

DIAGNOSIS OF STOCHASTIC DISCRETE EVENT SYSTEMS BASED ON N-GRAM MODELS WITH WILDCARD CHARACTERS

Kunihiko HIRAISHI, Miwa YOSHIMOTO and Koichi KOBAYASHI School of Information Science, JAIST

Who am I?

- My Current Research Interests include
 - Theoretical Computer Science / System Science
 - Formal Modeling of Systems / Formal Verification,
 - Discrete Event Systems / Hybrid Systems,
 - Systems Biology,
 - Optimization and Algorithms
 - Service Science including Human Activities (New)
 - Smart Voice Messaging System in Nursing/Caregiving Services

Example: Diagnosis of a Multi-Processor System

A. Grastien, Diagnosis of Discrete-Event Systems Using Satisfiability Algorithms, AAAI2007, pp.305-310 (2007).

Example: Diagnosis of a Multi-Processor System

There are at most 6¹⁶ states in total.

Example: Diagnosis of a Multi-Processor System

Message "Reboot!" Is sent to all neighbors.

Proposal of Model-less Diagnosis (MLD)

- Diagnosis of Discrete Event Systems using event-logs only.
- It aims to identify
 - whether some faults have occurred or not,
 - which type of faults has occurred,
 - the time faults have occurred.

Proposal of Model-less Diagnosis (MLD)

Compare the event log with the model

Related Work

- <u>Model-based diagnosis</u> (MBD): The exact system model is required. Computational complexity is very high.
 <u>MBD cannot handle 6¹⁶ states!</u>
- <u>Rule-based diagnosis</u>: Empirical knowledge on the system is required. Many results in AI.
 <u>A priori knowledge is not required in MLD.</u>
- Process mining: It uses event-logs, but obtaining complete process models is the goal.

Simpler models sufficient for the diagnosis are used in MLD.

Probabilistic Model: N-Gram Model

- 9
- \square *N*-gram: A string of length *N*.
- □ Let $e_1, e_2, e_3, ..., e_i$, ... be a sequence of event symbols generated by the target system.
- □ Suppose that the probability that e_i occurs depends only on the *N*-1 gram just before e_i . Then a collection of conditional probabilities $Pr(e_i | e_{i-N+1} ... e_{i-1})$ approximately represent the system behavior.
- The idea was shown by C. E. Shannon.

Discrete-time Markov chain

No *N*-gram model can represent the Markov chain since both state 0 and state 1 are reached by unbounded sequence b^*a .

Discrete-time Markov chain

3-Gram Model

	Possible states	a	b	С
aa	1	0	1/2	1/2
ab	0, 1			
ac	2	1/2	1/2	0
ba	0, 1			
bb	0, 1, 2			
bc	2	1/2	1/2	0
са	0	3/5	2/5	0
cb	2	1/2	1/2	0
СС	_			

4-Gram Model

	Possible states	a	b	С
aaa	—			
aab	0	3/5	2/5	0
aac	_			
aba	1	0	1/2	1/2
abb	0	3/5	2/5	0
abc	_			
aca	0	3/5	2/5	0
acb	2	1/2	1/2	0
bba	0, 1			

The set of possible states after sequence ab is $\{0, 1\}$.

$$Pr(a \mid ab) = 0.6 \underbrace{\frac{\pi_0}{\pi_0 + \pi_1}}_{r_0 + \pi_1} = \frac{21}{65}$$
 relative probability

$$Pr(b \mid ab) = 0.4 \cdot \frac{\pi_0}{\pi_0 + \pi_1} + 0.3 \cdot \frac{\pi_1}{\pi_0 + \pi_1} = \frac{23}{65}$$

$$Pr(c \mid ab) = 0.7 \cdot \frac{\pi_1}{\pi_0 + \pi_1} = \frac{21}{65}$$

16

The set of possible states after sequence bb is $\{0, 1, 2\}$.

$$\Pr(a \mid bb) = 0.6 \cdot \frac{\pi_0}{\pi_0 + \pi_1 + \pi_2} + 0.5 \cdot \frac{\pi_2}{\pi_0 + \pi_1 + \pi_2} = 42/107$$

$$\Pr(b \mid bb) = 0.4 \cdot \frac{\pi_0}{\pi_0 + \pi_1 + \pi_2} + 0.3 \cdot \frac{\pi_1}{\pi_0 + \pi_1 + \pi_2} + 0.5 \cdot \frac{\pi_2}{\pi_0 + \pi_1 + \pi_2} = 44/107$$

$$\Pr(c \mid bb) = 0.7 \cdot \frac{\pi_1}{\pi_0 + \pi_1 + \pi_2} = 21/107$$

3-Gram Model based on steady state probability

	Possible states	а	b	С
аа	1	0	1/2	1/2
ab	0, 1	21/65	23/65	21/65
ac	2	1/2	1/2	0
ba	0, 1	21/65	23/65	21/65
bb	0, 1, 2	42/107	44/107	21/107
bc	2	1/2	1/2	0
са	0	3/5	2/5	0
cb	2	1/2	1/2	0
CC	_			

Derivation of N-Gram Models from Event Logs

- If a Markov chain is ergodic, there exists an N-gram model that precisely represent its behavior at the steady state.
 Such an N-gram is obtained from sufficiently long event
 - sequence w generated by the Markov chain:

$$\Pr(\sigma|y) = \frac{O_{y\sigma}(w)}{\sum_{\sigma' \in \Sigma} O_{y\sigma'}(w)}$$

where

y is an (N -1)-gram, and $O_x(w)$ denote the number of occurrences of x in w.

