A univalent approach to constructive mathematics

Chuangjie Xu

Ludwig-Maximilians-Universität München

Second Workshop on Mathematical Logic and its Applications 5-7,8,9 March 2018, Kanazawa, Japan

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへの

A univalent approach to constructive mathematics

Background	Mathematics in Univalent type theory	Summary
●○○	00000	O
Background		

This talk is

1. to give a very brief introduction to univalent type theory (UTT),

2. to demonstrate some experiments of doing mathematics in UTT, and

3. to collect your valuable advices of interesting concrete mathematics that could be suitable to carry out within such foundation.

Background	Mathematics in Univalent type theory	Summary
O●O	00000	O
Background		

Constructive mathematics and Martin-Löf type theory

A central tenet of constructive mathematics is that the logical symbols carry computational content.

Constructive mathematics and Martin-Löf type theory

A central tenet of constructive mathematics is that the logical symbols carry computational content.

Curry-Howard logic in Martin-Löf type theory (MLTT)

Propositions	Types
$P \wedge Q$	$P \times Q$
$P \lor Q$	P+Q
$P \rightarrow Q$	$P \rightarrow Q$
$\forall (x:A).P(x)$	$\Pi(x:A).P(x)$
$\exists (x:A).P(x)$	$\Sigma(x:A).P(x)$

Э

《曰》 《圖》 《臣》 《臣》

Constructive mathematics and Martin-Löf type theory

A central tenet of constructive mathematics is that the logical symbols carry computational content.

Curry-Howard logic in Martin-Löf type theory (MLTT)

Propositions	Types
$P \wedge Q$	P imes Q
$P \lor Q$	P+Q
$P \rightarrow Q$	$P \rightarrow Q$
$\forall (x:A).P(x)$	$\Pi(x:A).P(x)$
$\exists (x:A).P(x)$	$\Sigma(x:A).P(x)$

Computer proof assistants based on (variants of) MLTT include Agda, Coq, Lean, Nuprl, ...

A univalent approach to constructive mathematics

3

《口》 《卽》 《臣》 《臣》

Background	Mathematics in Univalent type theory	Summary
00●	00000	O
Background		

Nonaxiom of choice

 $\Pi(x\!:\!A).\Sigma(y\!:\!B).P(x,y) \to \Sigma(f\!:\!A\!\to\!B).\Pi(x\!:\!A).P(x,f(x))$

<ロ> <回> <回> <三> <三> <三> <三> <三> <三</p>

Background	Mathematics in Univalent type theory	Summary
○○●	00000	O
Background		

Nonaxiom of choice

 $\Pi(x\!:\!A).\Sigma(y\!:\!B).P(x,y) \to \Sigma(f\!:\!A\!\to\!B).\Pi(x\!:\!A).P(x,f(x))$

Trouble of defining the image of a function $f: A \rightarrow B$

 $(\Sigma(y\!:\!B).\Sigma(x\!:\!A).f(x)=y) \ \simeq \ A$

Background	Mathematics in Univalent type theory	Summary
○○●	00000	O
Background		

Nonaxiom of choice

 $\Pi(x\!:\!A).\Sigma(y\!:\!B).P(x,y) \to \Sigma(f\!:\!A\!\to\!B).\Pi(x\!:\!A).P(x,f(x))$

Trouble of defining the image of a function $f: A \rightarrow B$

 $(\Sigma(y:B).\Sigma(x:A).f(x) = y) \simeq A$

Failure of Brouwer's continuity principle (Escardó and X, 2015)

 $\left(\Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}).\Pi(\alpha:\mathbb{N}^{\mathbb{N}}).\Sigma(n:\mathbb{N}).\Pi(\beta:\mathbb{N}^{\mathbb{N}}).\left(\alpha=_{n}\beta\to f(\alpha)=f(\beta)\right)\right)\to 0=1$

Background	Mathematics in Univalent type theory	Summary
○○●	00000	O
Background		

Nonaxiom of choice

 $\Pi(x\!:\!A).\Sigma(y\!:\!B).P(x,y) \to \Sigma(f\!:\!A\!\to\!B).\Pi(x\!:\!A).P(x,f(x))$

