Second Workshop on Mathematical Logic and its Applications 8 March 2018 - Kanazawa - Japan

Hilbert's ϵ-operator in categorical logic

Fabio Pasquali
University of Padova

j.w.w.
M.E. Maietti (Univ.of Padova) \& G. Rosolini (Univ.of Genova)

Primary doctrines

\mathcal{C} has finite products. A primary doctrine is a functor

$$
P: \mathcal{C}^{o p} \rightarrow \operatorname{InfSL}
$$

Primary doctrines

\mathcal{C} has finite products. A primary doctrine is a functor

$$
P: \mathcal{C}^{O P} \rightarrow \operatorname{InfSL}
$$

Primary doctrines

\mathcal{C} has finite products. A primary doctrine is a functor

$$
\begin{array}{cc}
P: \mathcal{C}^{o p} & \rightarrow \text { InfSL } \\
X & P(X) \\
f & \\
\downarrow & \uparrow P(f) \\
Y & \\
\hline
\end{array}
$$

Example: contravariant powerset functor

$$
\begin{aligned}
& \mathcal{P}: \text { Set }^{O P} \longrightarrow \operatorname{InfS} \mathcal{L} \\
& \begin{array}{cc}
X & \mathcal{P}(X) \\
f & \uparrow \mathcal{P}(f)=f^{-1} \\
\downarrow & \mathcal{T}(Y) \\
Y &
\end{array}
\end{aligned}
$$

Example: contravariant powerset functor

$$
\begin{array}{cc}
\mathcal{P}: \text { Set }^{o p} & \longrightarrow \operatorname{InfS\mathcal {L}} \\
X & \mathcal{P}(X) \\
f \mid & \uparrow \mathcal{P}(f)=f^{-1} \\
\downarrow & \mathcal{P}(Y)
\end{array}
$$

$\mathcal{P}(A)$ is ordered by \subseteq
Finite meets are \cap

Elementary and existential doctrines

[F.W. Lawvere]

Elementary and existential doctrines

$P: \mathcal{C}^{\circ P} \rightarrow \operatorname{InfS} \mathcal{L}$ is elementary and existential if it has "direct images"

Elementary and existential doctrines

$P: \mathcal{C}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}$ is elementary and existential if it has "direct images":
i.e. for all $f: X \rightarrow A$, there is a covariant 'natural' assignment

$$
\exists_{f}: P(X) \rightarrow P(A)
$$

such that

$$
\frac{\exists_{f}(\alpha) \leq \beta}{\alpha \leq P(f)(\beta)}
$$

Elementary and existential doctrines

$P: \mathcal{C}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}$ is elementary and existential if it has "direct images":
i.e. for all $f: X \rightarrow A$, there is a covariant 'natural' assignment

$$
\exists_{f}: P(X) \rightarrow P(A)
$$

such that

$$
\frac{\exists_{f}(\alpha) \leq \beta}{\alpha \leq P(f)(\beta)}
$$

Equality:

Elementary and existential doctrines

$P: \mathcal{C}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}$ is elementary and existential if it has "direct images":
i.e. for all $f: X \rightarrow A$, there is a covariant 'natural' assignment

$$
\exists_{f}: P(X) \rightarrow P(A)
$$

such that

$$
\frac{\exists_{f}(\alpha) \leq \beta}{\alpha \leq P(f)(\beta)}
$$

Equality: $\left\langle i d_{A}, i d_{A}\right\rangle: A \longrightarrow A \times A$

Elementary and existential doctrines

$P: \mathcal{C}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}$ is elementary and existential if it has "direct images":
i.e. for all $f: X \rightarrow A$, there is a covariant 'natural' assignment

$$
\exists_{f}: P(X) \rightarrow P(A)
$$

such that

$$
\frac{\exists_{f}(\alpha) \leq \beta}{\alpha \leq P(f)(\beta)}
$$

Equality: $\left.\left\langle i d_{A}, i d_{A}\right\rangle: A \longrightarrow A \times A \quad \exists_{\left\langle i d_{A}, i d_{A}\right\rangle}\right\rangle P(A) \longrightarrow P(A \times A)$ $\top \longmapsto \delta_{A}$
[F.W. Lawvere]

