Units without degeneracy， from polycategories to sequent calculi

Amar Hadzihasanovic
（ハジハサノヴィチ・アマル）
RIMS，Kyoto University

Kanazawa， 6 March 2018

Trouble with units in topology and logic

■ 1991. Kapranov, Voevodsky claim: all homotopy types are equivalent to strict homotopy types.

Trouble with units in topology and logic

■ 1991. Kapranov, Voevodsky claim: all homotopy types are equivalent to strict homotopy types.

- 1998. C. Simpson: Wrong!

False for $d \geq 3$.

Trouble with units in topology and logic

■ 1991. Kapranov, Voevodsky claim: all homotopy types are equivalent to strict homotopy types.

- 1998. C. Simpson: Wrong!

False for $d \geq 3$.
But Conjecture:
All homotopy types are equivalent to ones that are strict, except for the units

Trouble with units in topology and logic

■ 1991. Kapranov, Voevodsky claim: all homotopy types are equivalent to strict homotopy types.

- 1998. C. Simpson: Wrong!

False for $d \geq 3$.
But Conjecture:
All homotopy types are equivalent to ones that are strict, except for the units
(2006. Joyal, Kock: $d=3$)

Trouble with units in topology and logic

■ 1991. Kapranov, Voevodsky claim: all homotopy types are equivalent to strict homotopy types.

- 1998. C. Simpson: Wrong! False for $d \geq 3$.

But Conjecture:
All homotopy types are equivalent to ones that are strict, except for the units
(2006. Joyal, Kock: $d=3$)

- 1989. Danos, Regnier: proof equivalence for MLL without units decidable in P time, with proof nets

Trouble with units in topology and logic

■ 1991. Kapranov, Voevodsky claim: all homotopy types are equivalent to strict homotopy types.

- 1998. C. Simpson: Wrong! False for $d \geq 3$.

But Conjecture:
All homotopy types are equivalent to ones that are strict, except for the units
(2006. Joyal, Kock: $d=3$)

- 1989. Danos, Regnier: proof equivalence for MLL without units decidable in P time, with proof nets
- 2014. Heijltjes, Houston: proof equivalence for MLL with units is PSPACE-complete

Trouble with units in topology and logic

■ 1991. Kapranov, Voevodsky claim: all homotopy types are equivalent to strict homotopy types.

- 1998. C. Simpson: Wrong! False for $d \geq 3$.

But Conjecture:
All homotopy types are equivalent to ones that are strict, except for the units
(2006. Joyal, Kock: $d=3$)

- 1989. Danos, Regnier: proof equivalence for MLL without units decidable in P time, with proof nets
- 2014. Heijltjes, Houston: proof equivalence for MLL with units is PSPACE-complete

No proof nets for MLL with units

Poly-bicategories (Cockett-Koslowski-Seely)

- 0 -cells x, y, \ldots

Topology: points; Logic: a unique 0-cell (polycategory)

Poly-bicategories (Cockett-Koslowski-Seely)

- 0-cells x, y, \ldots

Topology: points; Logic: a unique 0-cell (polycategory)
■ 1-cells A, B, \ldots : $x \rightarrow y$
Topology: paths; Logic: formulae

Poly-bicategories (Cockett-Koslowski-Seely)

- 0-cells x, y, \ldots

Topology: points; Logic: a unique 0-cell (polycategory)

- 1-cells A, B, \ldots : $x \rightarrow y$

Topology: paths; Logic: formulae
■ 2-cells $p, q, \ldots:\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(B_{1}, \ldots, B_{m}\right)$
Topology: disks; Logic: sequents

Composition (cut)

Composition (cut)

$$
\frac{\Gamma_{1} \vdash \Delta_{1}, A \quad A, \Gamma_{2} \vdash \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}}
$$

$$
\frac{\Gamma \vdash \Delta_{1}, A, \Delta_{2} \quad A \vdash \Delta}{\Gamma \vdash \Delta_{1}, \Delta, \Delta_{2}} \mathrm{CUT}_{a} \frac{\Gamma \vdash A \quad \Gamma_{1}, A, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, \Gamma, \Gamma_{2} \vdash \Delta} \operatorname{CUT}_{c}
$$