Trouble of defining the image of a function $f: A \rightarrow B$

 $(\Sigma(y:B).\Sigma(x:A).f(x) = y) \simeq A$

Failure of Brouwer's continuity principle (Escardó and X, 2015)

 $\left(\Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}).\Pi(\alpha:\mathbb{N}^{\mathbb{N}}).\Sigma(n:\mathbb{N}).\Pi(\beta:\mathbb{N}^{\mathbb{N}}).\left(\alpha=_{n}\beta\to f(\alpha)=f(\beta)\right)\right)\to 0=1$

Is this theory of construction too computationally informative?

Background	Mathematics in Univalent type theory	Summary
000	•0000	O
Mathematics in Univalent type theory		

Voevodsky's Univalent Foundations

A univalent type theory is a mathematical language for expressing definitions, theorems and proofs that is invariant under equivalences, i.e.

```
P(X) \times (X \simeq Y) \to P(Y)
```

Examples: UniMath, HoTT book, cubical type theory.

Background	Mathematics in Univalent type theory	Summary
000	●0000	O
Mathematics in Univalent type theory		

Voevodsky's Univalent Foundations

A univalent type theory is a mathematical language for expressing definitions, theorems and proofs that is invariant under equivalences, i.e.

```
P(X) \times (X \simeq Y) \to P(Y)
```

Examples: UniMath, HoTT book, cubical type theory.

Among the significant univalent concepts and techniques, here I present two:

Stratification of types

► A type *P* is a proposition if

 $isProp(P) :\equiv \Pi(x, y:P).x = y$

► A type A is a set if

 $\mathsf{isSet}(A) :\equiv \Pi(x, y : A).\mathsf{isProp}(x = y)$

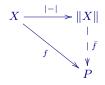
groupoids and, more generally, n-types

provides a flexible way to intuitively describe mathematical objects.

Background	Mathematics in Univalent type theory	Summary
000	○●○○○	O
Mathematics in Univalent type theory		

Propositional truncation

A propositional truncation of a type X, if it exists, is a proposition ||X|| together with a map $|-|: X \to ||X||$ such that for any proposition P and $f: X \to P$ we can find $\overline{f}: ||X|| \to P$ with



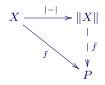
3

《口》 《卽》 《臣》 《臣》

Background	Mathematics in Univalent type theory	Summary
000	○●○○○	O
Mathematics in Univalent type theory		

Propositional truncation

A propositional truncation of a type X, if it exists, is a proposition ||X|| together with a map $|-|: X \to ||X||$ such that for any proposition P and $f: X \to P$ we can find $\overline{f}: ||X|| \to P$ with



- Intuitively, ||X|| is the (type of) truth value of the inhabitedness of X.
- Several kinds of types can be shown to have truncations in MLTT.
- There are different ways to extend MLTT to get truncations for all types.
- $||X|| \to X$ is not provable in general, and is equivalent to $X + \neg X$.

- イロト (四) (日) (日) (日) (日) (日)

Background	Mathematics in Univalent type theory	Summary
000	00000	0
Mathematics in Univalent type theory		

Univalent logic

Let P, Q be propositions.

$$\begin{array}{cccc} \bot & :\equiv & \mathbf{0} \\ \top & :\equiv & \mathbb{1} \\ P \land Q & :\equiv & P \times Q \\ P \lor Q & :\equiv & \|P + Q\| \\ P \to Q & :\equiv & P \to Q \\ \forall (x:A).P(x) & :\equiv & \Pi(x:A).P(x) \\ \exists (x:A).P(x) & :\equiv & \|\Sigma(x:A).P(x)| \end{array}$$

▲□▶ ▲□▶ ▲王▶ ▲王▶ 王 - ����

A univalent approach to constructive mathematics

Background	Mathematics in Univalent type theory	Summary
000	0000	0
Mathematics in Univalent type theory		

Univalent logic

Let P, Q be propositions.

