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◦ Quantifier Elimination
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Design validation: ensuring the correctness of the design at 
the earliest stage possible.
Currently practices methods: simulation and testing.
◦ One is never sure when they have reached their limits or even an

estimate of how many bugs may still lurk in the design.
The approach of formal verification is an alternative to 
these techniques.
◦ While simulation and testing explore some of the possible behavior 

of the systems, formal verification conducts an exhaustive 
exploration of all possible behaviors.
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Model checking is one of approaches to formal verification. 
Compared with other approaches, it has the following 
advantages:
◦ It is fully automatic, and its application requires no user supervision 

or expertise in mathematical disciplines such as logic and theorem 
proving.

◦ When the design fails to satisfy a desired property, the process of 
model checking always produces a counterexample that 
demonstrates a behavior which fails the property and is useful for 
fixing the problem.

Basically, model checking is applied to finite-state systems. 
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Modeling: Convert a design into a formalism accepted by a 
model checking tool.

Specification: State the properties that the design must 
satisfy. It is common to use temporal logic (CTL, LTL, ...).

Verification: Check that the model of the design satisfies 
the specification. When the answer is no, the model 
checking algorithm usually provides an error trace which 
will be used debugging.
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A reactive system is a system that maintains an ongoing 
interaction with its environment.
Reactive systems include
◦ concurrent programs
◦ embedded and process control programs,
◦ operation systems, …

These systems must be highly reliable.
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P = m: cobegin P0 || P1 coend m’.
P0 :: l0: while True do

NC0: wait(turn = 0);
CR0: turn := 1;
end while
l0’.

P1 :: l1: while True do
NC1: wait(turn = 1);
CR1: turn := 0;
end while
l1’.

Critical region

Critical region
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Temporal logic is a formalism for describing properties on 
sequences of transitions in discrete state systems.
Temporal logic was first suggested by Pnueli in 1977 as a tool 
for the verification of concurrent programs. There exist 
various versions of temporal logics.
In this talk, a version of temporal logic called CTL 
(Computation Tree Logic) is considered. CTL is a branching 
time temporal logic.
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Linear time:
single computation path

Branching time:
multiple computation paths

current state
Future

computation path
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State Formula
◦ E g : g holds for some computation paths (Exist).
◦ A g : g holds for all computation paths (All).
Path formula
◦ X g: g holds in the next state (neXt).
◦ F g : g holds at some state on the path (Future).
◦ G g : g holds at every state on the path (Globally).
◦ g1 U g2: g1 is true until g2 becomes true (Until).
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13SICE2008 WS. 2008/8/19



Mutual exclusion: 
AG¬(pc0 = CR0 ∧ pc1 = CR1).

Each process never waits forever:
AG(pc0 = NC0 → AF(pc0 = CR0)) ∧
AG(pc1 = NC1 → AF(pc1 = CR1)).
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The SMV system is a tool developed in CMU for checking 
finite state system against specifications in the temporal logic
CTL. 

http://www-2.cs.cmu.edu/~modelcheck/smv.html
It provides a programming language for describing the 
transition relation of a finite Kripke structure.
All computations are performed on ROBDDs.
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MODULE main
VAR

turn : boolean;
p1 : process proc1(turn);
p2 : process proc2(turn);

ASSIGN
init(turn) := { 0, 1 };

SPEC
AG !(p1.state = CR & p2.state = CR)

SPEC
AG (p1.state = NC -> AF p1.state = CR)
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MODULE proc1(turn)
VAR

state : { L0, NC,CR };
ASSIGN

init(state) := L0;
next(state) :=

case
state = L0 :  NC;
state = NC & !turn : CR;
state = CR : L0;
1 : state;

esac;
next(turn) :=

case
state = CR : 1;
1 : turn;

esac;
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% smv concurrent.smv 
-- specification AG (!(p1.state = CR & p2.state = CR)) is true
-- specification AG (p1.state = NC -> AF p1.state = CR) is false
-- as demonstrated by the following execution sequence
state 1.1:
turn = 0
p1.state = L0
p2.state = L0
[stuttering]
state 1.2:
[executing process p1]
-- loop starts here --
state 1.3:
p1.state = NC
[stuttering]
state 1.4:
[stuttering]

