Computational content of the fan theorem for coconvex bars

Helmut Schwichtenberg

Mathematisches Institut, LMU, München
Second Workshop on Mathematical Logic and its Applications, Kanazawa, March 5-9, 2018

Computational content of proofs

- Here: Proofs on sequences (i.e., of type $\mathbb{N} \rightarrow \iota, \operatorname{lev}(\iota)=0$)

What is special for sequences $f: N \rightarrow \iota$?

- Can be seen as streams, infinite type-0 objects.

Example: streams of booleans, $\mathbb{S}(\mathbb{B})$, with the single constructor

$$
\mathrm{C}: \mathbb{B} \rightarrow \mathbb{S}(\mathbb{B}) \rightarrow \mathbb{S}(\mathbb{B})
$$

Why consider streams?

- Reals naturally represented by streams of signed digits $-1,0,1$
- Supports access from the front ("most significant digit")
- Reduction of type levels

Computational content of proofs

- Here: Proofs on sequences (i.e., of type $\mathbb{N} \rightarrow \iota, \operatorname{lev}(\iota)=0)$

What is special for sequences $f: \mathbb{N} \rightarrow \iota$?

- Can be seen as streams, infinite type-0 objects. Example: streams of booleans, $\mathbb{S}(\mathbb{B})$, with the single constructor

$$
\mathrm{C}: \mathbb{B} \rightarrow \mathbb{S}(\mathbb{B}) \rightarrow \mathbb{S}(\mathbb{B})
$$

Why consider streams?

- Reals naturally represented by streams of signed digits $-1,0,1$
- Supports access from the front ("most significant digit")
- Reduction of type levels

Computational content of proofs

- Here: Proofs on sequences (i.e., of type $\mathbb{N} \rightarrow \iota, \operatorname{lev}(\iota)=0$)

What is special for sequences $f: \mathbb{N} \rightarrow \iota$?

- Can be seen as streams, infinite type-0 objects.

Example: streams of booleans, $\mathbb{S}(\mathbb{B})$, with the single constructor

$$
\mathrm{C}: \mathbb{B} \rightarrow \mathbb{S}(\mathbb{B}) \rightarrow \mathbb{S}(\mathbb{B})
$$

Why consider streams?

- Reals naturally represented by streams of signed digits $-1,0,1$
- Supports access from the front ("most significant digit")
- Reduction of type levels

Computational content of proofs

- Here: Proofs on sequences (i.e., of type $\mathbb{N} \rightarrow \iota, \operatorname{lev}(\iota)=0$)

What is special for sequences $f: \mathbb{N} \rightarrow \iota$?

- Can be seen as streams, infinite type-0 objects.

Example: streams of booleans, $\mathbb{S}(\mathbb{B})$, with the single constructor

$$
C: \mathbb{B} \rightarrow \mathbb{S}(\mathbb{B}) \rightarrow \mathbb{S}(\mathbb{B})
$$

Why consider streams?

- Reals naturally represented by streams of signed digits $-1,0,1$
- Supports access from the front ("most significant digit")
- Reduction of type levels

Overview

- The model \mathcal{C} of partial continuous functionals (Scott, Ershov)
- TCF (theory of computable functionals)
- Realizability, soundness theorem
- Computational content of the fan theorem for coconvex bars

Computable functionals

General view: computations are finite.
Arguments not only numbers and functions, but also functionals of any finite type.

- Principle of finite support. If $\mathcal{H}(\Phi)$ is defined with value n, then there is a finite approximation Φ_{0} of Φ such that $\mathcal{H}\left(\Phi_{0}\right)$ is defined with value n.
- Monotonicity principle. If $\mathcal{H}(\Phi)$ is defined with value n and Φ^{\prime} extends Φ, then also $\mathcal{H}\left(\Phi^{\prime}\right)$ is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ_{1}^{0}-definable).

Computable functionals

General view: computations are finite.
Arguments not only numbers and functions, but also functionals of any finite type.

- Principle of finite support. If $\mathcal{H}(\Phi)$ is defined with value n, then there is a finite approximation Φ_{0} of Φ such that $\mathcal{H}\left(\Phi_{0}\right)$ is defined with value n.
- Monotonicity principle. If $\mathcal{H}(\Phi)$ is defined with value n and ϕ^{\prime} extends Φ, then also $\mathcal{H}\left(\Phi^{\prime}\right)$ is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ_{1}^{0}-definable).

Computable functionals

General view: computations are finite.
Arguments not only numbers and functions, but also functionals of any finite type.

- Principle of finite support. If $\mathcal{H}(\Phi)$ is defined with value n,
then there is a finite approximation Φ_{0} of Φ such that $\mathcal{H}\left(\Phi_{0}\right)$
is defined with value n.
- Monotonicity principle. If $\mathcal{H}(\Phi)$ is defined with value n and Φ^{\prime} extends Φ, then also $\mathcal{H}\left(\Phi^{\prime}\right)$ is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ_{1}^{0}-definable).

Computable functionals

General view: computations are finite.
Arguments not only numbers and functions, but also functionals of any finite type.

- Principle of finite support. If $\mathcal{H}(\Phi)$ is defined with value n, then there is a finite approximation Φ_{0} of Φ such that $\mathcal{H}\left(\Phi_{0}\right)$ is defined with value n.
- Monotonicity principle. If $\mathcal{H}(\Phi)$ is defined with value n and Φ^{\prime} extends Φ, then also $\mathcal{H}\left(\Phi^{\prime}\right)$ is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ_{1}^{0}-definable).

Computable functionals

General view: computations are finite.
Arguments not only numbers and functions, but also functionals of any finite type.

- Principle of finite support. If $\mathcal{H}(\Phi)$ is defined with value n, then there is a finite approximation Φ_{0} of Φ such that $\mathcal{H}\left(\Phi_{0}\right)$ is defined with value n.
- Monotonicity principle. If $\mathcal{H}(\Phi)$ is defined with value n and Φ^{\prime} extends Φ, then also $\mathcal{H}\left(\Phi^{\prime}\right)$ is defined with value n.
finite approximations is (primitive) recursively enumerable (or equivalently, Σ_{1}^{0}-definable).

Computable functionals

General view: computations are finite.
Arguments not only numbers and functions, but also functionals of any finite type.

- Principle of finite support. If $\mathcal{H}(\Phi)$ is defined with value n, then there is a finite approximation Φ_{0} of Φ such that $\mathcal{H}\left(\Phi_{0}\right)$ is defined with value n.
- Monotonicity principle. If $\mathcal{H}(\Phi)$ is defined with value n and Φ^{\prime} extends Φ, then also $\mathcal{H}\left(\Phi^{\prime}\right)$ is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ_{1}^{0}-definable).

Information system $\mathbf{A}=(A$, Con,$\vdash)$:

- A countable set of "tokens",
- Con set of finite subsets of A,
- $\vdash($ "entails" $)$ subset of $\mathrm{Con} \times A$.
such that

$$
\begin{aligned}
& U \subseteq V \in \text { Con } \rightarrow U \in \text { Con, } \\
& \{a\} \in \text { Con, } \\
& U \vdash a \rightarrow U \cup\{a\} \in \text { Con, } \\
& a \in U \in \operatorname{Con} \rightarrow U \vdash a, \\
& U, V \in \text { Con } \rightarrow \forall a \in V(U \vdash a) \rightarrow V \vdash b \rightarrow U \vdash b .
\end{aligned}
$$

$x \subseteq A$ is an ideal if

$$
\begin{aligned}
& U \subseteq x \rightarrow U \in \operatorname{Con} \quad(x \text { is consistent }) \\
& x \supseteq U \vdash a \rightarrow a \in x \quad(x \text { is deductively closed }) .
\end{aligned}
$$

Information system $\mathbf{A}=(A$, Con,$\vdash)$:

- A countable set of "tokens",
- Con set of finite subsets of A,
- $\vdash($ "entails" $)$ subset of $\mathrm{Con} \times A$.