$$\begin{array}{cccc} \bot & :\equiv & 0 \\ \top & :\equiv & 1 \\ P \land Q & :\equiv & P \times Q \\ P \lor Q & :\equiv & \|P + Q\| \\ P \to Q & :\equiv & P \to Q \\ \forall (x:A).P(x) & :\equiv & \Pi(x:A).P(x) \\ \exists (x:A).P(x) & :\equiv & \|\Sigma(x:A).P(x)\| \end{array}$$

Axiom of choice

$$\begin{split} \Pi(x:A).\|\Sigma(y:B).P(x,y)\| \to \|\Sigma(f:A \to B).\Pi(x:A).P(x,f(x))\| \\ \text{Image of } f:A \to B \end{split}$$

$$\mathsf{image}(f) :\equiv \Sigma(y\!:\!B). \|\Sigma(x\!:\!A).f(x) = y\|$$

Continuity principle

 $\Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}).\Pi(\alpha:\mathbb{N}^{\mathbb{N}}).\|\Sigma(n:\mathbb{N}).\Pi(\beta:\mathbb{N}^{\mathbb{N}}).\ (\alpha=_{n}\beta\to f(\alpha)=f(\beta))\,\|$

From now on, I use logical connectives for properties and type formers for structures. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Continuity as a structure or a property?

Background	Mathematics in Univalent type theory	Summary
000	000●0	O
Mathematics in Univalent type theory		

```
Continuity as a structure or a property?
```

Theorem (Bishop,1967) Let $f : [a,b] \to \mathbb{R}$ be uniformly continuous such that $f(a) \le 0 \le f(b)$. For any $\varepsilon > 0$ we can find $c \in [a,b]$ such that $|f(c)| < \varepsilon$.

Theorem (Taylor, 2010) Let $f : [a,b] \to \mathbb{R}$ be uniformly continuous such that $f(a) \le 0 \le f(b)$. If f is locally nonzero (for any x < y there exists $z \in (x,y)$ such that $f(z) \ne 0$), then we can find $c \in [a,b]$ such that f(c) = 0.

3

《口》 《圖》 《臣》 《臣》

Background	Mathematics in Univalent type theory	Summary
000	00000	0
Mathematics in Univalent type theory		

```
Continuity as a structure or a property?
```

```
Theorem (Bishop, 1967)
```

Let $f:[a,b] \to \mathbb{R}$ be uniformly continuous such that $f(a) \leq 0 \leq f(b)$. For any $\varepsilon > 0$ we can find $c \in [a,b]$ such that $|f(c)| < \varepsilon$.

In its proof, uniform continuity is used as a structure on f to construct the approximate root c for each ε .

```
Theorem (Taylor, 2010)
Let f : [a,b] \to \mathbb{R} be uniformly continuous such that f(a) \le 0 \le f(b). If f is locally nonzero (for any x < y there exists z \in (x, y) such that f(z) \ne 0), then we can find c \in [a,b] such that f(c) = 0.
```

(日) (문) (문) (문) (문)

Background	Mathematics in Univalent type theory	Summary
000	00000	0
Mathematics in Univalent type theory		

```
Continuity as a structure or a property?
```

```
Theorem (Bishop, 1967)
```

Let $f:[a,b] \to \mathbb{R}$ be uniformly continuous such that $f(a) \leq 0 \leq f(b)$. For any $\varepsilon > 0$ we can find $c \in [a,b]$ such that $|f(c)| < \varepsilon$.

In its proof, uniform continuity is used as a structure on f to construct the approximate root c for each ε .

Theorem (Taylor, 2010) Let $f : [a,b] \to \mathbb{R}$ be uniformly continuous such that $f(a) \le 0 \le f(b)$. If f is locally nonzero (for any x < y there exists $z \in (x, y)$ such that $f(z) \ne 0$), then we can find $c \in [a,b]$ such that f(c) = 0.

Here the root c is constructed using the local-nonzero structure on f, and uniform continuity is used only as a property of f to prove f(c) = 0.

