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The framework

Bishop-style constructive mathematics (BISH):

mathematics with intuitionistic logic

and some appropriate set- or type-theoretic foundation such as

— the CST of Myhill, Aczel, and Rathjen;

— the Constructive Morse Set Theory of Bridges & Alps;

— Martin-Löf type theory.



We also accept dependent choice,

If S is a subset of A × A, and for each x 2 A there exists
y 2 A such that (x, y) 2 S, then for each a 2 A there exists
a sequence (an)n>1 such that a1 = a and (an, an+1) 2 S
for each n,



We also accept dependent choice,

If S is a subset of A × A, and for each x 2 A there exists
y 2 A such that (x, y) 2 S, then for each a 2 A there exists
a sequence (an)n>1 such that a1 = a and (an, an+1) 2 S
for each n,

and hence countable choice,

If X is an inhabited set, S is a subset of N+×X, and for each
positive integer n there exists x 2 X such that (n, x) 2 S,
then there is a function f : N+ ! X such that (n, f(n)) 2 S
for each n 2 N+.



The aim

To present some of Ishihara’s fundamental contributions to Bishop-style
constructive analysis, and their consequences.



Part I

Ishihara’s Tricks and BD-N



Our first results together

A linear mapping T : X ! Y between normed spaces is well behaved
if for each x 2 X,

8y 2 ker T (x 6= y)) Tx 6= 0.

where a 6= 0 means kak > 0.

Fact: If every bounded linear mapping between normed spaces is well
behaved, then we can prove Markov’s Principle (MP) in the form

8x 2 R(¬(x = 0)! |x| > 0).

To see this, consider T : x ax on R, where ¬(a = 0): ker T = {0},
1 6= 0, and T1 = a.



Theorem 1 A linear mapping T of a normed space X onto a Banach
space Y is well behaved.

Sketch proof. Consider x 2 X such that x 6= y for each y 2 ker T .
Construct a binary sequence (λn) such that

λn = 1! kTxk < 1/n2,
λn = 0) kTxk > 1/(n+ 1)2.

WLOG λ1 = 1.

If λn = 1, set tn = 1/n; if λn+1 = 1 − λn, set tk = 1/n for all
k ≥ n.

Then (tn) is a Cauchy sequence and therefore has a limit t in R.

OTOH,
P
λnTx converges to a sum z in Y , by comparison with

P
1/n2. Let y = x− tz.



Show that Ty = 0 (details omitted). Then

tz = x− y 6= 0,

so t > 0 and kzk > 0.

Pick N such that for all n ≥ N , tn > N−1 and therefore tn kzk >
N−1 kzk.

If λN+1 = 1, then

tN+1 kzk = (N + 1)−1 kzk < N−1 kzk

–absurd. Thus λN+1 = 0 and kTxk > 1/(N + 1)2. #



A subset S of a metric space (X, ρ) is located if

ρ(x, S) = inf{ρ(x, y) : y 2 S}

exists for each x 2 X.



A subset S of a metric space (X, ρ) is located if

ρ(x, S) = inf{ρ(x, y) : y 2 S}

exists for each x 2 X.

Theorem 2 Let T be a linear mapping of a Banach space X into a
normed space Y . Let B be a subset of graph(T ) that is closed and
located in X×Y , and let (x, y) 2 X×Y be such that y 6= Tx. Then
ρ((x, y), B) > 0.



A mapping f : X ! Y between metric spaces is strongly exten-
sional if f(x) 6= f(x0)–that is, ρ(f(x), f(x0)) > 0–implies that
x 6= x0.

Corollary A linear mapping of a Banach space into a normed space is
strongly extensional.



A mapping f : X ! Y between metric spaces is strongly exten-
sional if f(x) 6= f(x0)–that is, ρ(f(x), f(x0)) > 0–implies that
x 6= x0.

Corollary A linear mapping of a Banach space into a normed space is
strongly extensional.

Note: For a linear mapping T , strong extensionality is equivalent to

(Tx 6= 0) 8z 2 ker T (x 6= z)).

So the Corollary is a kind of dual to Theorem 1.



Ishihara’s Tricks

Continuity and Nondiscontinuity in Constructive Mathematics, JSL 56(4),
1991.

