Performance Evaluation of Workflows Using Continuous Petri Nets with Interval Firing Speeds

Kunihiko Hiraishi School of Information Science, Japan Advanced Institute of Science and Technology

Motivation

- State space explosion in discrete-state systems
 - Necessity of methods *scalable* for the size of the model.
- Continuous relaxation in optimization problems
 - Necessary condition for the feasibility.
- Fluidification (or continuization): Approximating discrete transitions by fluid-flow.
 - Approximation of the reachability set.
 - Approximation of transient behavior of state variables.

Fluidification in Petri Nets

Formalism

- Continuous Petri Nets (Autonomous / Timed),
- Hybrid Petri Nets,
- Fluid Stochastic Petri Nets, etc.
- Analysis methods
 - Steady-state analysis.
 - Numerical simulations for transient behavior analysis.

Proposed approach

What's new is the approach

• Computation of guaranteed enclosure in transient analysis: all possibilities are computed at the same time.

ATPN2008 08/06/26

- Interval firing speeds for approximating probabilistic deviation.
- Using place invariants in piecewise interval computation as constraints.
- A prototyping computer tool.

GSPN model

Computation results by DSPNExpress-NG

N	#states	CPU Time (sec.)	#Waiting papers	p(#paper pool = 0)
3	2926	0.3	10.18	0.30
4	8866	0.7	5.94	0.094
5	23023	2.3	1.99	0.013
6	53053	6.2	0.63	0.0021
7	110968	15	0.21	0.00049
8	213928	29	0.08	0.00020
9	384098	58	0.03	0.00010

Itanium2 1.6GHz/9MBCache, 16GB Memory

Fluidification

Approximating probabilistic deviation

Interval firing speed

ATPN2008 08/06/26

Preserving expected values

TCPN model

Routing transitions

 $deg(t_j, m) = min\{ V_r^+ / 2, V_s^+ \}$

Representation by a PWL system

 $R(x) = [\lambda_{a1}]x_{a1} + [\lambda_{r1}]x_{r1} + [\lambda_{a2}]x_{a2} + [\lambda_{r2}]x_{r2}$ $\rho_j = w_j / (w_{ca} + w_{a1} + w_{r1}) (j \in \{ca, a1, r1\})$ $\rho_j = w_j / (w_{a2} + w_{r2}) (j \in \{a2, r2\})$

Interval method (1)

Ordinary differential equation.

 $\dot{x} = f(x, \theta), x(0) = x_0$ θ : the vector of interval system parameters, $\theta \in [\theta]$.

Taylor series expansion.

$$x(t_{k+1}) = x(t_k) + \sum_{r=1}^{\gamma} \frac{h^r}{r!} f^{(r-1)}(x(t_k), \theta) + e(x(\eta), \theta) \quad (h = t_{k+1} - t_k, t_k \le \eta \le t_{k+1})$$

(\gamma = 1 is used in the experiments since the system is piecewise linear.)

Estimation of discretizing error by Bounding Box.

$$e(x(\eta),\theta) \subseteq [e_k] = \frac{h^{\gamma+1}}{(\gamma+1)!} F^{(\gamma)}([B_k],[\theta]), \quad [B_k]: \forall t_k \le t \le t_{k+1}. \ x(t) \in [B_k]$$

Interval method (2)

Computation of Bounding Box: iteration of Picard operator.

 $\Phi([B_k]) \coloneqq [x_k] + [0,h] \cdot F([B_k],[\theta]) \subseteq [B_k]$

Piecewise interval method:

intervals are computed by solving optimization problems.

$$[x(t_{k+1})]_{i} = \left[\inf_{\substack{x \in [x(t_{k})] \cap \Theta, \theta \in [\theta]}} \varphi_{i}(x,\theta), \sup_{\substack{x \in [x(t_{k})] \cap \Theta, \theta \in [\theta]}} \varphi_{i}(x,\theta)\right] + [e_{k}]_{i}$$
$$\varphi_{i}(x, \theta) := (x + \sum_{r=1,t} (h^{r}/r!)f^{(r-1)}(x, \theta))|_{i}$$

 Θ : constraints on the state space \rightarrow we use place invariants.

Implementation

• KCLP-HS = Prolog Interpreter

- + Linear Constraint Solver
- + Quadratic Programming Solver
- + Manipulation of Convex Polyhedra
- + Interval Arithmetic

Computation results (1)

Central limit theorem

The interval $[\lambda]$ for each firing speed may be narrowed to $[\lambda]/\sqrt{n}$.

Computation results (2)

Conculusion

- Proposed approach
 - Computation based on linear calculation.
 - Scalable for the number of workflow instances.
 - Guaranteed enclosures for the state vector.

• Future work

- Application to real-time systems with interval timing constraints.
- Computation of transient behavior = Bounded Model Checking.