$x \subseteq A$ is an ideal if

$$
\begin{aligned}
& U \subseteq x \rightarrow U \in \operatorname{Con} \quad(x \text { is consistent }) \\
& x \supseteq U \vdash a \rightarrow a \in x \quad(x \text { is deductively closed }) .
\end{aligned}
$$

Information system $\mathbf{A}=(A$, Con,$\vdash)$:

- A countable set of "tokens",
- Con set of finite subsets of A,
- \vdash ("entails") subset of $\operatorname{Con} \times A$.
such that

$$
\begin{aligned}
& U \subseteq V \in \operatorname{Con} \rightarrow U \in \text { Con, } \\
& \{a\} \in \text { Con, } \\
& U \vdash a \rightarrow U \cup\{a\} \in \text { Con, } \\
& a \in U \in \operatorname{Con} \rightarrow U \vdash a, \\
& U, V \in \operatorname{Con} \rightarrow \forall_{a \in V}(U \vdash a) \rightarrow V \vdash b \rightarrow U \vdash b .
\end{aligned}
$$

$x \subseteq A$ is an ideal if
$U \subseteq x \rightarrow U \in \operatorname{Con} \quad(x$ is consistent),
$x \supseteq U \vdash a \rightarrow a \in x \quad(x$ is deductively closed $)$.

Information system $\mathbf{A}=(A$, Con,$\vdash)$:

- A countable set of "tokens",
- Con set of finite subsets of A,
- \vdash ("entails") subset of $\operatorname{Con} \times A$.
such that

$$
\begin{aligned}
& U \subseteq V \in \operatorname{Con} \rightarrow U \in \text { Con, } \\
& \{a\} \in \text { Con, } \\
& U \vdash a \rightarrow U \cup\{a\} \in \text { Con, } \\
& a \in U \in \operatorname{Con} \rightarrow U \vdash a, \\
& U, V \in \operatorname{Con} \rightarrow \forall_{a \in V}(U \vdash a) \rightarrow V \vdash b \rightarrow U \vdash b .
\end{aligned}
$$

$x \subseteq A$ is an ideal if

$$
\begin{aligned}
& U \subseteq x \rightarrow U \in \operatorname{Con} \quad(x \text { is consistent }) \\
& x \supseteq U \vdash a \rightarrow a \in x \quad(x \text { is deductively closed }) .
\end{aligned}
$$

Function spaces

Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right)$ and $\mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems. Define $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$ where

$$
C:=\operatorname{Con}_{A} \times B
$$

$$
\text { - }\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \in \operatorname{Con}:=
$$

$$
\forall J \subseteq ı\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j} \mid j \in J\right\} \in \operatorname{Con}_{B}\right)
$$

$$
\triangleright\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \vdash(U, b) \text { means }\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} b .
$$

$\mathbf{A} \rightarrow \mathbf{B}$ is an information system.
Application of an ideal r in $\mathbf{A} \rightarrow \mathbf{B}$ to an ideal x in \mathbf{A} is defined by

$$
\{b \in B \mid \exists u \subseteq x r(U, b)\} .
$$

Function spaces

Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right)$ and $\mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems. Define $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$ where

- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \in$ Con $:=$ $\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j} \mid j \in J\right\} \in \operatorname{Con}_{B}\right)$
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \vdash(U, b)$ means $\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} b$.
$\mathbf{A} \rightarrow \mathbf{B}$ is an information system.
Application of an ideal r in $\mathbf{A} \rightarrow \mathbf{B}$ to an ideal x in \mathbf{A} is defined by

$$
\{b \in B \mid \exists U \subseteq x r(U, b)\} .
$$

Function spaces

Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right)$ and $\mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems. Define $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$ where

- $C:=\operatorname{Con}_{A} \times B$,
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \in$ Con $:=$ $\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j} \mid j \in J\right\} \in \operatorname{Con}_{B}\right)$
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \vdash(U, b)$ means $\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} b$.
$A \rightarrow B$ is an information system.
Application of an ideal r in $\mathbf{A} \rightarrow \mathbf{B}$ to an ideal x in \mathbf{A} is defined by

$$
\{b \in B \mid \exists u \subseteq \times r(U, b)\} .
$$

Function spaces

Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right)$ and $\mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems. Define $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$ where

- $C:=\operatorname{Con}_{A} \times B$,
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \in \mathrm{Con}:=$
$\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j} \mid j \in J\right\} \in \operatorname{Con}_{B}\right)$
$\mathbf{A} \rightarrow \mathbf{B}$ is an information system.
Application of an ideal r in $\mathbf{A} \rightarrow \mathbf{B}$ to an ideal x in \mathbf{A} is defined by

$$
\{b \in B \mid \exists u \subseteq x r(U, b)\} .
$$

Function spaces

Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right)$ and $\mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems. Define $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$ where

- $C:=\operatorname{Con}_{A} \times B$,
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \in \mathrm{Con}:=$
$\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j} \mid j \in J\right\} \in \operatorname{Con}_{B}\right)$
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \vdash(U, b)$ means $\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} b$.
$\mathrm{A} \rightarrow \mathrm{B}$ is an information system.
Application of an ideal r in $\mathbf{A} \rightarrow \mathbf{B}$ to an ideal x in \mathbf{A} is defined by

$$
\{b \in B \mid \exists u \subseteq \times r(U, b)\} .
$$

Function spaces

Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right)$ and $\mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems. Define $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$ where

- $C:=\operatorname{Con}_{A} \times B$,
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \in$ Con $:=$

$$
\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j} \mid j \in J\right\} \in \operatorname{Con}_{B}\right)
$$

- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \vdash(U, b)$ means $\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} b$.
$\mathbf{A} \rightarrow \mathbf{B}$ is an information system.
Application of an ideal r in $A \rightarrow B$ to an ideal x in A is defined by

$$
\{b \in B \mid \exists u \subseteq x r(U, b)\} .
$$

Function spaces

Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right)$ and $\mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems. Define $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$ where

- $C:=\operatorname{Con}_{A} \times B$,
- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \in \mathrm{Con}:=$

$$
\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j} \mid j \in J\right\} \in \operatorname{Con}_{B}\right)
$$

- $\left\{\left(U_{i}, b_{i}\right) \mid i \in I\right\} \vdash(U, b)$ means $\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} b$.
$\mathbf{A} \rightarrow \mathbf{B}$ is an information system.
Application of an ideal r in $\mathbf{A} \rightarrow \mathbf{B}$ to an ideal x in \mathbf{A} is defined by

$$
\{b \in B \mid \exists U \subseteq x r(U, b)\} .
$$

(Free) algebras given by constructors:

$$
\begin{array}{lll}
\mathbb{N} & \text { by } & 0^{\mathbb{N}}, \mathrm{S}^{\mathbb{N} \rightarrow \mathbb{N}} \\
\alpha \times \beta & \text { by } & \langle\cdot, .\rangle^{\alpha \rightarrow \beta \rightarrow \alpha \times \beta} \\
\alpha+\beta & \text { by } & \left(\operatorname{InL}_{\alpha \beta}\right)^{\alpha \rightarrow \alpha+\beta},\left(\operatorname{InR}_{\alpha \beta}\right)^{\beta \rightarrow \alpha+\beta} \\
\mathbb{Q}(\alpha) & \text { by } & \mathrm{Nil}^{\mathbb{L}(\alpha)}, \operatorname{Cons}^{\alpha \rightarrow \mathbb{L}(\alpha) \rightarrow \mathbb{L}(\alpha)} \\
\mathbb{S}(\alpha) & \text { by } & \mathrm{SCons}^{\alpha \rightarrow \mathbb{S}(\alpha) \rightarrow \mathbb{S}(\alpha)} \\
\mathbb{\square} & \text { by } & \operatorname{Gen}^{\mathbb{Q} \rightarrow 0}
\end{array}
$$

$\mathbb{S}(\alpha)$ and $\mathbb{\square}$ have no nullary constructor, hence no "total" objects.

