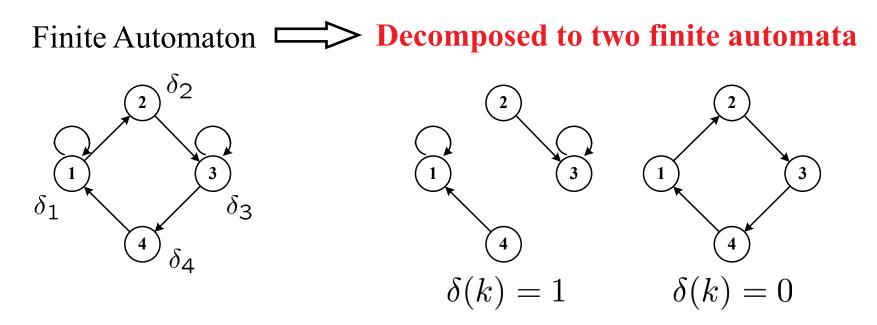
The Key Idea of The Proposed Method



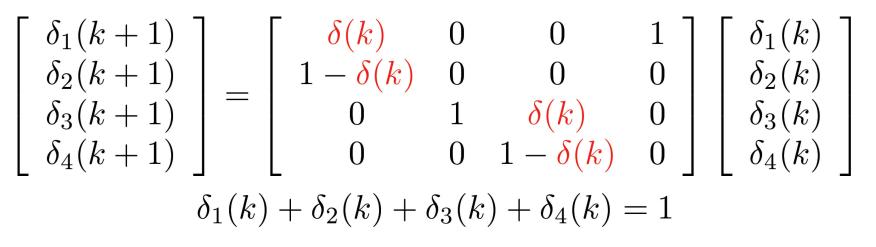
For a given initial mode, by selecting one of finite automata, the mode at the next time is uniquely determined.

The branch and bound algorithm works effectively.

Procedure For Deriving The Proposed Model



Model based on the adjacency matrix



Procedure For Deriving The Proposed Model

Model based on the adjacency matrix

$$\begin{bmatrix} \delta_1(k+1) \\ \delta_2(k+1) \\ \delta_3(k+1) \\ \delta_4(k+1) \end{bmatrix} = \begin{bmatrix} \delta(k) & 0 & 0 & 1 \\ 1-\delta(k) & 0 & 0 & 0 \\ 0 & 1 & \delta(k) & 0 \\ 0 & 0 & 1-\delta(k) & 0 \end{bmatrix} \begin{bmatrix} \delta_1(k) \\ \delta_2(k) \\ \delta_3(k) \\ \delta_4(k) \end{bmatrix}$$
$$\delta_1(k) + \delta_2(k) + \delta_3(k) + \delta_4(k) = 1$$

By defining $u_1(k) := \delta(k)\delta_1(k), \ u_2(k) := \delta(k)\delta_3(k)$, we obtain

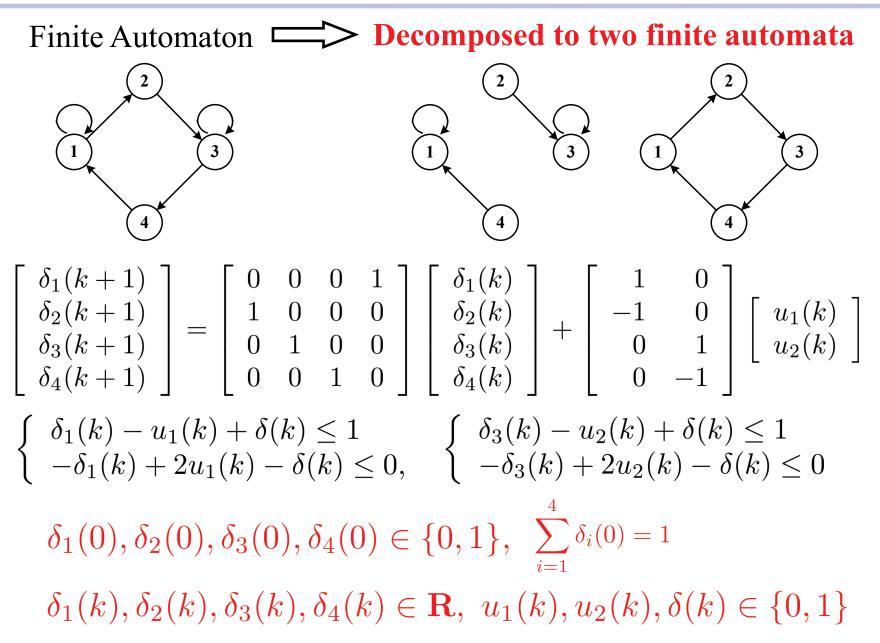
$$\begin{bmatrix} \delta_1(k+1) \\ \delta_2(k+1) \\ \delta_3(k+1) \\ \delta_4(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \delta_1(k) \\ \delta_2(k) \\ \delta_3(k) \\ \delta_4(k) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1(k) \\ u_2(k) \end{bmatrix}.$$