$\Gamma_{2} \vdash A, \Delta_{2} \quad \Gamma_{1}, A \vdash \Delta_{1}$

$$
\Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}
$$

Divisible 2-cells

Given $p:\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(B_{1}, \ldots, B_{m}\right)$, let $\partial_{i}^{-} p:=A_{i}, \partial_{j}^{+} p:=B_{j}$

Divisible 2-cells

Given $p:\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(B_{1}, \ldots, B_{m}\right)$, let $\partial_{i}^{-} p:=A_{i}, \partial_{j}^{+} p:=B_{j}$
A 2-cell $t:(A, B) \rightarrow(C)$ is divisible at ∂_{1}^{+}if

Divisible 2-cells

A 2-cell $t:(A, B) \rightarrow(C)$ is divisible at ∂_{2}^{-}if

Divisible 2-cells produce rules of sequent calculus

$t:(A, B) \rightarrow(A \otimes B)$ divisible at $\partial_{1}^{+}:$

$$
\frac{\Gamma_{1}, A, B, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, A \otimes B, \Gamma_{2} \vdash \Delta}
$$

Divisible 2-cells produce rules of sequent calculus

$t:(A, B) \rightarrow(A \otimes B)$ divisible at $\partial_{1}^{+}:$

$$
\frac{\Gamma_{1} \vdash \Delta_{1}, A \quad \Gamma_{2} \vdash B, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, A \otimes B, \Delta_{2}}
$$

Units: the usual approach

2-cells $\left(A_{1}, \ldots, A_{n}\right) \rightarrow(A)$, with $n \geq 2$, divisible at ∂_{1}^{+}, model composition of paths in topology, and n-ary tensors (or conjunctions) in logic

Units: the usual approach

2-cells $\left(A_{1}, \ldots, A_{n}\right) \rightarrow(A)$, with $n \geq 2$, divisible at ∂_{1}^{+}, model composition of paths in topology, and n-ary tensors (or conjunctions) in logic

■ Dually (self-dually in topology), $(B) \rightarrow\left(B_{1}, \ldots, B_{n}\right)$ divisible at ∂_{1}^{-}model n-ary pars or disjunctions

Units: the usual approach

2-cells $\left(A_{1}, \ldots, A_{n}\right) \rightarrow(A)$, with $n \geq 2$, divisible at ∂_{1}^{+}, model composition of paths in topology, and n-ary tensors (or conjunctions) in logic

■ Dually (self-dually in topology), $(B) \rightarrow\left(B_{1}, \ldots, B_{n}\right)$ divisible at ∂_{1}^{-}model n-ary pars or disjunctions

Units/constant paths (in Cockett-Seely and Hermida)
\rightsquigarrow divisible 2-cells with a degenerate boundary (0-ary tensors/pars)

Coherence via universality

Multicategory

A polycategory where all 2-cells have a single output.
(\rightsquigarrow intuitionistic sequent calculi)

Representable multicategory

For all composable $\left(A_{1}, \ldots, A_{n}\right), n \geq 0$, there exists an " n-ary tensor" 2-cell $\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(\otimes_{i=1}^{n} A_{i}\right)$ divisible at ∂_{1}^{+}.

Coherence via universality

Multicategory

A polycategory where all 2-cells have a single output.
(\rightsquigarrow intuitionistic sequent calculi)

Representable multicategory

For all composable $\left(A_{1}, \ldots, A_{n}\right), n \geq 0$, there exists an " n-ary tensor" 2-cell $\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(\otimes_{i=1}^{n} A_{i}\right)$ divisible at ∂_{1}^{+}.

Hermida, 2000

Monoidal categories and strong monoidal functors are equivalent to representable multicategories (with a choice of divisible 2-cells) and morphisms that preserve divisibility at ∂_{1}^{+}.

Coherence via universality

Representable polycategory
For all composable $\left(A_{1}, \ldots, A_{n}\right), n \geq 0$, there exists an " n-ary tensor" 2-cell $\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(\otimes_{i=1}^{n} A_{i}\right)$ divisible at ∂_{1}^{+}, and an " n-ary par" 2-cell $\left(X_{i=1}^{n} A_{i}\right) \rightarrow\left(A_{1}, \ldots, A_{n}\right)$ divisible at ∂_{1}^{-}.