Information systems $\mathbf{C}_{\rho}=\left(C_{\rho}, \operatorname{Con}_{\rho}, \vdash_{\rho}\right)$

$\mathbf{C}_{\rho \rightarrow \sigma}:=\mathbf{C}_{\rho} \rightarrow \mathbf{C}_{\sigma}$. At base types ι :
Tokens are type correct constructor expressions $\mathrm{C} a_{1}^{*} \ldots a_{n}^{*}$.
(Examples: 0, $C * 0, C 0 *, C(C * 0) 0$.)
$U=\left\{a_{1}, \ldots, a_{n}\right\}$ is consistent if

- all a_{i} start with the same constructor,
- (proner) tokens at j-th argument positions are consistent.
(Example: $\{C * 0, C 0 *\}$.)
$U \vdash a$ (entails) if
- all $a_{i} \in U$ and also a start with the same constructor,
- (proper) tokens at j-th argument positions of a_{i} entail j-th argument of a.
(Example: $\{C * 0, C 0 *\} \vdash C 00)$.

Information systems $\mathbf{C}_{\rho}=\left(C_{\rho}, \operatorname{Con}_{\rho}, \vdash_{\rho}\right)$

$\mathbf{C}_{\rho \rightarrow \sigma}:=\mathbf{C}_{\rho} \rightarrow \mathbf{C}_{\sigma}$. At base types ι :
Tokens are type correct constructor expressions $\mathrm{Ca}_{1}^{*} \ldots a_{n}^{*}$. (Examples: $0, C * 0, C 0 *, C(C * 0) 0$.)
$U=\left\{a_{1}, \ldots, a_{n}\right\}$ is consistent if

- all a_{i} start with the same constructor,
- (proper) tokens at j-th argument positions are consistent.
(Example: $\{C * 0, C 0 *\}$.)
$U \vdash a$ (entails) if
- all $a_{i} \in U$ and also a start with the same constructor,
- (proper) tokens at j-th argument positions of a_{i} entail j-th argument of a.
(Example: $\{C * 0, C 0 *\} \vdash C 00)$.

Information systems $\mathbf{C}_{\rho}=\left(C_{\rho}, \operatorname{Con}_{\rho}, \vdash_{\rho}\right)$

$\mathbf{C}_{\rho \rightarrow \sigma}:=\mathbf{C}_{\rho} \rightarrow \mathbf{C}_{\sigma}$. At base types ι :
Tokens are type correct constructor expressions $\mathrm{Ca}_{1}^{*} \ldots a_{n}^{*}$.
(Examples: $0, C * 0, C 0 *, C(C * 0) 0$.)
$U=\left\{a_{1}, \ldots, a_{n}\right\}$ is consistent if

- all a_{i} start with the same constructor,
- (proper) tokens at j-th argument positions are consistent.
(Example: $\{C * 0, C 0 *\}$.)
$U \vdash a$ (entails) if
- all $a_{i} \in U$ and also a start with the same constructor,
- (proper) tokens at j-th argument positions of a_{i} entail j-th argument of a.
(Example: $\{C * 0, C 0 *\} \vdash C 00$).

Information systems $\mathbf{C}_{\rho}=\left(C_{\rho}, \operatorname{Con}_{\rho}, \vdash_{\rho}\right)$

$\mathbf{C}_{\rho \rightarrow \sigma}:=\mathbf{C}_{\rho} \rightarrow \mathbf{C}_{\sigma}$. At base types ι :
Tokens are type correct constructor expressions $\mathrm{Ca}_{1}^{*} \ldots a_{n}^{*}$.
(Examples: $0, C * 0, C 0 *, C(C * 0) 0$.)
$U=\left\{a_{1}, \ldots, a_{n}\right\}$ is consistent if

- all a_{i} start with the same constructor,
- (proper) tokens at j-th argument positions are consistent.
(Example: $\{C * 0, C 0 *\}$.)
$U \vdash a$ (entails) if
- all $a_{i} \in U$ and also a start with the same constructor,
- (proper) tokens at j-th argument positions of a_{i} entail j-th argument of a.
(Example: $\{C * 0, C 0 *\} \vdash C 00$).

Definition

- A partial continuous functional of type ρ is an ideal in \mathbf{C}_{ρ}.
- A partial continuous functional is computable if it is a (primitive) recursively enumerable set of tokens.

Ideals in C_{ρ} : Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold ("continuity").

- x^{l} is total iff $x=\{a \mid\{b\} \vdash a\}$ for some token (i.e., constructor expression) b without *.
- x^{l} is cototal iff every token $b(*) \in x$ has a "one-step extension" $b(\mathrm{C} \vec{*}) \in x$.

Definition

- A partial continuous functional of type ρ is an ideal in \mathbf{C}_{ρ}.
- A partial continuous functional is computable if it is a (primitive) recursively enumerable set of tokens.

Ideals in \mathbf{C}_{ρ} : Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold ("continuity").

- x^{ι} is total iff $x=\{a \mid\{b\} \vdash a\}$ for some token (i.e., constructor expression) b without *
- x^{l} is cototal iff every token $b(*) \in x$ has a "one-step extension" $b(C \vec{*}) \in x$.

Definition

- A partial continuous functional of type ρ is an ideal in \mathbf{C}_{ρ}.
- A partial continuous functional is computable if it is a (primitive) recursively enumerable set of tokens.

Ideals in \mathbf{C}_{ρ} : Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold ("continuity").

- x^{l} is total iff $x=\{a \mid\{b\} \vdash a\}$ for some token (i.e.,
constructor expression) b without *
- x^{l} is cototal iff every token $b(*) \in x$ has a "one-step extension" $b(\mathrm{C} \vec{*}) \in x$.

Definition

- A partial continuous functional of type ρ is an ideal in \mathbf{C}_{ρ}.
- A partial continuous functional is computable if it is a (primitive) recursively enumerable set of tokens.

Ideals in \mathbf{C}_{ρ} : Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold ("continuity").

- x^{ι} is total iff $x=\{a \mid\{b\} \vdash a\}$ for some token (i.e., constructor expression) b without $*$.
* x^{l} is cototal iff every token $b(*) \in x$ has a "one-step extension" $b(C \vec{*}) \in x$.

Definition

- A partial continuous functional of type ρ is an ideal in \mathbf{C}_{ρ}.
- A partial continuous functional is computable if it is a (primitive) recursively enumerable set of tokens.

Ideals in \mathbf{C}_{ρ} : Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold ("continuity").