Sequence Profiling

- 0. Give w_{ref} (an event sequence in normal situation) and w_k (k = 0, ..., m) (event sequences in various faulty situations).
- 1. Learning phase: Learn an N-gram model M_{ref} from w_{ref} .
- 2. Diagnosis Phase: Given the observed sequence w_{test} and r (> N):
 - 1 Based on M_{ref} compute the expected number of times E_j that each *r*-gram s_j occurs in w_{test} .
 - (2) Count the number of times O_j that each r-gram s_j occurs in w_{test} .
 - (3) Compute logratio $d^{r,N}(s_j) = \log(O_j/E_j)$ for each *r*-gram s_j . We call it specificity of s_j . Let $D^{r,N}(w_{test})$ be the vector each component of which corresponds to an r-gram s_j and has the value $d^{r,N}(s_j)$. We call $D^{r,N}(w_{test})$ profile of w_{test} .
 - (4) Compute correlation coefficients between $D^{r,N}(w_{test})$ and $D^{r,N}(w_k)$ (k = 0, ..., m). Output k that gives the highest correlation.

Sequence Profiling

Profile is a dimensionless quantity.

Introducing Wildcard Characters into Patterns

- In distributed processing environment such as cloud systems, event-logs from subsystems are interleaved.
- To eliminate effect by subsystems that may not be related to the faults, we consider *masking* of sequence patterns by wildcard characters.
- □ Let "*n*" be the wildcard character and $\Sigma = \{a, b\}$. "*n*" can be substituted for any symbol of Σ , e.g., *anbn* ⇒ *aaba*, *aabb*, *abba*, *abbb*. We call such a pattern a motif.
- This idea is inspired by Genom Sequence Analysis.

Faulty Model 1

Faulty Model 1

Faulty Model 2

Faulty Model 2 Frequency of PU1 PU4 PU2 PU3 reboot x 2.5 PU5 PU6 PU8 PU7 PU12 PU10 PU9 **PU11** PU16 PU14 PU13 PU15

Event Observation and Abstraction

IReboot and IAmBack are observable, and other events are unobservable

Event Observation and Abstraction

Left

Experiment

- Event sequences
 - $\square W_{ref}$: Normal model
 - $\square w_0$: Normal model
 - $\blacksquare w_1$: Faulty model 1
 - $\blacksquare w_2$: Faulty model 2
 - W_{test} : Faulty model 2 \Rightarrow correct estimation
- We use a simulator based on Stochastic Petri Nets to obtain event-logs.

TABLE I

STATISTICS ON THE NUMBER OF EVENT OCCURRENCES.

	w_0	w_1	w_2	w_{test}
a	12,980	14,634	13,468	13,381
x	8,562	8,506	8,619	8,663
y	8,581	8,177	8,623	8,656
b	13,237	12,918	13,493	13,506

28

Fig. 6. Correlation coefficients between $\mathcal{D}^{3,0}(w_{test})$ and other $\mathcal{D}^{3,0,N}(w_i)$'s for $N = 0, \dots, 3$.

Fig. 7. Correlation coefficients between $\mathcal{D}^{6,0}(w_{test})$ and other $\mathcal{D}^{6,0,N}(w_i)$'s for $N = 0, \dots, 5$.

Fig. 8. Correlation coefficients between $\mathcal{D}^{6,3}(w_{test})$ and other $\mathcal{D}^{6,3,N}(w_i)$'s for $N = 0, \dots, 5$.

30_

Fig. 9. Correlation coefficients between $\mathcal{D}^{6,h,5}(w_{test})$ and other $\mathcal{D}^{6,h,5}(w_i)$'s for $h = 0, \dots, 5$.

TABLE III Top 10 sequences in Faulty model 1.

TABLE IVTOP 10 SEQUENCES IN FAULTY MODEL 2.

Sequence	Specificity	S
yaxnnn	0.446642379	\overline{x}
xnaxnn	0.385756871	11
yaynnn	0.3695851	9 a
ayannn	0.363505804	u 1
xaynnn	0.360871346	g
ananna	0.330605425	a a
axannn	0.321329947	a a
rnaunn	0.31243332	y
arnagnn	0.308730344	y
uanunn	0.306730344	a
yanynn	0.304030413	a

Sequence	Specificity
xbxnnn	0.239204665
yaxnnn	0.178624349
annnya	0.167122029
yaynnn	0.155783797
x bnynn	0.144907917
ayannn	0.142148264
yanxnn	0.141006404
ynaxnn	0.132237506
axnnny	0.12804503
anybnn	0.127656013

Sequence patterns with high (low) singularity are used for the cause of the fault.

Future Work

- Wildcard characters with variable length
- Considering duration of inter-event time
- Online diagnosis
- Using more complex probabilistic models, e.g., context-sensitive models