Background	Mathematics in Univalent type theory	Summary
000	00000	0
Mathematics in Univalent type theory		

```
Continuity as a structure or a property?
```

```
Theorem (Bishop, 1967)
```

Let $f:[a,b] \to \mathbb{R}$ be uniformly continuous such that $f(a) \le 0 \le f(b)$. For any $\varepsilon > 0$ we can find $c \in [a,b]$ such that $|f(c)| < \varepsilon$.

In its proof, uniform continuity is used as a structure on f to construct the approximate root c for each $\varepsilon.$

Theorem (Taylor, 2010) Let $f : [a,b] \to \mathbb{R}$ be uniformly continuous such that $f(a) \le 0 \le f(b)$. If f is locally nonzero (for any x < y there exists $z \in (x, y)$ such that $f(z) \ne 0$), then we can find $c \in [a,b]$ such that f(c) = 0.

Here the root c is constructed using the local-nonzero structure on f, and uniform continuity is used only as a property of f to prove f(c) = 0.

So far it seems to be an art to decide if a particular mathematical statement should be formulated as giving structure or as a proposition.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Background	Mathematics in Univalent type theory	Summary
000	0000●	O
Mathematics in Univalent type theory		

To distinguish principles of structures from those of properties (univalent reverse math?)

Background	Mathematics in Univalent type theory	Summary
000	0000●	O
Mathematics in Univalent type theory		_

To distinguish principles of structures from those of properties (univalent reverse math?)

Given $B: 2^* \rightarrow \mathsf{Prop}$ where Prop is the universe of propositions, define

- $\blacktriangleright \ \operatorname{decidable}(B) :\equiv \Pi(u : 2^*) . B(u) + \neg B(u)$
- $\mathsf{bar}(B) :\equiv \forall (\alpha : 2^{\mathbb{N}}) . \exists (n : \mathbb{N}) . B(\bar{\alpha}(n))$
- $\blacktriangleright \ \operatorname{bar}_{\Sigma}(B) :\equiv \Pi(\alpha : 2^{\mathbb{N}}) . \Sigma(n : \mathbb{N}) . B(\bar{\alpha}(n))$
- $\mathsf{uBar}(B) :\equiv \cdots$, $\mathsf{uBar}_{\Sigma}(B) :\equiv \cdots$
- ► FAN := $\forall (B: 2^* \rightarrow \mathsf{Prop})$. (decidable $(B) \rightarrow \mathsf{bar}(B) \rightarrow \mathsf{uBar}(B)$)
- ► $\mathsf{FAN}_{\Sigma} :\equiv \Pi(B : 2^* \to \mathsf{Prop}). (\mathsf{decidable}(B) \to \mathsf{bar}_{\Sigma}(B) \to \mathsf{uBar}_{\Sigma}(B))$
- $\blacktriangleright \quad \mathsf{Cont} :\equiv \cdots, \ \mathsf{Cont}_{\Sigma} :\equiv \cdots, \ \mathsf{UC} :\equiv \cdots, \ \mathsf{UC}_{\Sigma} :\equiv \cdots, \ \mathsf{MUC} :\equiv \cdots, \ \mathsf{MUC}_{\Sigma} :\equiv \cdots$

Background	Mathematics in Univalent type theory	Summary
000	00000	O
Mathematics in Univalent type theory		

To distinguish principles of structures from those of properties (univalent reverse math?)

Given $B: 2^* \rightarrow \mathsf{Prop}$ where Prop is the universe of propositions, define