Nonlinear polynomial terms can be transformed into linear inequalities as follows.

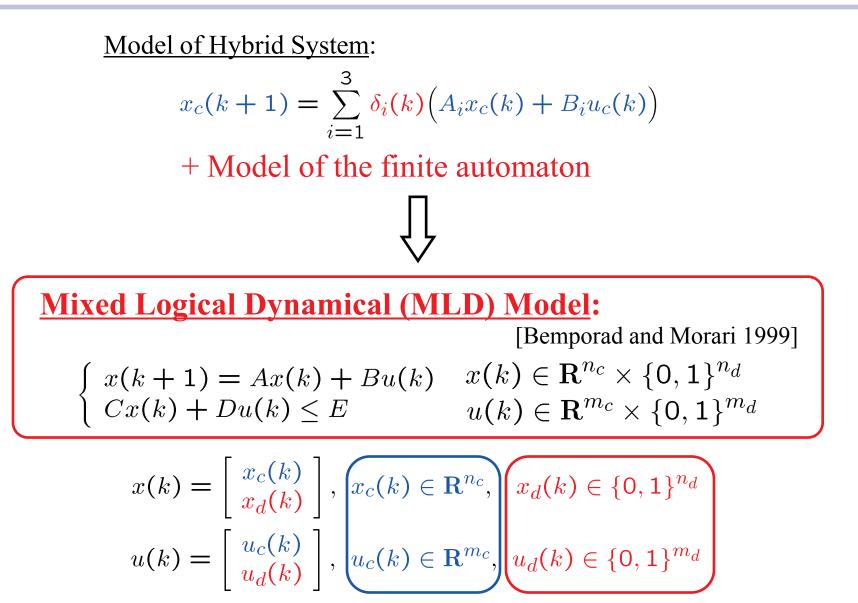
$$u_1(k) = \delta(k)\delta_1(k) \Leftrightarrow \begin{cases} \delta_1(k) - u_1(k) + \delta(k) \leq 1\\ -\delta_1(k) + 2u_1(k) - \delta(k) \leq 0 \end{cases}$$
$$u_2(k) = \delta(k)\delta_3(k) \Leftrightarrow \begin{cases} \delta_3(k) - u_2(k) + \delta(k) \leq 1\\ -\delta_3(k) + 2u_2(k) - \delta(k) \leq 0 \end{cases}$$

[Cavalier et al. 1990]

Procedure For Deriving The Proposed Model



Modeling of Hybrid Systems



Continuous Dynamics Discrete Dynamics

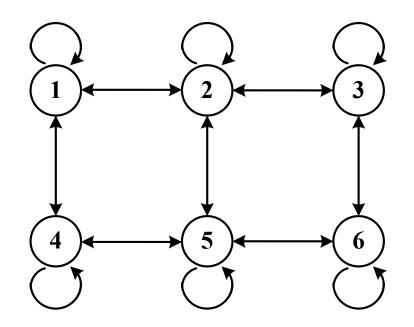
Outline of This Presentation

- 1. Hybrid Systems?
- 2. Model Predictive Control
- 3. Technical Difficulty and Our Approach
- 4. Proposed Method