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 667
Bytes allocated: 1245184
BDD nodes representing transition relation: 61 + 6
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Theorem proving is an alternative way for the formal 
verification.
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Theorem Proving Model Checking
State Space Infinite Finite
Verification Procedure Limited Automatic Fully Automatic
Counter Example No Automatic Automatic
Obtaining Insight of 
the Systems

Tell how the 
system is correct

Tell how the system 
is incorrect
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Isabelle is a generic proof assistant. It allows mathematical 
formulas to be expressed in a formal language and provides 
tools for proving those formulas in a logical calculus.
Isabelle/HOL is the specialization of Isabelle for HOL, which 
abbreviates Higher-Order Logic. 
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html

20SICE2008 WS. 2008/8/19



theory List
imports Datatype
begin

datatype 'a list = Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)

primrec app :: "'a list => 'a list => 'a list" (infixr "@" 65)
where
"[] @ ys = ys" |
"(x # xs) @ ys = x # (xs @ ys)"

primrec rev :: "'a list => 'a list" where
"rev [] = []" |
"rev (x # xs) = (rev xs) @ (x # [])"
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A theory is a named collection of 
types, functions, and theorems, 
much like a module in a 
programming language.
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lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induct_tac xs)
apply(auto)
Done

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induct_tac xs)
apply(auto)
done

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induct_tac xs)
apply(auto)
done

theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induct_tac xs)
apply(auto)
done
end
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← Goal

← Subgoals

System support for
automatic generation and proof 
of subgoals.
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Real-time systems maintain a continuous interaction with their 
environment and are often subject to timing constraints, i.e., 
operational deadlines from event to system response.
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id = 0 → x := 0

x ≤ k →
x := 0,
id := pid

x ≤ k, id = 0 →
x := 0

x > k, id = pid

id := 0

x : clock variable

Fisher’s Mutual Exclusion Protocol
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Tool: UPPAAL http://www.uppaal.com/
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Hybrid systems combine both digital and analog components.
Hybrid systems have been used as mathematical models for 
many important applications, such as
◦ automated highway systems,
◦ air-traffic management systems,
◦ embedded automotive controllers,
◦ manufacturing systems,
◦ chemical processes,
◦ robotics,
◦ real-time communication network,
◦ real-time circuits, ...
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Robot Arms

Rod1

Rod2

Reactor
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The system controls the coolant temperature in a reactor tank 
by moving two independent control rods.
The goal is to maintain the coolant between the temperatures 
L and U.
When the temperature reaches its maximum value U, the 
tank must be refrigerated with one of the rods.
A rod can be moved again only if T time units have elapsed 
since the end of its previous movement.
If the temperature of the coolant cannot decrease because 
there is no available rod, a complete shutdown is required.
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HyTech is an automatic tool for the analysis of embedded systems. 
http://embedded.eecs.berkeley.edu/research/hytech/
HyTech computes the condition under which a linear hybrid system
satisfies a temporal requirement. If the verification fails, then HyTech 
generates a diagnostic error trace.
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11 =y&
out1 in1y1 = T

y1 > T

y1 := 0
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y2 > T

y2 := 0
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remove2
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x = U x = U
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x = L

×
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var 
y1,            -- timer for rod 1
y2             -- timer for rod 2

: clock;
x              -- clock-translated variable from temperature

: analog;
T,             -- minimal time delay before reusing a cooling rod
L,             -- minimal acceptable temp
U              -- maximal acceptable temp

: parameter;

variables
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automaton rod_1
synclabs: add_1, remove_1;
initially out_1 & y1 = T;

loc out_1: while y1>=0 wait {}
when y1 >= T sync add_1 goto in_1;

loc in_1: while y1>=0 wait {}
when True sync remove_1 do {y1' = 0} goto out_1;

end -- rod_1

Rod 1
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automaton rod_2
synclabs: add_2, remove_2;
initially out_2 & y2 = T;

loc out_2: while y2>=0 wait {}
when y2 >= T sync add_2 goto in_2;

loc in_2: while y2>=0 wait {}
when True sync remove_2 do {y2' = 0} goto out_2;

end -- rod_2

Rod 2
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automaton temp
synclabs: add_1, remove_1, add_2, remove_2;
initially no_rod & x = L;

loc no_rod: while x <= U wait {dx in [1,5]}
when x=U sync add_1 goto rod_1;
when x=U sync add_2 goto rod_2;

loc rod_1: while x >= L wait {dx in [-5,-1]}
when x=L sync remove_1 goto no_rod;