- $\blacktriangleright \ \operatorname{decidable}(B) :\equiv \Pi(u : 2^*) . B(u) + \neg B(u)$
- $\operatorname{bar}(B) :\equiv \forall (\alpha : 2^{\mathbb{N}}) . \exists (n : \mathbb{N}) . B(\bar{\alpha}(n))$
- $\blacktriangleright \ \operatorname{bar}_{\Sigma}(B) :\equiv \Pi(\alpha : 2^{\mathbb{N}}) . \Sigma(n : \mathbb{N}) . B(\bar{\alpha}(n))$
- $\mathsf{uBar}(B) :\equiv \cdots$, $\mathsf{uBar}_{\Sigma}(B) :\equiv \cdots$
- ► FAN := $\forall (B: 2^* \rightarrow \mathsf{Prop})$. (decidable $(B) \rightarrow \mathsf{bar}(B) \rightarrow \mathsf{uBar}(B)$)
- ► $\mathsf{FAN}_{\Sigma} :\equiv \Pi(B : 2^* \to \mathsf{Prop}). (\mathsf{decidable}(B) \to \mathsf{bar}_{\Sigma}(B) \to \mathsf{uBar}_{\Sigma}(B))$
- $\blacktriangleright \ \ \mathsf{Cont}:\equiv \cdots, \ \mathsf{Cont}_{\Sigma}:\equiv \cdots, \ \mathsf{UC}:\equiv \cdots, \ \mathsf{UC}_{\Sigma}:\equiv \cdots, \ \mathsf{MUC}:\equiv \cdots, \ \mathsf{MUC}_{\Sigma}:\equiv \cdots$

Theorem (in e.g. BISH).

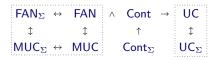
Background	Mathematics in Univalent type theory	Summary
000	00000	O
Mathematics in Univalent type theory		

To distinguish principles of structures from those of properties (univalent reverse math?)

Given $B: 2^* \rightarrow \text{Prop}$ where Prop is the universe of propositions, define

- $\blacktriangleright \ \operatorname{decidable}(B) :\equiv \Pi(u : 2^*) . B(u) + \neg B(u)$
- $\operatorname{bar}(B) :\equiv \forall (\alpha : 2^{\mathbb{N}}) . \exists (n : \mathbb{N}) . B(\bar{\alpha}(n))$
- $\blacktriangleright \ \operatorname{bar}_{\Sigma}(B) :\equiv \Pi(\alpha : 2^{\mathbb{N}}) . \Sigma(n : \mathbb{N}) . B(\bar{\alpha}(n))$
- $\mathsf{uBar}(B) :\equiv \cdots$, $\mathsf{uBar}_{\Sigma}(B) :\equiv \cdots$
- ► FAN := $\forall (B: 2^* \rightarrow \mathsf{Prop})$. (decidable $(B) \rightarrow \mathsf{bar}(B) \rightarrow \mathsf{uBar}(B)$)
- ► $\mathsf{FAN}_{\Sigma} :\equiv \Pi(B : 2^* \to \mathsf{Prop}). (\mathsf{decidable}(B) \to \mathsf{bar}_{\Sigma}(B) \to \mathsf{uBar}_{\Sigma}(B))$
- $\blacktriangleright \ \ \mathsf{Cont}:\equiv \cdots, \ \mathsf{Cont}_{\Sigma}:\equiv \cdots, \ \mathsf{UC}:\equiv \cdots, \ \mathsf{UC}_{\Sigma}:\equiv \cdots, \ \mathsf{MUC}:\equiv \cdots, \ \mathsf{MUC}_{\Sigma}:\equiv \cdots$

Theorem (in MLTT $+ \| - \|$).



Background 000	Mathematics in Univalent type theory 00000	Summary
Summary		

Summary and ...

Univalent type theory seems a good approach to constructive mathematics, because

- it is constructive, but also compatible with classical and intuitionistic mathematics,
- the stratification of types (e.g. propositions and sets) provides a flexible and informative way to formulate mathematical statements, and
- ► its implementations such as cubical Agda allow us to verify and execute proofs and constructions.

A constructive proof of the above claim is to do actual mathematics in UTT.

Background	Mathematics in Univalent type theory	Summary
000	00000	●
Summary		

Summary and ...

Univalent type theory seems a good approach to constructive mathematics, because

- it is constructive, but also compatible with classical and intuitionistic mathematics,
- the stratification of types (e.g. propositions and sets) provides a flexible and informative way to formulate mathematical statements, and
- ► its implementations such as cubical Agda allow us to verify and execute proofs and constructions.

A constructive proof of the above claim is to do actual mathematics in UTT.

Thank you!

And, comments, remarks, suggestions ..., please!!!

3

《口》 《卽》 《臣》 《臣》