Linearly distributive categories and strong linear functors are equivalent to representable polycategories (with a choice of divisible 2-cells) and morphisms that preserve divisibility at ∂_{1}^{+}and ∂_{1}^{-}.

So, all's good up to dimension $2 \ldots$

But:
■ If we allow 2-cells with degenerate input or output boundary, we must allow 2-cells with overall 0-dimensional boundary.
(Although in most examples these are unnatural.)

So, all's good up to dimension 2...

But:
■ If we allow 2-cells with degenerate input or output boundary, we must allow 2-cells with overall 0-dimensional boundary.
(Although in most examples these are unnatural.)

- If we want (in topology) to model higher-dimensional homotopy types, or (in logic) the dynamics of reduction/cut elimination, we need higher-dimensional cells.

So, all's good up to dimension 2...

But:
■ If we allow 2-cells with degenerate input or output boundary, we must allow 2-cells with overall 0-dimensional boundary.
(Although in most examples these are unnatural.)

- If we want (in topology) to model higher-dimensional homotopy types, or (in logic) the dynamics of reduction/cut elimination, we need higher-dimensional cells.
- Put these two together \rightsquigarrow problems, problems, problems!

So, all's good up to dimension 2...

But:

■ If we allow 2-cells with degenerate input or output boundary, we must allow 2-cells with overall 0-dimensional boundary.
(Although in most examples these are unnatural.)

- If we want (in topology) to model higher-dimensional homotopy types, or (in logic) the dynamics of reduction/cut elimination, we need higher-dimensional cells.
- Put these two together \rightsquigarrow problems, problems, problems!

A solution: regularity

Input and output boundaries of 2-cells are 1-dimensional (in general: k-boundaries of n-cells are k-dimensional)

We need a new definition for units

Idea: Saavedra unit (J. Kock, 2006), reformulated

Tensor unit $1_{x}: x \rightarrow x$

For all $A: x \rightarrow y, B: z \rightarrow x$, there exist

respectively divisible at ∂_{1}^{+}and ∂_{2}^{-}, and at ∂_{1}^{+}and ∂_{1}^{-}.
Induces the correct coherent structure (triangle equations, etc)

But we can do better

Tensor left divisible 1-cell $E: x \rightarrow x^{\prime}$

For all $A: x \rightarrow y, A^{\prime}: x^{\prime} \rightarrow y$, there exist

divisible both at ∂_{1}^{+}and ∂_{2}^{-}.

But we can do better

Tensor right divisible 1-cell $E: x \rightarrow x^{\prime}$

For all $B: z \rightarrow x, B^{\prime}: z \rightarrow x^{\prime}$, there exist

divisible both at ∂_{1}^{+}and ∂_{1}^{-}.
Tensor divisible 1-cell $E: x \rightarrow x^{\prime}$
Tensor right and left divisible 1-cell.

From divisible cells to units

Theorem

The following are equivalent in a regular poly-bicategory:

- for all 0 -cells x, there exists a tensor unit $1_{x}: x \rightarrow x$;
- for all 0 -cells x, there exist a 0 -cell \bar{x} and a tensor divisible 1-cell $e: x \rightarrow \bar{x}$;
- for all 0-cells x, there exist a 0 -cell \bar{x} and a tensor divisible 1-cell $e: \bar{x} \rightarrow x$.

From divisible cells to units

Theorem

The following are equivalent in a regular poly-bicategory:

- for all 0 -cells x, there exists a tensor unit $1_{x}: x \rightarrow x$;
- for all 0 -cells x, there exist a 0 -cell \bar{x} and a tensor divisible 1-cell $e: x \rightarrow \bar{x}$;
- for all 0-cells x, there exist a 0 -cell \bar{x} and a tensor divisible 1-cell $e: \bar{x} \rightarrow x$.

If enough equivalences exist, units exist!

From divisible cells to units

Theorem

The following are equivalent in a regular poly-bicategory:
■ for all 0 -cells x, there exists a tensor unit $1_{x}: x \rightarrow x$;

- for all 0 -cells x, there exist a 0 -cell \bar{x} and a tensor divisible 1-cell $e: x \rightarrow \bar{x}$;
- for all 0 -cells x, there exist a 0 -cell \bar{x} and a tensor divisible 1-cell $e: \bar{x} \rightarrow x$.