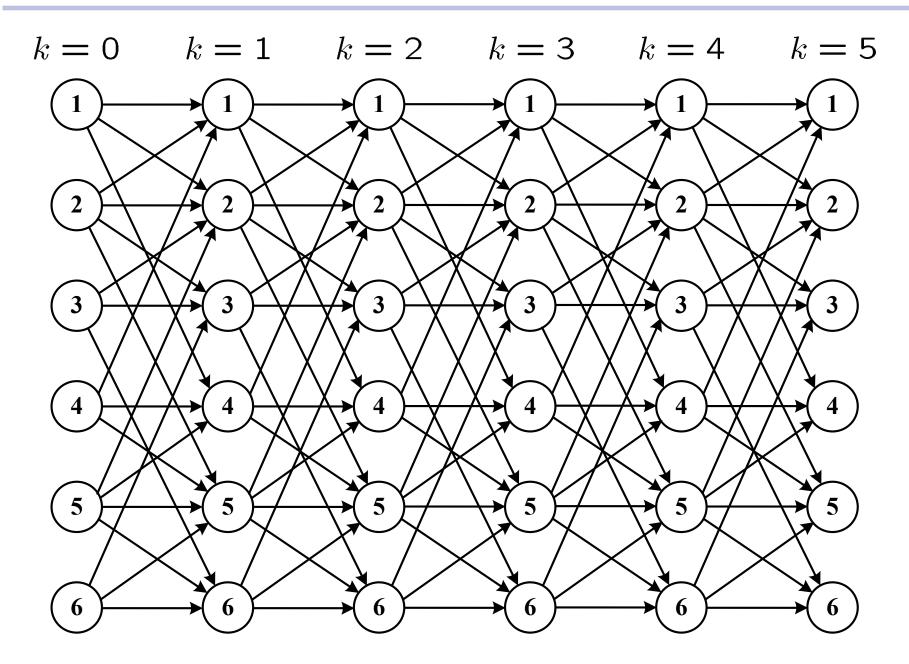
Further Extension

As a further approach for reducing the computation time, let us approximate a time sequence of finite automata.

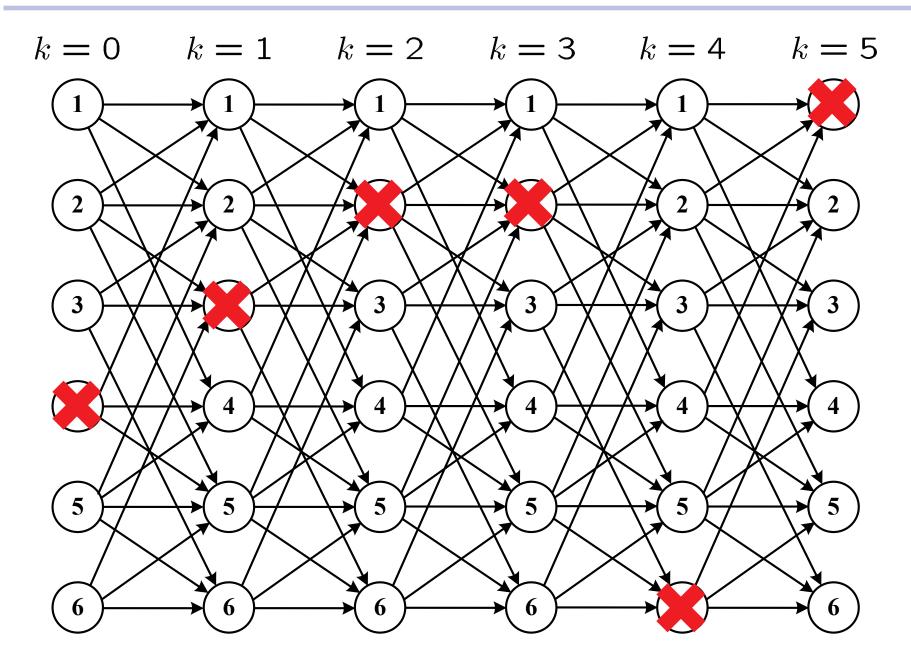
Example:



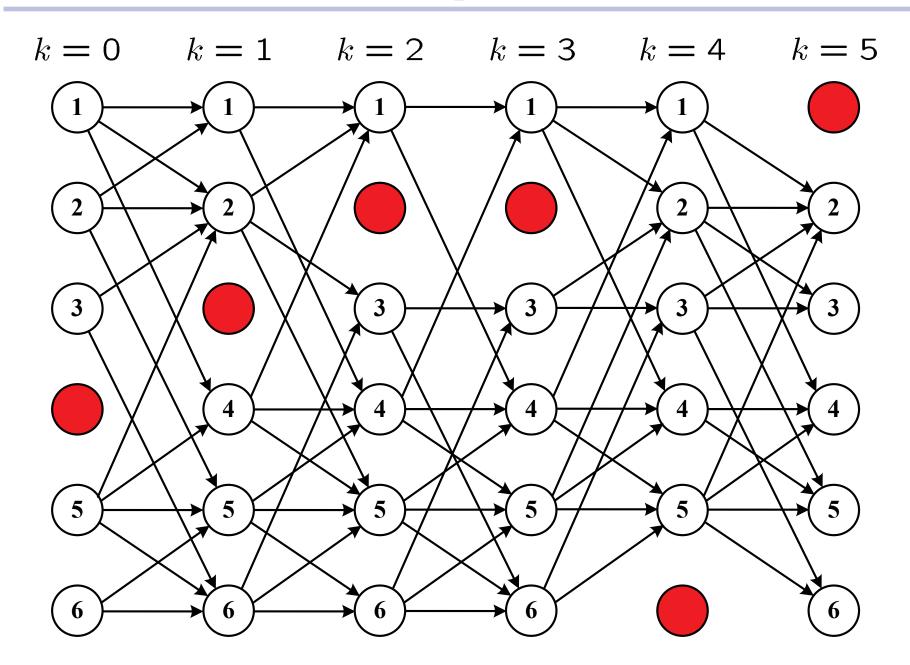
Time Sequence of Finite Automaton



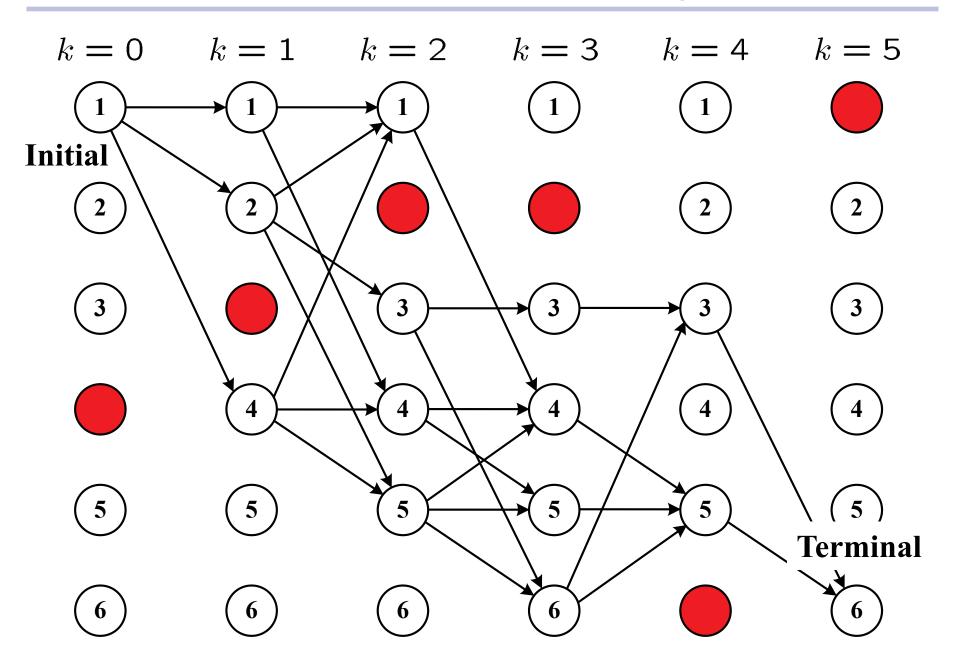
If there are temporal logic constraints,



