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Trouble with units in topology and logic

1991. Kapranov, Voevodsky
claim: all homotopy types
are equivalent to strict
homotopy types.

1998. C. Simpson: Wrong!
False for d ≥ 3.

But Conjecture:
All homotopy types are equivalent
to ones that are strict, except for
the units
(2006. Joyal, Kock: d = 3)

1989. Danos, Regnier:
proof equivalence for
MLL without units
decidable in P time, with
proof nets

2014. Heijltjes, Houston:
proof equivalence for
MLL with units is
PSPACE-complete

No proof nets for MLL with
units
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Poly-bicategories (Cockett-Koslowski-Seely)

0-cells x , y , . . .

Topology: points; Logic: a unique 0-cell (polycategory)

1-cells A,B, . . . : x → y

Topology: paths; Logic: formulae

2-cells p, q, . . . : (A1, . . . ,An)→ (B1, . . . ,Bm)

Topology: disks; Logic: sequents

x−
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Composition (cut)

(c)(a)

(b)

(d)



Composition (cut)

Γ1 ` ∆1,A A, Γ2 ` ∆2

cutb

Γ1, Γ2 ` ∆1,∆2

Γ ` ∆1,A,∆2 A ` ∆
cuta

Γ ` ∆1,∆,∆2

Γ ` A Γ1,A, Γ2 ` ∆
cutc

Γ1, Γ, Γ2 ` ∆

Γ2 ` A,∆2 Γ1,A ` ∆1

cutd

Γ1, Γ2 ` ∆1,∆2



Divisible 2-cells

Given p : (A1, . . . ,An)→ (B1, . . . ,Bm), let ∂−i p := Ai , ∂
+
j p := Bj

A 2-cell t : (A,B)→ (C ) is divisible at ∂+
1 if

Γ1

A B

Γ2

∆

p =

∀

Γ1

A B

Γ2

∆

C

t

p̃

∃!
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Divisible 2-cells

A 2-cell t : (A,B)→ (C ) is divisible at ∂−2 if

A

C

Γ

∆

p =

∀

A B

C

Γ

∆

t
p̃

∃!



Divisible 2-cells produce rules of sequent calculus

t : (A,B)→ (A⊗ B) divisible at ∂+
1 :

Γ1

A B

Γ2

∆

p =

∀

Γ1

A B

Γ2

∆

A⊗ B

t

p̃

∃!

Γ1,A,B, Γ2 ` ∆
⊗L

Γ1,A⊗ B, Γ2 ` ∆



Divisible 2-cells produce rules of sequent calculus

t : (A,B)→ (A⊗ B) divisible at ∂+
1 :

A B

A⊗ B

Γ1

∆1

Γ2

∆2

t
p q

Γ1 ` ∆1,A Γ2 ` B,∆2

⊗R

Γ1, Γ2 ` ∆1,A⊗ B,∆2



Units: the usual approach

2-cells (A1, . . . ,An)→ (A), with n ≥ 2, divisible at ∂+
1 , model

composition of paths in topology, and n-ary tensors (or
conjunctions) in logic

Dually (self-dually in topology), (B)→ (B1, . . . ,Bn) divisible
at ∂−1 model n-ary pars or disjunctions

Units/constant paths (in Cockett-Seely and Hermida)
 divisible 2-cells with a degenerate boundary (0-ary tensors/pars)

1
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Coherence via universality

Multicategory

A polycategory where all 2-cells have a single output.

( intuitionistic sequent calculi)

Representable multicategory

For all composable (A1, . . . ,An), n ≥ 0, there exists an “n-ary
tensor” 2-cell (A1, . . . ,An)→ (⊗n

i=1Ai ) divisible at ∂+
1 .

Hermida, 2000

Monoidal categories and strong monoidal functors are equivalent to
representable multicategories (with a choice of divisible 2-cells) and
morphisms that preserve divisibility at ∂+

1 .
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Coherence via universality

Representable polycategory

For all composable (A1, . . . ,An), n ≥ 0, there exists an “n-ary
tensor” 2-cell (A1, . . . ,An)→ (⊗n

i=1Ai ) divisible at ∂+
1 , and an

“n-ary par” 2-cell (`n
i=1Ai )→ (A1, . . . ,An) divisible at ∂−1 .