Ishihara’s first trick Let f be a strongly extensional mapping of a com-
plete metric space X into a metric space Y , and let (xn) be a sequence
in X converging to a limit x. Then for all positive a, b with a < b,
either ρ(f(xn), f(x)) > a for some n, or else ρ(f(xn), f(x)) < b for
all n.



Ishihara’s Tricks

Continuity and Nondiscontinuity in Constructive Mathematics, JSL 56(4),
1991.

Ishihara’s first trick: Let f be a strongly extensional mapping
of a complete metric space X into a metric space Y , and let (xn)
be a sequence in X converging to a limit x. Then for all positive
a, b with a < b, either ρ(f(xn), f(x)) > a for some n, or else
ρ(f(xn), f(x)) < b for all n.

Ishihara’s second trick: Let f be a strongly extensional mapping
of a complete metric space X into a metric space Y and let (xn) be
a sequence in X converging to a limit x. Then for all positive a, b
with a < b, either ρ(f(xn), f(x)) > a for infinitely many n, or else
ρ(f(xn), f(x)) < b for all su¢ciently large n.



A mapping f : X ! Y between metric spaces is

• sequentially continuous at x 2 X if xn ! x implies that
f(xn)! f(x);

• sequentially nondiscontinuous at x 2 X if xn ! x and ρ(f(xn), f(x)) ≥
δ for all n together imply that δ ≤ 0.

Sequentially continuous, and sequentially nondiscontinuous, on X have
the obvious meanings.



A mapping f : X ! Y between metric spaces is

• sequentially continuous at x 2 X if xn ! x implies that
f(xn)! f(x);

• sequentially nondiscontinuous at x 2 X if xn ! x and ρ(f(xn), f(x)) ≥
δ for all n together imply that δ ≤ 0.

Sequentially continuous, and sequentially nondiscontinuous, on X have
the obvious meanings.

Theorem 3 A mapping of a complete metric space X into a metric
space Y is sequentially continuous if and only if it is both sequentially
nondiscontinuous and strongly extensional.



A real number a is said to be pseudopositive if

8yx 2 R(¬¬(0 < x) _ ¬¬(x < a)).

TheWeak Markov Principle (WMP) states that every pseudopositive
real number is positive, and is a consequence of MP.

Theorem 4 The following are equivalent.

1. Every mapping of a complete metric space into a metric space is
strongly extensional.

2. Every sequentially nondiscontinuous mapping of a complete metric
space into a metric space is sequentially continuous.

3. WMP.



It is now simple to prove a form of Kreisel-Lacombe-Schoenfield-
Tseitin Theorem:

Theorem 5 Under the Church-Markov-Turing Thesis, the following
are equivalent:

1. Every mapping of a complete metric space into a metric space is
sequentially continuous.

2. WMP.

The original KLST theorem deletes ‘sequentially’ from (1) and ‘W’ from
(2).



Recall the essentially nonconstructive limited principle of omniscience
(LPO):

8a 2 2N(8n(an = 0) _ 9n(an = 1))

Ishihara’s third trick: Let f be a strongly extensional mapping of a
complete metric space X into a metric space Y , let (xn) be a sequence
in X converging to a limit x, and let a > 0. Then

8n9k ≥ n(ρ(f(xn), f(x)) > a)) LPO).

This trick was introduced in

A constructive version of Banach’s inverse mapping theorem, NZJM 23,
71—75, 1994.



Consider the following not uncommon situation.

Given a strongly extensional mapping f of a complete metric space X
into a metric space Y, a sequence (xn) in X converging to a limit x,
and a positive ", we want to prove that ρ(f(xn), f(x)) < " for all
su¢ciently large n.

According to Ishihara’s second trick, either we have the desired conclu-
sion, or else ρ(f(xn), f(x)) > "/2 for all su¢ciently large n.

In the latter event, according to Ishihara’s third trick, we can derive
LPO.



Consider the following not uncommon situation.

Given a strongly extensional mapping f of a complete metric space X
into a metric space Y, a sequence (xn) in X converging to a limit x,
and a positive ", we want to prove that ρ(f(xn), f(x)) < " for all
su¢ciently large n.