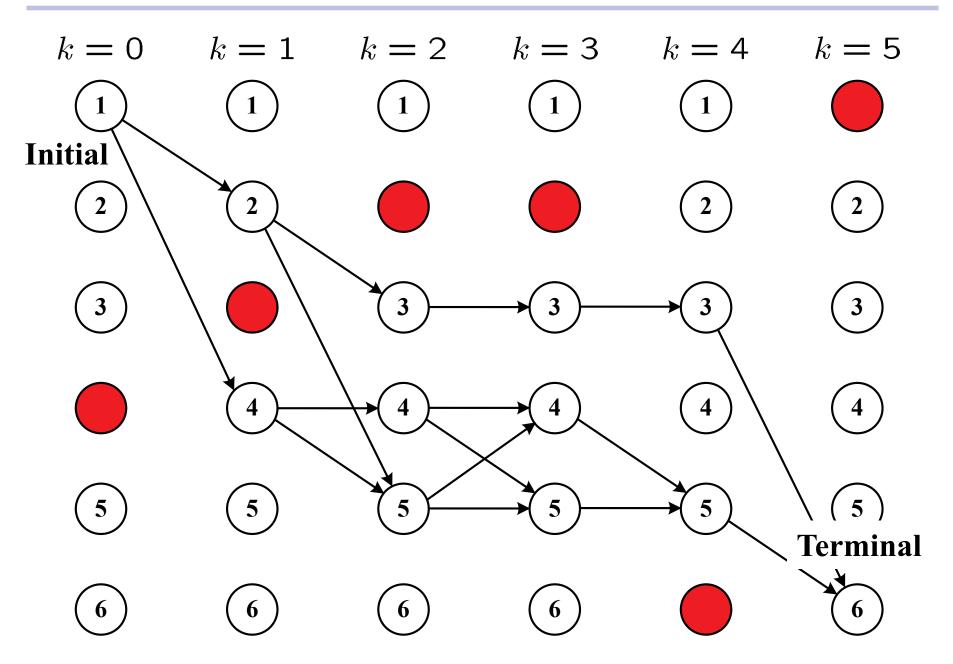
then the time sequence is limited.



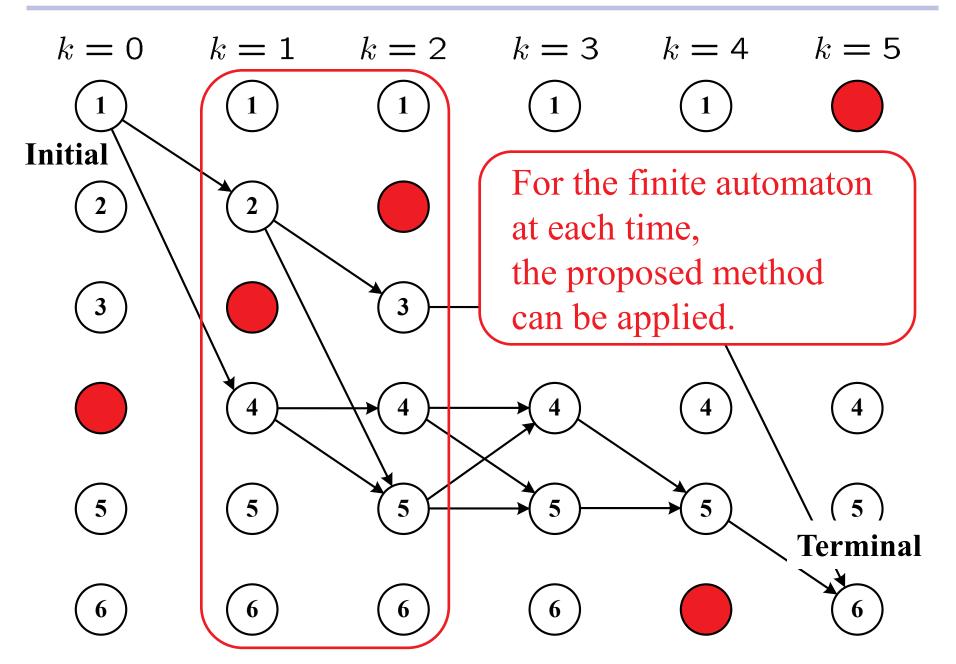
If initial and terminal modes are given, ...



Approximate Time Sequence → **Suitable**??



Approximate Time Sequence → **Suitable**??



[Contents of This Presentation]

(1) Difficulty of hybrid systems control

(2) Introduction to our framework: Modeling of Finite Automata for Computation Time Reduction

(3) Further approach: focus on time sequences

[Future Work]

(1) Improved algorithm based on both the on-line and the off-line optimizations