Linearly distributive categories and strong linear functors are
equivalent to representable polycategories (with a choice of
divisible 2-cells) and morphisms that preserve divisibility at ∂+

1 and
∂−1 .



So, all’s good up to dimension 2...

But:

If we allow 2-cells with degenerate input or output boundary,
we must allow 2-cells with overall 0-dimensional boundary.

(Although in most examples these are unnatural.)

If we want (in topology) to model higher-dimensional
homotopy types, or (in logic) the dynamics of reduction/cut
elimination, we need higher-dimensional cells.

Put these two together  problems, problems, problems!

A solution: regularity

Input and output boundaries of 2-cells are 1-dimensional (in
general: k-boundaries of n-cells are k-dimensional)
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We need a new definition for units

Idea: Saavedra unit (J. Kock, 2006), reformulated

Tensor unit 1x : x → x

For all A : x → y , B : z → x , there exist

x

x

y

1x A

A

lA

,

z

x

x

B 1x

B

rB

respectively divisible at ∂+
1 and ∂−2 , and at ∂+

1 and ∂−1 .

Induces the correct coherent structure (triangle equations, etc)



But we can do better

Tensor left divisible 1-cell E : x → x ′

For all A : x → y , A′ : x ′ → y , there exist

x

x ′

y

E E(A

A

eRE ,A

,

x

x ′

y

E A′

E ⊗ A′

tE ,A′

divisible both at ∂+
1 and ∂−2 .



But we can do better

Tensor right divisible 1-cell E : x → x ′

For all B : z → x , B ′ : z → x ′, there exist

z

x

x ′

B ′›E E

B ′

eLE ,B′

,

z

x

x ′

B E

B ⊗ E

tB,E

divisible both at ∂+
1 and ∂−1 .

Tensor divisible 1-cell E : x → x ′

Tensor right and left divisible 1-cell.



From divisible cells to units

Theorem

The following are equivalent in a regular poly-bicategory:

for all 0-cells x , there exists a tensor unit 1x : x → x ;

for all 0-cells x , there exist a 0-cell x and a tensor divisible
1-cell e : x → x ;

for all 0-cells x , there exist a 0-cell x and a tensor divisible
1-cell e : x → x .

If enough equivalences exist, units exist!
Representability: existence of enough divisible 2-cells and 1-cells
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Equivalences and units

Some of this is in my PhD thesis:

A.H., The algebra of entanglement and the geometry of
composition, Chapter 3. arXiv 1709.08086

A formulation of bicategory theory where “divisible cells” are the
single fundamental notion (composition and units are derived):

A.H., Weak units, divisible cells, and coherence via
universality for bicategories. (Soon to be available)

Scales to higher dimensions:

A.H., A combinatorial-topological shape category for
polygraphs. (Later this year)
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An observation on the sequent calculus side

Tensor units as 0-ary tensors:

1

 introduction of units is a “divisibility property” rule

Γ1, Γ2 ` ∆

Γ1, 1, Γ2 ` ∆
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1 A

A

,
B 1

B

 elimination of units is a “divisibility property” rule

Γ1, 1, Γ2 ` ∆

Γ1, Γ2 ` ∆

This difference is not captured by the induced structure
(monoidal categories, etc)
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Questions on the sequent calculus side (1)

Regularity constraint: cannot empty either side of a sequent

Proofs in “regular MLL” are valid in MLL. In the other
direction, we can obtain regular proofs by “introducing
enough units”.

ax
⊥ ` ⊥

ax
A ` A

1L,⊥R

A, 1 ` ⊥,A
(R

1 ` A(⊥,A
›L

⊥›(A(⊥), 1 ` ⊥,A
What does the number of “residual units” count?
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Questions on the sequent calculus side (2)

Two-sided sequent calculi that fit this framework (this includes
ones for full linear logic) can be seen as “calculi of divisible 2-cells”.

What is the logical/computational significance of divisible
1-cells? (And 3-cells, etc.)

What could be a “calculus of divisible cells in all
dimensions”?

Thank you for your attention.
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