Elementary and existential doctrines

$P: \mathcal{C}^{o p} \rightarrow \operatorname{InfSL}$ is elementary and existential if it has "direct images":
i.e. for all $f: X \rightarrow A$, there is a covariant 'natural' assignment

$$
\exists_{f}: P(X) \rightarrow P(A)
$$

such that

$$
\frac{\exists_{f}(\alpha) \leq \beta}{\alpha \leq P(f)(\beta)}
$$

Equality: $\left\langle i d_{A}, i d_{A}\right\rangle: A \longrightarrow A \times A \quad \exists_{\left\langle i d_{A}, i d_{A}\right\rangle}: P(A) \longrightarrow P(A \times A)$ $T \longmapsto \delta_{A}$

When P is P

$$
\delta_{A}=\{(a, b) \in A \times A \mid a=b\}
$$

[F.W. Lawvere]

Triposes

$P: \mathcal{C}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}$ existential and elementary.

Triposes

$P: \mathcal{C}^{O P} \rightarrow \operatorname{InfS} \mathcal{L}$ existential and elementary.

$P \mapsto \mathcal{C}[P]:$ Tripos \rightarrow Topos

Hyland, Johnstone, Pitts. Tripos Theory. Math. Proc. Camb. Phil. Soc. 1980.

Triposes

$P: \mathcal{C}^{O P} \rightarrow \operatorname{InfS} \mathcal{L}$ existential and elementary.

$$
P \mapsto \mathcal{C}[P]: \text { Tripos } \rightarrow \text { Topos }
$$

Hyland, Johnstone, Pitts. Tripos Theory. Math. Proc. Camb. Phil. Soc. 1980.

$$
P \mapsto \mathcal{C}[P]: \mathbf{E E D} \rightarrow \mathbf{X c t}
$$

Pitts. Tripos Theory in retrospect. Math. Structures. Comput. Sci. 2002.

Triposes

$P: \mathcal{C}^{O P} \rightarrow \operatorname{InfSL}$ existential and elementary.

$$
P \mapsto \mathcal{C}[P]: \text { Tripos } \rightarrow \text { Topos }
$$

Hyland, Johnstone, Pitts. Tripos Theory. Math. Proc. Camb. Phil. Soc. 1980.

$$
P \mapsto \mathcal{C}[P]: \mathbf{E E D} \rightarrow \mathbf{X c t}
$$

Pitts. Tripos Theory in retrospect. Math. Structures. Comput. Sci. 2002.

Maietti, Rosolini. Unifying exact completions. Appl. Categ. Structures, 2015.

Triposes

$P: \mathcal{C}^{O P} \rightarrow \operatorname{InfSL}$ existential and elementary.

$$
P \mapsto \mathcal{C}[P]: \text { Tripos } \rightarrow \text { Topos }
$$

Hyland, Johnstone, Pitts. Tripos Theory. Math. Proc. Camb. Phil. Soc. 1980.

$$
P \mapsto \mathcal{C}[P]: \text { EED } \rightarrow \mathbf{X c t}
$$

Pitts. Tripos Theory in retrospect. Math. Structures. Comput. Sci. 2002.

Maietti, Rosolini. Unifying exact completions. Appl. Categ. Structures, 2015.

Comprehension schema and effective quotients

Comprehension schema and effective quotients

$P:$ Set $^{o p} \rightarrow$ InfSL \mathcal{L} is the powerset functor.

Comprehension schema and effective quotients

$P:$ Set $^{o p} \rightarrow$ InfSL \mathcal{L} is the powerset functor.

Comprehension schema: for $\alpha \in \mathscr{P}(A)$

$$
\{\alpha\}:\{a \in A \mid a \in \alpha\} \rightarrow A
$$

Comprehension schema and effective quotients

$\mathcal{P}: \operatorname{Set}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}$ is the powerset functor.

Comprehension schema: for $\alpha \in \mathscr{P}(A)$

$$
\{\alpha\}:\{a \in A \mid a \in \alpha\} \rightarrow A
$$

Effective quotients: for an equivalence relation $\rho \in \mathcal{P}(A \times A)$

$$
a \mapsto[a]: A \rightarrow A / \rho
$$

Comprehension schema and effective quotients

$\mathcal{P}:$ Set $^{o p} \rightarrow \operatorname{InfSL}$ is the powerset functor.