- x^{ι} is total iff $x=\{a \mid\{b\} \vdash a\}$ for some token (i.e., constructor expression) b without $*$.
- x^{ι} is cototal iff every token $b(*) \in x$ has a "one-step extension" $b(\mathrm{C} \vec{*}) \in x$.

Overview

- The model \mathcal{C} of partial continuous functionals (Scott, Ershov)
- TCF (theory of computable functionals)
- Realizability, soundness theorem
- Computational content of the fan theorem for coconvex bars

A common extension T^{+}of Gödel's T and Plotkin's PCF

> Terms of T^{+}are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below) by (type-correct) application and abstraction:

$$
M, N::=x^{\rho}\left|C^{\rho}\right| D^{\rho}\left|\left(\lambda_{x \rho} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \cdot \sigma} N^{\rho}\right)^{\sigma} .
$$

Every defined constant D comes with a system of computation rules, consisting of finitely many equations

$$
D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i} \quad(i=1, \ldots, n)
$$

with free variables of $\vec{P}_{i}\left(\vec{y}_{i}\right)$ and M_{i} among \vec{y}_{i}, where the arguments on the left hand side must be "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables.

A common extension T^{+}of Gödel's T and Plotkin's PCF

Terms of T^{+}are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below) by (type-correct) application and abstraction:

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x^{\rho}} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma} .
$$

Every defined constant D comes with a system of computation rules, consisting of finitely many equations

$$
D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i} \quad(i=1, \ldots, n)
$$

with free variables of $\vec{P}_{i}\left(\vec{y}_{i}\right)$ and M_{i} among \vec{y}_{i}, where the arguments
on the left hand side must be "constructor patterns", i.e., lists of
applicative terms built from constructors and distinct variables.

A common extension T^{+}of Gödel's T and Plotkin's PCF

Terms of T^{+}are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below) by (type-correct) application and abstraction:

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x^{\rho}} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma}
$$

Every defined constant D comes with a system of computation rules, consisting of finitely many equations

$$
D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i} \quad(i=1, \ldots, n)
$$

with free variables of $\vec{P}_{i}\left(\vec{y}_{i}\right)$ and M_{i} among \vec{y}_{i}, where the arguments on the left hand side must be "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables.

Examples

Fibonacci numbers

$$
\begin{aligned}
\mathrm{fib}(0) & =0 \\
\mathrm{fib}(1) & =1 \\
\operatorname{fib}(n+2) & =\operatorname{fib}(n)+\operatorname{fib}(n+1)
\end{aligned}
$$

The corecursion operator ${ }^{c o} \mathcal{R}_{S(\rho)}^{\tau}$ of type

is defined by

Examples

Fibonacci numbers

$$
\begin{aligned}
\mathrm{fib}(0) & =0 \\
\mathrm{fib}(1) & =1 \\
\operatorname{fib}(n+2) & =\operatorname{fib}(n)+\operatorname{fib}(n+1)
\end{aligned}
$$

The corecursion operator ${ }^{\text {co }} \mathcal{R}_{\mathbb{S}(\rho)}^{\tau}$ of type

$$
\tau \rightarrow(\tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)) \rightarrow \mathbb{S}(\rho)
$$

is defined by

Examples

Fibonacci numbers

$$
\begin{aligned}
\mathrm{fib}(0) & =0 \\
\mathrm{fib}(1) & =1 \\
\operatorname{fib}(n+2) & =\operatorname{fib}(n)+\operatorname{fib}(n+1)
\end{aligned}
$$

The corecursion operator ${ }^{\text {co }} \mathcal{R}_{\mathbb{S}(\rho)}^{\tau}$ of type

$$
\tau \rightarrow(\tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)) \rightarrow \mathbb{S}(\rho)
$$

is defined by

$$
{ }^{\mathrm{co}} \mathcal{R} x f= \begin{cases}y z & \text { if } f(x)=\langle y, \operatorname{InL}(z)\rangle, \\ y\left({ }^{\mathrm{co}} \mathcal{R} x^{\prime} f\right) & \text { if } f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle .\end{cases}
$$

Predicates and formulas

$$
\begin{aligned}
& P, Q::=X|\{\vec{x} \mid A\}| \mu_{X}\left(\forall_{\vec{x}_{i}}\left(\left(A_{i \nu}\right)_{\nu<n_{i}} \rightarrow X \vec{r}_{i}\right)\right)_{i<k} \mid \nu_{X}(\ldots) \\
& A, B::=P \vec{r}|A \rightarrow B| \forall_{x} A
\end{aligned}
$$

Example: Even $:=\mu_{X}\left(X 0, \forall_{n}(X n \rightarrow X(\mathrm{~S}(\mathrm{~S} n)))\right)$.
(Co)inductive predicates can be computationally relevant (c.r.) or non-computational (n.c). Example: $T_{\mathbb{N}}$ (c.r.) and $T_{\mathbb{N}}^{\mathrm{nc}}$ (n.c.) Clauses and least-fixed-point (induction) axiom for T_{N} :

$$
\begin{aligned}
& \left(T_{\mathbb{N}}^{+}\right)_{0}: 0 \in T_{\mathbb{N}} \\
& \left(T_{\mathbb{N}}^{+}\right)_{1}: \forall_{n}\left(n \in T_{\mathbb{N}} \rightarrow \operatorname{Sn} \in T_{\mathbb{N}}\right)
\end{aligned}
$$

Predicates and formulas

$$
\begin{aligned}
& P, Q::=X|\{\vec{x} \mid A\}| \mu_{X}\left(\forall_{\vec{x}_{i}}\left(\left(A_{i \nu}\right)_{\nu<n_{i}} \rightarrow X \vec{r}_{i}\right)\right)_{i<k} \mid \nu_{X}(\ldots) \\
& A, B::=P \vec{r}|A \rightarrow B| \forall_{x} A
\end{aligned}
$$

Example: Even $:=\mu_{X}\left(X 0, \forall_{n}(X n \rightarrow X(\mathrm{~S}(\mathrm{Sn})))\right)$.
(Co)inductive predicates can be computationally relevant (c.r.) or non-computational (n.c). Example: $T_{\mathbb{N}}$ (c.r.) and $T_{\mathbb{N}}^{\text {nc }}$ (n.c.)

Clauses and least-fixed-point (induction) axiom for $T_{\mathbb{N}}$:

and similar for the n.c. variant $T_{\mathbb{N}}^{\mathrm{nc}}$.

Predicates and formulas

$$
\begin{aligned}
& P, Q::=X|\{\vec{x} \mid A\}| \mu_{X}\left(\forall_{\vec{x}_{i}}\left(\left(A_{i \nu}\right)_{\nu<n_{i}} \rightarrow X \vec{r}_{i}\right)\right)_{i<k} \mid \nu_{X}(\ldots) \\
& A, B::=P \vec{r}|A \rightarrow B| \forall_{x} A
\end{aligned}
$$

Example: Even $:=\mu_{X}\left(X 0, \forall_{n}(X n \rightarrow X(\mathrm{~S}(\mathrm{Sn})))\right)$.
(Co)inductive predicates can be computationally relevant (c.r.) or non-computational (n.c). Example: $T_{\mathbb{N}}$ (c.r.) and $T_{\mathbb{N}}^{\text {nc }}$ (n.c.)