According to Ishihara’s second trick, either we have the desired conclu-
sion, or else ρ(f(xn), f(x)) > "/2 for all su¢ciently large n.

In the latter event, according to Ishihara’s third trick, we can derive
LPO.

In many instances, we can prove that

LPO ) ¬8n9k ≥ n(ρ(f(xn), f(x)) > a),

thereby ruling out the undesired alternative in Ishihara’s second trick.



The first example of this trick was in Ishihara’s proof of the constructive
Banach inverse mapping theorem:

Theorem 6 Let T be a one-one, sequentially continuous linear map-
ping of a separable Banach space onto a Banach space. Then T−1 is
sequentially continuous.

We shall discuss shortly another remarkable insight of Ishihara’s, which
will explain why we cannot delete ‘sequentially’ from the conclusion of
Theorem 6 even when we delete it from the premisses. Before doing so,
we remark Hannes Diener’s interesting extension of Ishihara’s tricks.



Let X be a metric space. For each sequence x ≡ (xn) in X converging
to x1 2 X, and each increasing binary sequence λ ≡ (λn), Diener
defines a sequence λ~ x by

(λ~ x)n =

8
><

>:

xm if λn = 1 and λm = 1− λm−1

x1 if λn = 0.

Then λ~x is a Cauchy sequence. We say thatX is complete enough if
for every such x, x1, and λ, the sequence λ~ x converges in X.



Fact 1: Under LPO, every metric space is complete enough.



Fact 1: Under LPO, every metric space is complete enough.

Fact 2: Every complete metric space is complete enough.



Fact 1: Under LPO, every metric space is complete enough.

Fact 2: Every complete metric space is complete enough.

Fact 3: The space of all permutations of N is a complete enough, but
not complete, separable subspace of Baire space.
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not complete, separable subspace of Baire space.

Fact 4: Ishihara’s three tricks hold with ‘complete’ replaced by ‘com-
plete enough’.



Fact 1: Under LPO, every metric space is complete enough.

Fact 2: Every complete metric space is complete enough.

Fact 3: The space of all permutations of N is a complete enough, but
not complete, separable subspace of Baire space.

Fact 4: Ishihara’s three ricks hold with ‘complete’ replaced by ‘com-
plete enough’.

Application: A proof, under a special extra-Bishop assumption, of the
Riemann permutation theorem: if every rearrangement of a series of
real numbers converges, then the series is absolutely convergent.

It is to that extra-Bishop condition that we now turn.



Pseudoboundedness and BD-N

Another seminal paper of Ishihara’s:

Continuity properties in constructive mathematics, JSL 57(2),
1992, 557—565.

A subset A of N is pseudobounded if limn!1
an

n
= 0 for every

sequence (an) in A.



Pseudoboundedness and BD-N

Another seminal paper of Ishihara’s:

Continuity properties in constructive mathematics, JSL 57(2),
1992, 557—565.

A subset A of N is pseudobounded if limn!1
an

n
= 0 for every

sequence (an) in A.

A principle of countable boundedness,

BD-N : Every inhabited, countable, pseudobounded subset
of N is bounded.



BD-N is derivable using the law of excluded middle. Ishihara showed
that BD-N is derivable under the Church-Markov-Turing thesis and
MP. It is also derivable using Brouwer’s continuity principles, and so
holds intuitionistically. But, as shown first by Lietz,
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BD-N is derivable using the law of excluded middle. Ishihara showed
that BD-N is derivable under the Church-Markov-Turing thesis and
MP. It is also derivable using Brouwer’s continuity principles, and so
holds intuitionistically. But, as shown first by Lietz,

BD-N cannot be derived in unadulterated Bishop’s construc-
tive mathematics.

Thus a theorem of the type

BISH ` (P ) BD-N)

proves the impossibility of ever finding a proof of

BISH ` P



Ishihara’s links between pseudoboundedness and sequential continuity.

Ishihara’s link 1 Let A be an inhabited, pseudobounded subset of
N. Then there exist a complete subset X of R and a sequentially
continuous mapping f : X ! {0, 1} such that

0 2 X ^ f(0) = 0 ^ 8m(m 2 A! 2−m 2 X ^ f(2−m) = 1).