Comprehension schema: for $\alpha \in \mathscr{P}(A)$

$$
\{\alpha\}:\{a \in A \mid a \in \alpha\} \rightarrow A
$$

Effective quotients: for an equivalence relation $\rho \in \mathcal{P}(A \times A)$

$$
a \mapsto[a]: A \rightarrow A / \rho
$$

Abstract characterization in the framework of doctrines.

Completions

$$
P: \mathcal{C}^{o p} \rightarrow \operatorname{InfSL}
$$

Completions

$P: \mathcal{C}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}$
Comprehension completion: the comprehension schema can be freely added to any doctrine.

$$
P_{c}: \mathcal{C}_{c}^{o p} \rightarrow \operatorname{InfS} \mathcal{L}
$$

[Grothendieck's construction of vertical morphisms.]

Completions

$P: \mathcal{C}^{O P} \rightarrow \operatorname{InfS} \mathcal{L}$
Comprehension completion: the comprehension schema can be freely added to any doctrine.

$$
P_{c}: \mathcal{C}_{c}^{o p} \rightarrow \operatorname{InfSL}
$$

[Grothendieck's construction of vertical morphisms.]

Elementary quotient completion: effective quotients can be freely added to any elementary existential doctrine.

$$
\widehat{P}: \mathcal{Q}_{P}^{o p} \rightarrow I n f S \mathcal{L}
$$

[M.E. Maietti and G. Rosolini. Elementary quotient completion. 2013]

Back to triposes

Back to triposes

Tripos
 Topos

Back to triposes

Tripos $\quad P: \mathcal{C}^{o p} \rightarrow \operatorname{InfSL}$
 Topos

Back to triposes

Back to triposes

Back to triposes

Theorem: $\mathcal{Q}_{P_{c}}$ is a topos iff $\widehat{P_{c}}$ satisfies the Rule of Unique Choice.

Rules of Choice

Rules of Choice

Rule of Unique Choice: For every Total and Single valued relation $R \in P(A \times B)$ there is $f: A \rightarrow B$ such that

$$
R=P\left(f \times \operatorname{id}_{B}\right)\left(\delta_{B}\right)
$$

Rules of Choice

Rule of Unique Choice: For every Total and Single valued relation $R \in P(A \times B)$ there is $f: A \rightarrow B$ such that

$$
R=P\left(f \times \operatorname{id}_{B}\right)\left(\delta_{B}\right)
$$

Rule of Choice: For every Total relation $R \in P(A \times B)$ there is $f: A \rightarrow B$ such that

$$
\exists_{\pi_{A}} R=P\left(\left\langle\operatorname{id}_{A}, f\right\rangle\right)(R)
$$

Rules of Choice

Rule of Unique Choice: For every Total and Single valued relation $R \in P(A \times B)$ there is $f: A \rightarrow B$ such that

$$
R=P\left(f \times \operatorname{id}_{B}\right)\left(\delta_{B}\right)
$$

Rule of Choice: For every Total relation $R \in P(A \times B)$ there is $f: A \rightarrow B$ such that

$$
\exists_{\pi_{A}} R=P\left(\left\langle\mathrm{id}_{A}, f\right\rangle\right)(R)
$$

Hilbert's ϵ-operator: P has Hilbert's ϵ-operator if for every $R \in P(A \times B)$ there is $\epsilon_{R}: A \rightarrow B$ such that

$$
\exists_{\pi_{A}} R=P\left(\left\langle\mathrm{id}_{A}, \epsilon_{R}\right\rangle\right)(R)
$$

Characterizations

$P: \mathcal{C}^{\circ P} \rightarrow \operatorname{InfSL}$ is a tripos.
Theorem: \hat{P} satisfies the Rule of Unique Choice if and only if P satisfies the Rule of choice
[Maietti \& Rosolini. Relating quotient completions via categorical logic. 2016]