If enough equivalences exist, units exist!

Representability: existence of enough divisible 2-cells and 1-cells

Equivalences and units

Some of this is in my PhD thesis:

- A.H., The algebra of entanglement and the geometry of composition, Chapter 3. arXiv 1709.08086

Equivalences and units

Some of this is in my PhD thesis:

- A.H., The algebra of entanglement and the geometry of composition, Chapter 3. arXiv 1709.08086

A formulation of bicategory theory where "divisible cells" are the single fundamental notion (composition and units are derived):

■ A.H., Weak units, divisible cells, and coherence via universality for bicategories. (Soon to be available)

Equivalences and units

Some of this is in my PhD thesis:
■ A.H., The algebra of entanglement and the geometry of composition, Chapter 3. arXiv 1709.08086

A formulation of bicategory theory where "divisible cells" are the single fundamental notion (composition and units are derived):

- A.H., Weak units, divisible cells, and coherence via universality for bicategories. (Soon to be available)

Scales to higher dimensions:
■ A.H., A combinatorial-topological shape category for polygraphs. (Later this year)

An observation on the sequent calculus side

Tensor units as 0 -ary tensors:

\rightsquigarrow introduction of units is a "divisibility property" rule

$$
\frac{\Gamma_{1}, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, 1, \Gamma_{2} \vdash \Delta}
$$

An observation on the sequent calculus side

Tensor units as divisible 1-cells:

\rightsquigarrow elimination of units is a "divisibility property" rule

$$
\frac{\Gamma_{1}, 1, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, \Gamma_{2} \vdash \Delta}
$$

An observation on the sequent calculus side

Tensor units as divisible 1-cells:

\rightsquigarrow elimination of units is a "divisibility property" rule

$$
\frac{\Gamma_{1}, 1, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, \Gamma_{2} \vdash \Delta}
$$

This difference is not captured by the induced structure (monoidal categories, etc)

Questions on the sequent calculus side (1)

Regularity constraint: cannot empty either side of a sequent

Questions on the sequent calculus side (1)

Regularity constraint: cannot empty either side of a sequent
■ Proofs in "regular MLL" are valid in MLL. In the other direction, we can obtain regular proofs by "introducing enough units".

Questions on the sequent calculus side (1)

Regularity constraint: cannot empty either side of a sequent
■ Proofs in "regular MLL" are valid in MLL. In the other direction, we can obtain regular proofs by "introducing enough units".

$$
\frac{\frac{A \vdash A}{A X}}{\frac{\perp \vdash \perp}{A, 1 \vdash \perp, A}} 1_{L}, \perp_{R}
$$

Questions on the sequent calculus side (1)

Regularity constraint: cannot empty either side of a sequent
■ Proofs in "regular MLL" are valid in MLL. In the other direction, we can obtain regular proofs by "introducing enough units".
$\frac{\overline{A \vdash A}}{\frac{\overline{L P}^{\prime}}{A, 1 \vdash \perp, A}} 1_{L}, \perp_{R}$

What does the number of "residual units" count?

Questions on the sequent calculus side (2)

Two-sided sequent calculi that fit this framework (this includes ones for full linear logic) can be seen as "calculi of divisible 2-cells".

Questions on the sequent calculus side (2)

Two-sided sequent calculi that fit this framework (this includes ones for full linear logic) can be seen as "calculi of divisible 2-cells".

What is the logical/computational significance of divisible 1-cells? (And 3-cells, etc.)

Questions on the sequent calculus side (2)

Two-sided sequent calculi that fit this framework (this includes ones for full linear logic) can be seen as "calculi of divisible 2-cells".

What is the logical/computational significance of divisible 1-cells? (And 3-cells, etc.)

What could be a "calculus of divisible cells in all dimensions"?

Questions on the sequent calculus side (2)

Two-sided sequent calculi that fit this framework (this includes ones for full linear logic) can be seen as "calculi of divisible 2-cells".

What is the logical/computational significance of divisible 1-cells? (And 3-cells, etc.)

What could be a "calculus of divisible cells in all dimensions"?

Thank you for your attention.