Clauses and least-fixed-point (induction) axiom for $T_{\mathbb{N}}$:

$$
\begin{aligned}
& \left(T_{\mathbb{N}}^{+}\right)_{0}: 0 \in T_{\mathbb{N}} \\
& \left(T_{\mathbb{N}}^{+}\right)_{1}: \forall_{n}\left(n \in T_{\mathbb{N}} \rightarrow \operatorname{Sn} \in T_{\mathbb{N}}\right) \\
& \quad T_{\mathbb{N}}^{-}: 0 \in X \rightarrow \forall_{n}\left(n \in T_{\mathbb{N}} \rightarrow n \in X \rightarrow \operatorname{Sn} \in X\right) \rightarrow T_{\mathbb{N}} \subseteq X
\end{aligned}
$$

and similar for the n.c. variant $T_{\mathbb{N}}^{\mathrm{nc}}$.

Coinductive predicates: ${ }^{\text {co }} T_{\mathbb{N}}$ (c.r.) and ${ }^{\text {co }} T_{\mathbb{N}}^{\text {nc }}$ (n.c.)

Closure and greatest-fixed-point (coinduction) axioms for ${ }^{\text {co }} T_{\mathbb{N}}$:

$$
\begin{aligned}
& { }^{\mathrm{co}} T_{\mathbb{N}}^{-}: \forall_{n}\left(n \in{ }^{\mathrm{co}} T_{\mathbb{N}} \rightarrow n \equiv 0 \vee \exists_{n^{\prime}}\left(n^{\prime} \in{ }^{\mathrm{co}} T_{\mathbb{N}} \wedge n \equiv \mathrm{~S} n^{\prime}\right)\right) \\
& { }^{\mathrm{co}} T_{\mathbb{N}}^{+}: \forall_{n}\left(n \in X \rightarrow n \equiv 0 \vee \exists_{n^{\prime}}\left(\left(n^{\prime} \in{ }^{\mathrm{co}} T_{\mathbb{N}} \vee n^{\prime} \in X\right) \wedge n \equiv \mathrm{Sn}^{\prime}\right)\right) \rightarrow \\
& \quad X \subseteq{ }^{\mathrm{co}} T_{\mathbb{N}}
\end{aligned}
$$

and similar for the n.c. variant ${ }^{\mathrm{co}} T_{\mathbb{N}}^{\mathrm{nc}}$ (with $X^{\mathrm{nc}}, \vee^{\mathrm{nc}}$ for X, \vee).

Existence \exists, conjunction \wedge, disjunction $\vee, \vee^{\text {nc }}$

These are nullary inductive predicates with parameters

Existence \exists, conjunction \wedge, disjunction \vee, \vee^{nc}

These are nullary inductive predicates with parameters

$$
\begin{array}{ll}
\exists^{+}: \forall_{x}\left(x \in P \rightarrow \exists_{x}(x \in P)\right) \\
\exists^{-}: \exists_{x}(x \in P) \rightarrow \forall_{x}(x \in P \rightarrow C) \rightarrow C & (x \notin \mathrm{FV}(C)) \\
\wedge^{+}: A \rightarrow B \rightarrow A \wedge B \\
\wedge^{-}: A \wedge B \rightarrow(A \rightarrow B \rightarrow C) \rightarrow C \\
\vee_{i}^{+}: A_{i} \rightarrow A_{0} \vee A_{1} \\
\vee^{-}: A \vee B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C \\
\left(\vee_{i}^{\mathrm{nc}}\right)^{+}: A_{i} \rightarrow A_{0} \vee^{\mathrm{nc}} A_{1} & \\
\left(\vee^{\mathrm{nc}}\right)^{-}: A \vee^{\mathrm{nc}} B \rightarrow(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow C & (A, B, C \text { n.c. })
\end{array}
$$

Overview

- The model \mathcal{C} of partial continuous functionals (Scott, Ershov)
- TCF (theory of computable functionals)
- Realizability, soundness theorem
- Computational content of the fan theorem for coconvex bars

Kolmogorov 1932: "Zur Deutung der intuitionistischen Logik"

- Proposed to view a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or "realizer" of A.
- Example: $\forall_{n \in T} \exists_{m \in T}(m>n \wedge m \in$ Prime $)$ has type $\mathbb{N} \rightarrow \mathbb{N}$.

Kolmogorov 1932: "Zur Deutung der intuitionistischen Logik"

- Proposed to view a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or "realizer" of A.
- Example: $\forall_{n \in T_{\mathbb{N}}} \exists_{m \in T_{N}}(m>n \wedge m \in$ Prime $)$ has type $\mathbb{N} \rightarrow \mathbb{N}$.

Kolmogorov 1932: "Zur Deutung der intuitionistischen Logik"

- Proposed to view a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or "realizer" of A.
- Example: $\forall_{n \in T_{\mathbb{N}}} \exists_{m \in T_{\mathbb{N}}}(m>n \wedge m \in$ Prime) has type $\mathbb{N} \rightarrow \mathbb{N}$.

Type $\tau(C)$ of a c.r. predicate or formula C

$$
\begin{aligned}
& \tau(X):=\xi \quad(\xi \text { uniquely assigned to } X) \\
& \tau(\{\vec{x} \mid A\}):=\tau(A) \\
& \tau(\underbrace{\mu_{X}\left(\forall_{\vec{x}_{i}}\left(\left(A_{i \nu}\right)_{\nu<n_{i}} \rightarrow X \vec{r}_{i}\right)\right)_{i<k}}_{1}):=\underbrace{\mu_{\xi}\left(\left(\tau\left(A_{i \nu}\right)_{\nu<n_{i}}\right) \rightarrow \xi\right)_{i<k}}_{4} \\
& \text { (similar for }{ }^{\text {col }} \text {) } \\
& \tau(P \vec{r}):=\tau(P) \\
& \tau(A \rightarrow B):= \begin{cases}\tau(A) \rightarrow \tau(B) & \text { (A c.r.) } \\
\tau(B) & \text { (A n.c.) }\end{cases} \\
& \tau\left(\forall_{\chi} A\right):=\tau(A)
\end{aligned}
$$

Realizability extension C^{r} of c.r. predicates or formulas C

We write $z \mathbf{r} C$ for $C^{r} z$ if C is a formula.

Realizability extension C^{r} of c.r. predicates or formulas C

We write $z \mathbf{r} C$ for $C^{r} z$ if C is a formula.

$$
\left.\begin{array}{rl}
X^{\mathbf{r}} & \quad \text { (uniquely assigned to } X:(\vec{\rho}) \text {, of arity }(\tau(X), \vec{\rho})) \\
\{\vec{x} \mid A\}^{\mathbf{r}} & :=\{z, \vec{x} \mid z \mathbf{r} A\} \\
I^{\mathbf{r}},{ }^{c o} / \mathbf{r}
\end{array}\right] \begin{aligned}
z \mathbf{r} P \vec{r}: & =P^{\mathbf{r}}(z, \vec{r}) \\
z \mathbf{r}(A \rightarrow B) & := \begin{cases}\forall_{w}(w \mathbf{r} A \rightarrow z w \mathbf{r} B) & \text { if } A \text { is c.r. } \\
A \rightarrow z \mathbf{r} B & \text { if } A \text { is n.c. }\end{cases} \\
z \mathbf{r} \forall_{x} A & :=\forall_{x}(z \mathbf{r} A)
\end{aligned}
$$

Extracted term et (M) of a derivation M^{A} with A c.r.