Characterizations

$P: \mathcal{C}^{O P} \rightarrow \operatorname{InfSL}$ is a tripos.
Theorem: \hat{P} satisfies the Rule of Unique Choice if and only if P satisfies the Rule of choice
[Maietti \& Rosolini. Relating quotient completions via categorical logic. 2016]
Theorem: P_{c} satisfies the Rule of Choice if and only if P has Hilbert's ϵ-operator
[Maietti, Pasquali \& Rosolini. Triposes, exact completions, and Hilbert's -operator. 2017]

Characterizations

$P: \mathcal{C}^{O P} \rightarrow \operatorname{InfSL}$ is a tripos.
Theorem: \hat{P} satisfies the Rule of Unique Choice if and only if P satisfies the Rule of choice
[Maietti \& Rosolini. Relating quotient completions via categorical logic. 2016]
Theorem: P_{c} satisfies the Rule of Choice if and only if P has Hilbert's ϵ-operator
[Maietti, Pasquali \& Rosolini. Triposes, exact completions, and Hilbert's ϵ-operator. 2017]

Corollary: $\mathcal{Q}_{\hat{P}_{c}}$ is a topos if and only if P has Hilbert's ϵ-operator

Examples and future developments

\mathcal{W} is a poset, $\perp \in \mathcal{W}, L=\mathcal{W}^{o p}$ is a well order.

Examples and future developments

\mathcal{W} is a poset, $\perp \in \mathcal{W}, L=\mathcal{W}^{o p}$ is a well order.

$$
\mathcal{L}: \operatorname{Set}_{*}^{o p} \longrightarrow \operatorname{InfS} \mathcal{L}
$$

Examples and future developments

\mathcal{W} is a poset, $\perp \in \mathcal{W}, L=\mathcal{W}^{o p}$ is a well order.

$$
\mathcal{L}: \operatorname{Set}_{*}^{o p} \longrightarrow I n f S \mathcal{L}
$$

L has Hilbert's ϵ-operator. $\mathcal{Q}_{\hat{\mathcal{L}}_{c}}$ is the topos of sheaves over L.

Examples and future developments

\mathcal{W} is a poset, $\perp \in \mathcal{W}, L=\mathcal{W}^{o p}$ is a well order.

$$
\mathcal{L}: \operatorname{Set}_{*}^{o p} \longrightarrow I n f S \mathcal{L}
$$

L has Hilbert's ϵ-operator. $\mathcal{Q}_{\hat{\mathcal{L}_{c}}}$ is the topos of sheaves over L.
\mathcal{L} is not classical, but it satisfies the weak Law of Excluded Middle.

Examples and future developments

\mathcal{W} is a poset, $\perp \in \mathcal{W}, L=\mathcal{W}^{o p}$ is a well order.

$$
\mathcal{L}: \operatorname{Set}_{*}^{o p} \longrightarrow I n f S \mathcal{L}
$$

L has Hilbert's ϵ-operator. $\mathcal{Q}_{\hat{\mathcal{L}_{c}}}$ is the topos of sheaves over L.
\mathcal{L} is not classical, but it satisfies the weak Law of Excluded Middle.

The doctrine interprets HA.

Thank you

References

J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts.

Tripos Theory.
Math. Proc. Camb. Phil. Soc. 1980.

F. W. Lawvere.

Adjointness in foundations.
Dialectica. 1969.
F. W. Lawvere.

Equality in hyperdoctrines and comprehension schema as an adjoint functor.
A. Heller, editor, Proc. New York Symposium on Application of Categorical Algebra. 1970.
M.E. Maietti, F. Pasquali. and G. Rosolini.

Triposes, exact completions, and Hilbert's ϵ-operator.
Tbilisi Mathematical Journal. 2017.
M.E. Maietti. and G. Rosolini.

Relating quotient completions via categorical logic.
Dieter Probst and Peter Schuster (eds.), "Concepts of Proof in Mathematics, Philosophy, and Computer Science". De Gruyter. 2016.
M.E. Maietti. and G. Rosolini.

Unifying exact completions.
Applied Categorical Structures. 2013.
M.E. Maietti. and G. Rosolini.

Elementary quotient completion.
Theory and Applications of Categories. 2013.
F. Pasquali.

Hilbert's ϵ-operator in doctrines.
IFCoLog Journal of Logics and their Applications. 2017.