loc rod_2: while x >= L wait {dx in [-9,-5]}
when x=L sync remove_2 goto no_rod;

end -- temp

Tank
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var 
init_reg, final_reg, b_reached : region;

init_reg :=   loc[rod_1] = out_1 & y1 = T
& loc[rod_2] = out_2 & y2 = T
& loc[temp]  = no_rod & x = L;

final_reg :=   loc[temp] = no_rod & x=U
& loc[rod_1] = out_1 & y1 <= T
& loc[rod_2] = out_2 & y2 <= T;

b_reached := reach backward from final_reg endreach;

prints "Control rod NOT available under the following conditions";
print omit all locations hide non_parameters in b_reached & 

init_reg endhide;

Specification
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================================================
HyTech: symbolic model checker for embedded systems
Version 1.04 10/15/96
For more info: 

email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/~tah/HyTech

Warning: Input has changed from version 1.00(a). Use -i for more info
================================================

Number of iterations required for reachability: 8
Control rod NOT available under the following conditions

23U <= 45T + 23L   & L <= U

================================================
Max memory used =     0 pages =        0 bytes =   0.00 MB 
Time spent      =       0.08u +      0.05s =       0.13 sec total
================================================
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Partition of State Space
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Region R1
Region R2

Bisimulation Predicate 
Abstraction

Approximation

Verification All CTL formula Safety property
Partition To be computed Given

yxRyRx ⇒∈∃∈∀ .21 yxRyRx ⇒∈∃∈∃ .21

x y
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A

B

Sensor

Delay 2 sec.

on/off

Water Level Monitor
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0l
1=x&
1=y&
Ay ≤

1l
1=x&
1=y&
2≤x

2l
1=x&
2−=y&

By ≥

3l
1=x&
2−=y&

2≤x

1=y
Ay =

0:=x

2=x

By =

0:=x

2=x

Find the values of A and B so that the water level y always 
satisfies 1 ≤ y ≤ 12.
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To compute all possibilities, the region of state values at each
time step is computed as a set of inequalities.
Solving the inequalities by mathematical programming 
methods, we can obtain an optimal values for the parameters.
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l0(X, Y, Time, A, B):-
X1 = X + D, Y1 = Y + D, D >= 0,
Y1 = A,
l1(0, Y1, Time + D, A, B).

0l
1=x&
1=y& 1ly = A

x := 0
y ≤ A

CLP: Constraint Logic Programming
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| ?- l0(X, 1, 0, TT, [A, B]), project([A, B], Z).
A = 10  - _142
B = 12  -2 * _161 - _142
Z = [1 * B >= 5, (-0.5) * B + 0.5 * A >= -1, (-1) * A >= -10]
_142 >= 0
_161 >= 0
-7 =  - _169 -2 * _161 - _142
_169 >= 0

*** yes ***

| ?- max(TT, l0(X, 1, 0, TT, [A, B])).
A = 10
B = 5

*** yes *** A3 100

2

5
B

Feasible solution.

Minimizing the number of switches.
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Manipulations of convex polyhedra are the basis of solving 
problems on linear hybrid systems.
There are several libraries for the computation of convex 
polyhedra.
◦ Polylib: http://www.ee.byu.edu/faculty/wilde/polyhedra.html
◦ Parma Polyhedra Library, Polka, … , etc.
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A quantifier elimination (QE) algorithm transforms formulas 
with quantifiers into equivalent formulas without quantifiers.
There are several QE algorithms implemented on symbolic 
computation tools such as Maple, Mathematica, and REDUCE. 
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The Mixed Logical Dynamical (MLD) framework is a powerful 
tool for modeling discrete-time linear hybrid systems.

48

51432

321

321

)()()()(
)()()()()(

)()()()()1(

EkuEkxEkzEkE
kzDkDkuDkCxky

kzBkBkuBkAxkx

++≤+
+++=
+++=+

δ
δ
δ

k is the discrete time-instant, x(k) denotes the states, u(k) the inputs and 
y(k) the outputs, with both real and binary components. δ and z represent 
binary and auxiliary continuous variables. 

Optimal control problem for MLD systems can be solved by 
MIQP (Mixed Integer Quadratic Programming) solvers, 
such as CPLEX and NUOPT.

SICE2008 WS. 2008/8/19



Easy to formalize, hard to solve.
◦ Combination of online and offline computations.
◦ Guaranteed approximation techniques.
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