$$
\begin{array}{ll}
\operatorname{et}\left(u^{A}\right) & :=z_{u}^{\tau(A)} \quad\left(z_{u}^{\tau(A)} \text { uniquely associated to } u^{A}\right) \\
\operatorname{et}\left(\left(\lambda_{u^{A}} M^{B}\right)^{A \rightarrow B}\right) & := \begin{cases}\lambda_{z_{u}}^{\tau(A)} \operatorname{et}(M) & \text { if } A \text { is c.r. } \\
\operatorname{et}(M) & \text { if } A \text { is n.c. }\end{cases} \\
\operatorname{et}\left(\left(M^{A \rightarrow B} N^{A}\right)^{B}\right) & := \begin{cases}\operatorname{et}(M) \operatorname{et}(N) & \text { if } A \text { is c.r. } \\
\operatorname{et}(M) & \text { if } A \text { is n.c. }\end{cases} \\
\operatorname{et}\left(\left(\lambda_{x} M^{A}\right)^{\forall_{x} A}\right) & :=\operatorname{et}(M) \\
\operatorname{et}\left(\left(M^{\forall \times A(x)} t\right)^{A(t)}\right):=\operatorname{et}(M) \\
\operatorname{et}\left(I_{i}^{+}\right) & :=\mathrm{C}_{i} \quad \quad(i \text {-th constructor of } \iota \text { associated to } I) \\
\operatorname{et}\left(I^{-}\right) & \left.:=\mathcal{R}_{\iota}^{\tau} \quad \text { (recursor for } \iota\right) \\
\operatorname{et}\left({ }^{\mathrm{Co}} I^{-}\right) & \left.:=\mathrm{D}_{\iota} \quad \text { (destructor of } \iota \text { associated to }{ }^{\text {co }} /\right) \\
\operatorname{et}\left({ }^{\mathrm{Co}} I^{+}\right) & \left.:={ }^{{ }^{+}} \mathcal{R}_{\iota}^{\tau} \quad \quad \text { (corecursor for } \iota\right)
\end{array}
$$

An n.c. part of M is a subderivation with an n.c. end formula. Such n.c. parts do not contribute to the computational content.

Theorem (Soundness)
Let M be a derivation of a formula A from assumptions u : C (c.r.)

from assumptions $z_{u} \mathbf{r} C$ and D.
Proof
By induction on M. Few cases: $\rightarrow^{ \pm}, \forall^{ \pm}$and c.r. axioms.

An n.c. part of M is a subderivation with an n.c. end formula. Such n.c. parts do not contribute to the computational content.

Theorem (Soundness)
Let M be a derivation of a formula A from assumptions u : C (c.r.) and v : D (n.c.) Then we can find a derivation of

$$
\begin{cases}\operatorname{et}(M) \mathbf{r} A & \text { if } A \text { is c.r. } \\ A & \text { if } A \text { is n.c. }\end{cases}
$$

from assumptions $z_{u} \mathbf{r} C$ and D.
Proof.
By induction on M. Few cases: $\rightarrow^{ \pm}, \forall^{ \pm}$and c.r. axioms.

An n.c. part of M is a subderivation with an n.c. end formula. Such n.c. parts do not contribute to the computational content.
Theorem (Soundness)
Let M be a derivation of a formula A from assumptions u: C (c.r.) and v : D (n.c.) Then we can find a derivation of

$$
\begin{cases}\operatorname{et}(M) \mathbf{r} A & \text { if } A \text { is c.r. } \\ A & \text { if } A \text { is n.c. }\end{cases}
$$

from assumptions $z_{u} \mathbf{r} C$ and D.
Proof.
By induction on M. Few cases: $\rightarrow^{ \pm}, \forall^{ \pm}$and c.r. axioms.

Overview

- The model \mathcal{C} of partial continuous functionals (Scott, Ershov)
- TCF (theory of computable functionals)
- Realizability, soundness theorem
- Computational content of the fan theorem for coconvex bars
- View trees as sets of nodes u, v, w of type $\mathbb{L}(\mathbb{B})$ (lists of booleans), which are downward closed.
- Paths are seen as cototal objects s of type $\mathbb{S}(B)$.
- Sets of nodes are given by (not necessarily total) functions b of type $\mathbb{L}(\mathbb{B}) \rightarrow \mathbb{B}$. To be or not to be in b is expressed by saying that $b(u)$ is defined with 1 or 0 as its value.
- A set b of nodes is a bar if every path s hits the bar, i.e., there is an n such that $\bar{s}(n) \in b$.

For simplicity assume that bars b are upwards closed:

$$
\forall_{u, p}(u \in b \rightarrow p u \in b) .
$$

- View trees as sets of nodes u, v, w of type $\mathbb{L}(\mathbb{B})$ (lists of booleans), which are downward closed.
- Paths are seen as cototal objects s of type $\mathbb{S}(\mathbb{B})$.
- Sets of nodes are given by (not necessarily total) functions b of type $\mathbb{L}(\mathbb{B}) \rightarrow \mathbb{B}$. To be or not to be in b is expressed by saying that $b(u)$ is defined with 1 or 0 as its value.
- A set b of nodes is a bar if every path s hits the bar, i.e., there is an n such that $\bar{s}(n) \in b$.

For simplicity assume that bars b are upwards closed:

$$
\forall_{u, p}(u \in b \rightarrow p u \in b) .
$$

- View trees as sets of nodes u, v, w of type $\mathbb{Q}(\mathbb{B})$ (lists of booleans), which are downward closed.
- Paths are seen as cototal objects s of type $\mathbb{S}(\mathbb{B})$.
- Sets of nodes are given by (not necessarily total) functions b of type $\mathbb{L}(\mathbb{B}) \rightarrow \mathbb{B}$. To be or not to be in b is expressed by saying that $b(u)$ is defined with 1 or 0 as its value.

For simplicity assume that bars b are upwards closed:

$$
\forall_{u, p}(u \in b \rightarrow p u \in b) .
$$

- View trees as sets of nodes u, v, w of type $\mathbb{L}(\mathbb{B})$ (lists of booleans), which are downward closed.
- Paths are seen as cototal objects s of type $\mathbb{S}(\mathbb{B})$.
- Sets of nodes are given by (not necessarily total) functions b of type $\mathbb{L}(\mathbb{B}) \rightarrow \mathbb{B}$. To be or not to be in b is expressed by saying that $b(u)$ is defined with 1 or 0 as its value.
- A set b of nodes is a bar if every path s hits the bar, i.e., there is an n such that $\bar{s}(n) \in b$.

For simplicity assume that bars b are upwards closed:

$$
\forall_{u, p}(u \in b \rightarrow p u \in b) .
$$

- View trees as sets of nodes u, v, w of type $\mathbb{L}(\mathbb{B})$ (lists of booleans), which are downward closed.
- Paths are seen as cototal objects s of type $\mathbb{S}(\mathbb{B})$.
- Sets of nodes are given by (not necessarily total) functions b of type $\mathbb{L}(\mathbb{B}) \rightarrow \mathbb{B}$. To be or not to be in b is expressed by saying that $b(u)$ is defined with 1 or 0 as its value.
- A set b of nodes is a bar if every path s hits the bar, i.e., there is an n such that $\bar{s}(n) \in b$.

