

Spatio-Temporal Situation Recognition in Service Fields - Validation by Discrete-Event Simulation -

Kunihiko Hiraishi School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)

Smart Voice Messaging System

IEEE CogSIMA2016, pp.78-82 (2016/3/21-25, San Diego, USA)

- Phase I: Recognition of Scenes
 - 1. From the event log, we make *place vectors*. Place vectors indicates how persons are arranged in the space.

1 2 3 4 5 6 7 8 9 10 [0, 0.5, 0, 3, 2.5, 0, 0, 0, 0, 0]

There are 10 regions. Three persons are in region 4, two persons are in region 5, and one person is moving from region 2 to region 5 (0.5 is added to region 2 and region 5).

2. A clustering algorithm is applied to the set of place vectors and we obtain a set of clusters $C = \{ c_1, \dots, c_n \}$. Each c_i is called *a scene*.

- Phase II: Recognition of Scene Transition
 - 1. A time series of place vectors $v_{t_1}, v_{t_2}, \dots, (t_1 < t_2 < \dots)$ is transformed into a time series of scenes C_{t_1}, C_{t_2}, \dots .
 - 2. Time axis is divided into intervals with length *L*.
 - 3. Each interval is further divided into *m* sub-intervals.
 - 4. Decide a dominant scene for each subinterval.
 - 5. Make *a scene transition graph* for each interval.
 - 6. Clustering of the set of scene transition graphs. Each cluster is called *a situation*.

Situation = How scenes change with time

Scene Transition Graph

Aim

- The proposed method is applied to a small number of real data obtained in a nursing home.
- In this paper, we validate the method by artificial logs generated by discrete event simulation.
 - to find cases that the proposed method does not work well
 - to find idea toward improvement

Simple Model 1

• There are five rooms 1 - 5 and three persons P₁, P₂, P₃.

Model 1			
Time(sec.)	Rules		
$0 \sim 1999$	$R_1. P_1 \sim P_3: 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow \cdots$		
$2000 \sim 3999$	$R_2. P_1 \sim P_3: 1 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow \cdots$		
$4000 \sim 5999$	R_3 . $P_1 \sim P_3$: Move rooms $1 \sim 5$ randomly.		
$6000 \sim 7999$	R_4 . $P_1 \sim P_3$: Move room 1 1 ~ 3 randomly.		

 n_1 (the number of Phase I clusters) = 5, n_2 (the number of Phase II clusters) = 4, L = 50 (sec.), m = 10.

Simple Model 1

Scene Transition Graphs at Phase II

Simple Model 1 with Noise

 70% → Main rule, 30% → Other three rules
 n₁ (the number of Phase I clusters) ≥ 5, n₂ (the number of Phase II clusters) = 4,
 L = 50 (sec.), m = 10.

Simple Model 2

• There are five rooms 1 - 5 and three persons P_1 , P_2 , P_3 .

Model 2			
Time(sec.)	Rules		
$0 \sim 1999$	$P_1: 1 \to 2 \to 3 \to 4 \to 5 \to 1 \to \cdots$		
	$R_5. P_2: 2 \to 3 \to 4 \to 5 \to 1 \to 2 \to \cdots$		
	$P_3: 3 \to 4 \to 5 \to 1 \to 2 \to 3 \to \cdots$		
$2000 \sim 3999$	$P_1: 1 \to 3 \to 3 \to 5 \to 5 \to 2 \to \cdots$		
	$R_6. P_2: 2 \to 2 \to 4 \to 4 \to 1 \to 1 \to \cdots$		
	$P_3: 3 \to 4 \to 5 \to 1 \to 2 \to 3 \to \cdots$		

 n_1 (the number of Phase I clusters) = 5, n_2 (the number of Phase II clusters) = 2, L = 50 (sec.), m = 10.

Failure. Two rules give the same time series of place vectors.

Picking in Warehouse

• There are 30 persons working in a warehouse. At each round, each person starts from START, picks goods on shelves, and return to GOAL.

Picking in Warehouse 1

•

Pulos		Model 3
Nules	Time(sec.)	Rules
	$0 \sim 1999$	R_7 . All: At each round, choose 5 shelves randomly
		from 1-80 and visit them by a random route.
	$2000 \sim 3999$	R_8 . All: At each round, choose 5 shelves randomly
		from 81-160 and visit them by a random route.
		Model 4
	Time(sec.)	Rules
-	$0 \sim 1999$	R_9 . All: At reach round, choose 5 shelves randomly
		and visit them by shortest routes.
	$2000 \sim 3999$	R_{10} . All: At reach round, choose 5 shelves randomly
		and visit them by random routes.

 n_1 (the number of Phase I clusters) = 10, n_2 (the number of Phase II clusters) = 2, L = 50 (sec.), m = 10.

Picking in Warehouse 2

• Rules $\begin{array}{c|c} & \text{Model 5} \\ \hline \text{Time(sec.)} & \text{Rules} \\ \hline 0 \sim 1999 & R_{11}. \text{ All: Move to 1} \sim 150 \text{ randomly.} \\ \hline 2000 \sim 3999 & R_{12}. \text{ All: Move to a shelf within 3 shelves} \\ & \text{from the current location randomly.} \end{array}$

 n_1 (the number of Phase I clusters) = 10, n_2 (the number of Phase II clusters) = 2, L = 50 (sec.), m = 10.

Two rules are not separated clearly, but the change point is detected.

Improvement

- Direction vector $v = [v_{ij}]$, where v_{ij} is the number of persons that move from region $_i$ to region j if $i \neq j$, and the number of persons stay at region i if i = j.
- Since the dimension of the vector is r², where r is the number of regions, we may apply PCA(Principal Component Analysis) to the vectors.

Conclusion

- The proposed method does not work well if the action rules give similar sequences of place vectors → Direction vectors + PCA.
- Other improvements
 - Using Staff ID (= distinguishing individual persons) with data structure that is invariant for exchanging IDs.
 - Adding other statistics on movement

Thanks to Shun Hayakashi!