If also A is countable, then X is separable.



Ishihara’s links between pseudoboundedness and sequential continuity.

Ishihara’s link 1 Let A be an inhabited, pseudobounded subset of
N. Then there exist a complete subset X of R and a sequentially
continuous mapping f : X ! {0, 1} such that

0 2 X ^ f(0) = 0 ^ 8m(m 2 A! 2−m 2 X ^ f(2−m) = 1).

If also A is countable, then X is separable.

Ishihara’s link 2 Let f be a sequentially continuous mapping of a
metric space X into a metric space Y . Then for each x 2 X and
" > 0, there exists an inhabited, pseudobounded subset A of N such
that

8m > 0(9x0 2 X(ρ(x, x0) < m−1^ρ(f(x), f(x0)) > ")) m 2 A).

If also X is separable, then A is countable.



Theorem 8. The following are equivalent (over BISH).

(i) Every sequentially continuous mapping of a separable metric space
into a metric space is continuous.

(ii) Every sequentially continuous mapping of a complete, separable
metric space into a metric space is continuous.

(iii) BD-N.



Proof.

(i) ) (ii): Trivial.



Proof.

(i) ) (ii): Trivial.

(ii) ) (iii). Let A ⊂ N be inhabited, countable, pseudobounded.
By Ishihara’s Link 1, there exist a complete, separable X ⊂ R and a
sequentially continuous f : X ! {0, 1} such that

0 2 X ^ f(0) = 0 ^ 8m(m 2 A! 2−m 2 X ^ f(2−m) = 1).

Assuming (ii), we can find N 2 N such that if x 2 X and |x| < 2−N ,
then |f(x)| < 1.

If m 2 A and m ≥ N , then 2−m 2 X and
∣∣∣2−m

∣∣∣ < 2−N , so
1 = f(2−m) < 1, a contradiction. Hence m ≤ N for all m 2 A.



Proof.

(i) ) (ii): Trivial.

(ii) ) (iii). Let A ⊂ N be inhabited, countable, pseudobounded.
By Ishihara’s Link 1, there exist a complete, separable X ⊂ R and a
sequentially continuous f : X ! {0, 1} such that

0 2 X ^ f(0) = 0 ^ 8m(m 2 A! 2−m 2 X ^ f(2−m) = 1).

Assuming (ii), we can find N 2 N such that if x 2 X and |x| < 2−N ,
then |f(x)| < 1.

If m 2 A and m ≥ N , then 2−m 2 X and
∣∣∣2−m

∣∣∣ < 2−N , so
1 = f(2−m) < 1, a contradiction. Hence m ≤ N for all m 2 A.

(iii) ) (i). Use Ishihara’s Link 2. #



A few examples of statements equivalent to BD—N over BISH (and
therefore derivable classically, intuitionistically, and recursively).

1. Every one-one bounded linear mapping of a separable Banach space
onto a Banach space has continuous (bounded) inverse.

2. Every sequence of bounded linear mappings from a separable Ba-
nach space into a normed space is equicontinuous.

3. The locally convex space D(R) of all infinitely di§erentiable func-
tions f : R! R with compact support is sequentially complete.



A mapping f : X ! Y between metric spaces is uniformly sequen-
tially continuous if for any sequences (xn), (x0n) in X,

ρ(xn, x
0
n)! 0) ρ(f(xn), f(x

0
n)! 0.



A mapping f : X ! Y between metric spaces is uniformly sequen-
tially continuous if for any sequences (xn), (x0n) in X,

ρ(xn, x
0
n)! 0) ρ(f(xn), f(x

0
n)! 0.

4. Every uniformly sequentially continuous mapping of a complete sep-
arable metric space into a metric space is uniformly continuous.

5. Every uniformly sequentially continuous mapping of a complete sep-
arable metric space into a metric space is pointwise continuous.



6. If T is a nonzero bounded linear mapping of a separable Hilbert
space into itself such that T ∗ exists and range(T ) is complete, then
T is an open mapping.

7. Every one-one, selfadjoint, sequentially continuous linear mapping
from a Hilbert space onto itself is bounded.



Part II

Ishihara and Functional
Analysis



Hahn-Banach and separation theorems

A linear functional u on a normed space X is normable, or normed, if

kuk ≡ sup {ku(x) : x 2 X, kxk ≤ 1k}

exists.