For simplicity assume that bars b are upwards closed:

$$
\forall_{u, p}(u \in b \rightarrow p u \in b)
$$

- Josef Berger and Gregor Svindland recently gave a constructive proof of the fan theorem for "coconvex" bars.
- They call a set $b \subseteq\{0,1\}^{*}$ coconvex if for every n and path s

$$
\bar{s}(n) \in b \rightarrow \exists_{m}\left(\forall_{v \leq \bar{s}(m)}(v \in b) \vee \forall_{v \geq \bar{s}(m)}(v \in b)\right),
$$

where $v \leq w$ means $|v|=|w|$ and v is left of w. Equivalently

$$
\begin{array}{r}
\bar{s}(n) \in b \rightarrow \exists_{p, m}\left(\left(p=0 \rightarrow \forall_{v \leq \bar{s}(m)}(v \in b)\right) \wedge\right. \\
\left.\left(p=1 \rightarrow \forall_{v \geq \bar{s}(m)}(v \in b)\right)\right) .
\end{array}
$$

Two "moduli" p and m, depending on s, n and b.

- Better "finally coconvex", with coconvex in the sense that the b-nodes at height n form the complement of a convex set.
- Josef Berger and Gregor Svindland recently gave a constructive proof of the fan theorem for "coconvex" bars.
- They call a set $b \subseteq\{0,1\}^{*}$ coconvex if for every n and path s

$$
\bar{s}(n) \in b \rightarrow \exists_{m}\left(\forall_{v \leq \bar{s}(m)}(v \in b) \vee \forall_{v \geq \bar{s}(m)}(v \in b)\right),
$$

where $v \leq w$ means $|v|=|w|$ and v is left of w. Equivalently

$$
\begin{array}{r}
\bar{s}(n) \in b \rightarrow \exists_{p, m}\left(\left(p=0 \rightarrow \forall_{v \leq \bar{s}(m)}(v \in b)\right) \wedge\right. \\
\left.\left(p=1 \rightarrow \forall_{v \geq \bar{s}(m)}(v \in b)\right)\right) .
\end{array}
$$

Two "moduli" p and m, depending on s, n and b.

- Better "finally coconvex", with coconvex in the sense that the b-nodes at height n form the complement of a convex set.
- Josef Berger and Gregor Svindland recently gave a constructive proof of the fan theorem for "coconvex" bars.
- They call a set $b \subseteq\{0,1\}^{*}$ coconvex if for every n and path s

$$
\bar{s}(n) \in b \rightarrow \exists_{m}\left(\forall_{v \leq \bar{s}(m)}(v \in b) \vee \forall_{v \geq \bar{s}(m)}(v \in b)\right),
$$

where $v \leq w$ means $|v|=|w|$ and v is left of w. Equivalently

$$
\begin{aligned}
\bar{s}(n) \in b \rightarrow \exists_{p, m}((p & \left.=0 \rightarrow \forall_{v \leq \bar{s}(m)}(v \in b)\right) \wedge \\
(p & \left.\left.=1 \rightarrow \forall_{v \geq \bar{s}(m)}(v \in b)\right)\right) .
\end{aligned}
$$

Two "moduli" p and m, depending on s, n and b.

- Better "finally coconvex", with coconvex in the sense that the b-nodes at height n form the complement of a convex set.
- Josef Berger and Gregor Svindland recently gave a constructive proof of the fan theorem for "coconvex" bars.
- They call a set $b \subseteq\{0,1\}^{*}$ coconvex if for every n and path s

$$
\bar{s}(n) \in b \rightarrow \exists_{m}\left(\forall_{v \leq \bar{s}(m)}(v \in b) \vee \forall_{v \geq \bar{s}(m)}(v \in b)\right),
$$

where $v \leq w$ means $|v|=|w|$ and v is left of w. Equivalently

$$
\begin{aligned}
\bar{s}(n) \in b \rightarrow \exists_{p, m}((p & \left.=0 \rightarrow \forall_{v \leq \bar{s}(m)}(v \in b)\right) \wedge \\
(p=1 & \left.\left.\rightarrow \forall_{v \geq \bar{s}(m)}(v \in b)\right)\right) .
\end{aligned}
$$

Two "moduli" p and m, depending on s, n and b.

- Better "finally coconvex", with coconvex in the sense that the b-nodes at height n form the complement of a convex set.
- Josef Berger and Gregor Svindland recently gave a constructive proof of the fan theorem for "coconvex" bars.
- They call a set $b \subseteq\{0,1\}^{*}$ coconvex if for every n and path s

$$
\bar{s}(n) \in b \rightarrow \exists_{m}\left(\forall_{v \leq \bar{s}(m)}(v \in b) \vee \forall_{v \geq \bar{s}(m)}(v \in b)\right),
$$

where $v \leq w$ means $|v|=|w|$ and v is left of w. Equivalently

$$
\begin{aligned}
\bar{s}(n) \in b \rightarrow \exists_{p, m}((p & \left.=0 \rightarrow \forall_{v \leq \bar{s}(m)}(v \in b)\right) \wedge \\
(p & \left.\left.=1 \rightarrow \forall_{v \geq \bar{s}(m)}(v \in b)\right)\right) .
\end{aligned}
$$

Two "moduli" p and m, depending on s, n and b.

- Better "finally coconvex", with coconvex in the sense that the b-nodes at height n form the complement of a convex set.

Uniform coconvexity with modulus d (direction)

- Simplification: p only, depending on node u (i.e., $p=d(u)$).
- Special case of the B\&S concept. Goal: better algorithm.

Definition
A set $b \subseteq\{0,1\}^{*}$ is uniformly coconvex with modulus d if for all u
we have: if the innermost path from $p u$ (where $p:=d(u)$) hits b
in some node $v \in b$, then

$$
\begin{cases}\forall_{w}(w p u \leq v \rightarrow w p u \in b) & \text { if } p=0, \\ \forall_{w}(w p u \geq v \rightarrow w p u \in b) & \text { if } p=1 .\end{cases}
$$

Uniform coconvexity with modulus d (direction)

- Simplification: p only, depending on node u (i.e., $p=d(u)$).
- Special case of the B\&S concept. Goal: better algorithm.

Definition
A set $b \subseteq\{0,1\}^{*}$ is uniformly coconvex with modulus d if for all u
we have: if the innermost path from $p u$ (where $p:=d(u)$) hits b
in some node $v \in b$, then

$$
\begin{cases}\forall_{w}(w p u \leq v \rightarrow w p u \in b) & \text { if } p=0 \\ \forall_{w}(w p u \geq v \rightarrow w p u \in b) & \text { if } p=1 .\end{cases}
$$

Uniform coconvexity with modulus d (direction)

- Simplification: p only, depending on node u (i.e., $p=d(u)$).
- Special case of the B\&S concept. Goal: better algorithm.

