Detection of Unusual Human Activities Based on Behavior Modeling

Kunihiko HIRAISHI, Koichi Kobayashi,

School of Information Science, Japan Advanced Institute of Science and Technology

JAIST

Project Overview

JST/RISTEX S³FIRE (Service Science, Solutions and Foundation Integrated Research Program)

<u>Project title</u>: Innovation for Service Space Communication by Voice Tweets in Nursing and Caring

<u>Aim</u>: To improve working environment in hospitals /nursing homes.

<u>Method</u>: Introducing IT Device: smart voice messaging system ("Voice Tweet Device").

Collaboration between

The SVM (Smart Voice Messaging) System

Smart Message Distribution

WODES2014

Four Research Groups

System development and field experiments

(Toshiba Corp. and all members)

- Visualization/evaluation of space-time communication (Shimizu Corp.)
- Modeling and simulation of human behavior

(JAIST Information Science)

Evaluation of service quality

(JAIST Knowledge Science)

Virtual Field Experiments

Results

- We propose formalism for modeling adaptive and cooperative behavior among concurrently acting people.
- Based on the formalism, we have made behavior models of working staffs in a nursing home.
- Using the behavior models, human activities of the staffs have been analyzed.

Formalism: Communicating N-Gram Models

e.g., the location in which most of the staffs are working

Learning Models Step 1. Event Abstraction

Event format

(*date*, *Staff-ID*, *type*, *in-time*, *out-time*, *duration*)

'*type*' is either the location or "moving".

Event log

開始	5/25/2013	17:30					
終了	5/25/2013	19:15					
	入室	退室	滞留時間(秒)		移動距離(m)	移動時間(秒)	移動速度(m/秒)
2FリビングサロンA	17:30:11	17:30:16		5			
Ļ					12	17	0.7
2FリビングサロンE	17:30:33	17:30:47		14			
Ţ					0	1	0
2FリビンクサロンA	17:30:48	17:31:33		45			
Ţ					0	39	0
2FリビングサロンA	17:32:12	17:33:23		71			
Ļ					12	1	12
2FリビングサロンE	17:33:24	17:59:18		1554			
Ţ					0	73	0
2FリビングサロンA	18:00:31	18:00:53		22			
Ļ					12	1	12
2FリビングサロンE	18:00:54	18:06:16		322			
Ţ					35	1	35
208	18:06:17	18:06:27	10				
Ţ					35	1	35
2FリビングサロンE	18:06:28	18:12:01		333			
Ļ					0	1	0
2FリビンクサロンA	18:12:02	18:12:23		21			
1					12	1	12
2FリビングサロンE	18:12:24	18:22:19		595			
Ļ					0	15	0

Abstraction table

	Event	Short stay	Long stay
	1F Rooms	а	А
	2F Rooms	b	В
	3F Rooms	С	С
	1F Salon	х	Х
	2F Salon	У	Y
-	2F Staff Station	S	S
	3F Care Station	z	Z
	Moving	-	М
	Others (stairs/elevator etc.)	е	E

Event sequence

bbByyyyyYyyyyyyyybbbbbbbbbbbbbbbbbbyxyyy yyyeMyexaXXXyyyeXXxXxXxxexXXxxeeyyxyyyxxM aaXeyY

Learning Models Step 2. Maximal Likelihood Estimation of *N*-gram Model

Event	Symbol
Move to Room1~4	р
Move to Bathroom	b
Move to Rehab. room	r
Move to Staff Station	S
Move to Toilet	t

Conditional probabilities

Prev.	Next	PHS	Tr.I	Tr.II	SVM
br	b	0	0	0	0
	р	0.40	0.67	0.67	0.25
	r	0	0	0	0
	S	0.60	0.333	0.333	0.75
	t	0	0	0	0
pr	b	1.0	0	0.25	0
	р	0	0.67	0.25	0
	r	0	0	0	0
	S	0	0.33	0.05	1.0
	t	0	0	0	0
sb	b	0	0	0	0
	р	1.0	0.20	0.20	0.25
	r	0	0.20	0.40	0.25
	S	0	0.60	0.40	0.50
	t	0	0	0	0

(VFE in Sept. 2012)

Graphical Representation by Probabilistic Automaton

Application to Real Data

The SVM system is tested in a nursing home several times.

- Field: In a nursing home with three floors, there are patients' rooms, living salons and other rooms such as a staff station and treatment rooms.
- Roles of staffs: In each period of a day, there are around 8 staffs in the field. Each staff has his/her own role, e.g., the in-charge nurse, staffs responsible for 1F/2F/3F, staffs capable of nursing, etc. In the experiments, all staffs carry SVM terminals together with standard equipment.
- Workflow: The experiments was done at lunch time and dinner time. At first each staff takes a patient from his/her room to a salon, assists the patient to have a meal, cares for several things after the meal, and finally takes the patient back.

Result of Estimating Situation mode

Analysis: Detection of Unusual/Suspicious Behavior

- A. Frequent movements between different floors: 1F salon \rightarrow 2F salon \rightarrow 3F room \rightarrow 2F room
- B. Long movement and long task at the same location.
- C. The following voice message was sent just before the point: "*Ms. XXX has returned to her room by herself. I will go to see her now.*" (Usually Ms. XXX needs assistance on her movement.)

Such suspicious behavior should be analyzed in the staff meeting.

with/without using situation mode

Analysis: Discrepancy of Entire Behavior

WODES2014

Conclusion

Behavior modeling for physical and adaptive intelligent services:

- Learning probabilistic models from event logs,
- Diagnosis of human behavior: detection of unusual/suspicious activities, discrepancy between individual log and average behavior

Ongoing/Future work

- -How to utilize the results for improving service quality
- -Modeling collaboration of staffs
- -More experiments on other fields