A nonzero bounded linear functional on a normed space is normable if
and only if its kernel is located (Bishop).



Hahn-Banach and separation theorems

A linear functional u on a normed space X is normable, or normed, if

kuk ≡ sup {ku(x) : x 2 X, kxk ≤ 1k}

exists.

A nonzero bounded linear functional on a normed space is normable if
and only if its kernel is located (Bishop).

Bishop’s Hahn-Banach theorem:

Let v be a nonzero bounded linear functional on a linear subset
Y of a separable normed space X such that ker v is located
in X. Then for each " > 0 there exists a normable linear
functional u on X such that u(y) = v(y) for all y 2 Y and
kuk < kvk+ ".



H. Ishihara, On the constructive Hahn-Banach theorem, Bull. London.
Math. Soc. 21, 79—81, 1989

Let X be a normed space.

The norm on a X is Gâteaux di§erentiable if

lim
t!0

kx+ tyk − kyk
t

exists for all unit vectors x, y in X.

We say that X is uniformly convex if for each " > 0 there exists δ > 0
such that for all unit vectors x, y 2 X,

∥∥∥12(x+ y)
∥∥∥ ≤ 1− δ whenever

kx− yk > ".



Theorem 7 Let X be a uniformly convex Banach space with Gâteaux
di§erentiable norm, and let v be a nonzero normable linear functional
on a linear subspace Y of X. Then there exists a unique normable
linear functional u on X such that u(y) = v(y) for all y 2 Y and
kuk = kvk.

In the context of a uniformly convex Banach space with Gâteaux dif-
ferentiable norm, Ishihara also removed an ‘"’ from the conclusion of
Bishop’s separation theorem.

These results apply, in particular, to Hilbert spaces.



H. Ishihara, Locating subsets of a Hilbert space, Proc. AMS 129(5),
1385—1390, 2000.

Theorem 8 Let C be an inhabited, bounded convex subset of an inner
product space X. Then C is located if and only if

sup {Re hx, vi : v 2 X}

exists for each x 2 X.



H. Ishihara, Locating subsets of a Hilbert space, Proc. AMS 129(5),
1385—1390, 2000.

Theorem 8 Let C be an inhabited, bounded convex subset of an inner
product space X. Then C is located if and only if

sup {Re hx, vi : v 2 X}

exists for each x 2 X.

Remarkably, when X is a Hilbert space, the ‘bounded’ hypothesis is
unnecessary. Ishihara’s proof of this uses a very ingenious ‘λ’ argument.



In consequence, he proves

Theorem 9 If T is an operator with an adjoint on a Hilbert space,
then the image under T of the unit ball is located.
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Taken with a prior result of Richman, this leads to

Theorem 10 A bounded operator on a Hilbert space has an adjoint
if and only if it maps the unit ball onto a located set.



In consequence, he proves

Theorem 9 If T is an operator with an adjoint on a Hilbert space,
then the image under T of the unit ball is located.

Taken with a prior result of Richman, this leads to

Theorem 10 A bounded operator on a Hilbert space has an adjoint
if and only if it maps the unit ball onto a located set.

Note: The proposition every bounded operator on a Hilbert space has
an adjoint’ implies LPO.



Smoothness, duality, locatedness

A normed space X is

• smooth if its norm is Gâteaux di§erentiable at each nonzero vector;

• uniformly smooth if it is smooth and for each " > 0 there exists
δ > 0 such that

∣∣∣∣∣ux(y)−
kx+ tyk − kyk

t

∣∣∣∣∣ < "

whenever x, y are unit vectors in X and 0 < |t| < δ.

Inner product spaces are uniformly smooth.



In Locating subsets of a normed space (H. Ishihara and L.S. Vî̧tă, Proc.
AMS 131(10), 3231—3239, 2003) the authors extend and generalise
much of Ishihara’s earlier work on locatedness in Hilbert spaces.

Considerable technical complexities lead to and through the proof of the
following results in that paper.

Theorem 11 A separable normed space is uniformly smooth if and
only if it has a uniformly convex dual.



In Locating subsets of a normed space (H. Ishihara and L.S. Vî̧tă, Proc.
AMS 131(10), 3231—3239, 2003) the authors extend and generalise
much of Ishihara’s earlier work on locatedness in Hilbert spaces.

Considerable technical complexities lead to and through the proof of the
following results in that paper.

Theorem 11 A separable normed space is uniformly smooth if and
only if it has a uniformly convex dual.

Theorem 12 Let X be a uniformly convex, uniformly smooth Banach
space over R, and let C be an inhabited, bounded, convex subset of
X. Then C is located if and only if

sup {f(y) : y 2 C}

exists for each normable linear functional f on X.



Our last joint paper

D.S. Bridges, H. Ishihara, and M. McKubre-Jordens, Uniformly convex
Banach spaces are reflexive–constructively, MLQ 59(4—5), 352—356,
2013.

Let X be a normed space, and X∗ the linear space of all bounded linear
functionals on X. In the infinite-dimensional case, the normability of
every element of X∗ implies LPO, so we cannot describe X∗ as a
normed space in the familiar classsical way.



Our last joint paper

D.S. Bridges, H. Ishihara, and M. McKubre-Jordens, Uniformly convex
Banach spaces are reflexive–constructively, MLQ 59(4—5), 352—356,
2013.

Let X be a normed space, and X∗ the linear space of all bounded linear
functionals on X. In the infinite-dimensional case, the normability of
every element of X∗ implies LPO, so we cannot describe X∗ as a
normed space in the familiar classsical way.

It is, however, an example of a quasinormed space, in which there is
a notion of normability that corresponds to the existence of the usual
classical norm. In turn, the linear space X∗∗ of all bounded linear
functionals on X∗ is a quasinormed space.

Classically, the notion of a quasinorm is essentially equivalent to that of
a norm.



A normed space X is reflexive if for each normable element F of its
second dual X∗∗, there exists a (perforce unique) x in X such that
F = bx, where

bx(u) ≡ u(x) (u 2 X∗).

The classical Milman-Pettis theorem says that:

A uniformly convex Banach space is reflexive, and the mapping
x bx is a norm-preserving bijection.



A normed space X is reflexive if for each normable element F of its
second dual X∗∗, there exists a (perforce unique) x in X such that
F = bx, where

bx(u) ≡ u(x) (u 2 X∗).

The classical Milman-Pettis theorem says that:

A uniformly convex Banach space is reflexive, and the mapping
x bx is a norm-preserving bijection.

Our general constructive counterpart applies to complete, pliant, uni-
formly convex quasinormed spaces.

Pliancy is a constructive condition that holds trivially for all normed
spaces in classical mathematics. Constructively, a separable normed
space is pliant, as is a normed space with Gâteaux di§erentiable norm.



A particular corollary of our general theorem is:

Theorem 14 A uniformly convex Banach space is reflexive under either
of these conditions:

(i) it is separable;

(ii) it has Gâteaux di§erentiable norm.

In particular, a Hilbert space is reflexive; but that is essentially a conse-
quence of the Riesz Representation Theorem.
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The foregoing is by no means an exhaustive coverage of Ishihara’s contri-
butions to constructive analysis. Moreover, it makes no explicit mention
of his pioneering work on constructive reverse mathematics, of which his
introduction to, and exploitation of, the principle BD-N is but a begin-
ning. Nor does it deal with his contributions to constructive topology
(formal topology, apartness spaces, function spaces, ...) and other areas.
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Conclusion

The foregoing is by no means an exhaustive coverage of Ishihara’s contri-
butions to constructive analysis. Moreover, it makes no explicit mention
of his pioneering work on constructive reverse mathematics, of which his
introduction to, and exploitation of, the principle BD-N is but a begin-
ning. Nor does it deal with his contributions to constructive topology
(formal topology, apartness spaces, function spaces, ...) and other areas.

What it surely does is present the work of a remarkably insightful, tech-
nically very strong, constructive analyst.

It has been my pleasure and privilege to be a friend of, and to work with
(under?), Hajime over the past 30 years.

May there be many happy returns!

dsb, Kanazawa meeting for Ishihara’s 60th 010318