Definition

A set $b \subseteq\{0,1\}^{*}$ is uniformly coconvex with modulus d if for all u we have: if the innermost path from $p u$ (where $p:=d(u)$) hits b in some node $v \in b$, then

$$
\begin{cases}\forall_{w}(w p u \leq v \rightarrow w p u \in b) & \text { if } p=0 \\ \forall_{w}(w p u \geq v \rightarrow w p u \in b) & \text { if } p=1\end{cases}
$$

Recall: ${ }^{c o} T_{S(\rho)}$ is the greatest fixed point of the clause

$$
s \in{ }^{\mathrm{Co}} T_{\mathbb{S}(\rho)} \rightarrow \exists_{x \in T_{\rho}, s^{\prime} \in{ }^{\mathrm{Co}} T_{\mathrm{S}(\rho)}}\left(s=x s^{\prime}\right)
$$

The corecursion operator ${ }^{c} \mathcal{R}_{\$(\rho)}^{\top}$, of type

$$
\tau \rightarrow(\tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)) \rightarrow \mathbb{S}(\rho)
$$

is defined by

Recall: ${ }^{c o} T_{S(\rho)}$ is the greatest fixed point of the clause

$$
s \in{ }^{\mathrm{co}} T_{\mathbb{S}(\rho)} \rightarrow \exists_{x \in T_{\rho}, s^{\prime} \in{ }^{\mathrm{Co}} T_{S(\rho)}}\left(s=x s^{\prime}\right)
$$

The corecursion operator ${ }^{\text {co }} \mathcal{R}_{\mathbb{S}(\rho)}^{\tau}$, of type

$$
\tau \rightarrow(\tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)) \rightarrow \mathbb{S}(\rho)
$$

is defined by

Recall: ${ }^{c o} T_{S(\rho)}$ is the greatest fixed point of the clause

$$
s \in{ }^{\mathrm{co}} T_{\mathbb{S}(\rho)} \rightarrow \exists_{x \in T_{\rho}, s^{\prime} \in{ }^{\mathrm{Co}} T_{S(\rho)}}\left(s=x s^{\prime}\right)
$$

The corecursion operator ${ }^{\text {co }} \mathcal{R}_{\mathbb{S}(\rho)}^{\tau}$, of type

$$
\tau \rightarrow(\tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)) \rightarrow \mathbb{S}(\rho)
$$

is defined by

$$
{ }^{\mathrm{co}} \mathcal{R} x f= \begin{cases}y z & \text { if } f(x)=\langle y, \operatorname{InL}(z)\rangle \\ y\left({ }^{\mathrm{co}} \mathcal{R} x^{\prime} f\right) & \text { if } f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle .\end{cases}
$$

Lemma (Cototality of corecursion)
Let $f: \tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)$ be of InR-form, i.e., $f(x)$ has the form $\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$ for all x. Then ${ }^{\text {co }} \mathcal{R} x f \in{ }^{\text {co }} T_{\mathbb{S}(\rho)}$ for all x.

Proof.
By coinduction with competitor predicate

$$
X:=\left\{z \mid \exists_{x}\left(z={ }^{c o} R x f\right)\right\} .
$$

Need to prove that X satisfies the clause defining ${ }^{\mathrm{co}} T_{S(\rho)}$:

$$
\forall_{z}\left(z \in X \rightarrow \exists_{y} \exists_{z^{\prime}}\left(z^{\prime} \in X \wedge z=y z^{\prime}\right)\right)
$$

Let $z={ }^{\text {co }} \mathcal{R} x f$ for some x. Since f is assumed to be of InR-form we have y, x^{\prime} such that $f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$. By the definition of

Lemma (Cototality of corecursion)

Let $f: \tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)$ be of InR-form, i.e., $f(x)$ has the form $\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$ for all x. Then ${ }^{\text {co }} \mathcal{R} x f \in{ }^{\text {co }} T_{\mathbb{S}(\rho)}$ for all x.

Proof.
By coinduction with competitor predicate

$$
X:=\left\{z \mid \exists_{x}\left(z={ }^{\text {co }} \mathcal{R} x f\right)\right\} .
$$

Need to prove that X satisfies the clause defining ${ }^{\mathrm{co}} T_{S(\rho)}$:

$$
\forall_{z}\left(z \in X \rightarrow \exists y \exists_{z^{\prime}}\left(z^{\prime} \in X \wedge z=y z^{\prime}\right)\right)
$$

Let $z={ }^{\text {co }} \mathcal{R} x f$ for some x. Since f is assumed to be of InR-form we have y, x^{\prime} such that $f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$. By the definition of ${ }^{\mathrm{co}} \mathcal{R}_{S(\rho)}^{\top}$ we obtain ${ }^{\mathrm{co}} \mathcal{R} x f=y\left({ }^{\mathrm{co}} \mathcal{R} x^{\prime} f\right)$. Use ${ }^{\mathrm{co}} \mathcal{R} x^{\prime} f \in X$.

Lemma (Cototality of corecursion)

Let $f: \tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)$ be of InR-form, i.e., $f(x)$ has the form $\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$ for all x. Then ${ }^{\text {co }} \mathcal{R} x f \in{ }^{\mathrm{co}} \boldsymbol{T}_{\mathbb{S}(\rho)}$ for all x.

Proof.
By coinduction with competitor predicate

$$
X:=\left\{z \mid \exists_{x}\left(z={ }^{\text {co }} \mathcal{R} x f\right)\right\} .
$$

Need to prove that X satisfies the clause defining ${ }^{\text {co }} T_{\mathbb{S}(\rho)}$:

$$
\forall_{z}\left(z \in X \rightarrow \exists_{y} \exists_{z^{\prime}}\left(z^{\prime} \in X \wedge z=y z^{\prime}\right)\right)
$$

Let $z={ }^{c o} \mathcal{R} x f$ for some x. Since f is assumed to be of InR-form
we have y, x^{\prime} such that $f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$. By the definition of
${ }^{c \circ} \mathcal{R}_{\mathbb{S}(\rho)}^{\tau}$ we obtain ${ }^{\text {co } \mathcal{R} x f}=y\left({ }^{\mathrm{co}} \mathcal{R} x^{\prime} f\right)$. Use ${ }^{\text {co } \mathcal{R} x^{\prime} f \in X .}$

Lemma (Cototality of corecursion)

Let $f: \tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)$ be of InR-form, i.e., $f(x)$ has the form $\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$ for all x. Then ${ }^{\text {co }} \mathcal{R} x f \in{ }^{\text {co }} T_{\mathbb{S}(\rho)}$ for all x.

Proof.

By coinduction with competitor predicate

$$
X:=\left\{z \mid \exists_{x}\left(z={ }^{\mathrm{co}} \mathcal{R} x f\right)\right\} .
$$

Need to prove that X satisfies the clause defining ${ }^{\mathrm{co}} \boldsymbol{T}_{\Phi(\rho)}$:

$$
\forall_{z}\left(z \in X \rightarrow \exists_{y} \exists_{z^{\prime}}\left(z^{\prime} \in X \wedge z=y z^{\prime}\right)\right)
$$

Let $z={ }^{\text {co }} \mathcal{R} x f$ for some x. Since f is assumed to be of InR-form we have y, x^{\prime} such that $f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$. By the definition of ${ }^{\text {co }} \mathcal{R}_{\mathbb{S}(\rho)}^{\tau}$ we obtain ${ }^{\text {co }} \mathcal{R} x f=y\left({ }^{\text {co }} \mathcal{R} x^{\prime} f\right)$. Use ${ }^{\text {co }} \mathcal{R} x^{\prime} f \in X$.

The escape path $s_{d} \in \mathbb{S}(\mathbb{B})$ is constructed from d corecursively:
Start with the root node. At any node u, take the opposite direction to what $d(u)$ says, and continue.

Definition (Distance)
$D_{b} n u:=\forall_{v}(|v|=n \rightarrow v u \in b)$
" u has distance n from the bar b "

The escape path $s_{d} \in \mathbb{S}(\mathbb{B})$ is constructed from d corecursively:
Start with the root node. At any node u, take the opposite direction to what $d(u)$ says, and continue.

Definition (Distance)

$$
D_{b} n u:=\forall_{v}(|v|=n \rightarrow v u \in b)
$$

" u has distance n from the bar b "

Lemma (BoundL, BoundR)

Let b be a uniformly coconvex bar with modulus d. Then for every n there are bounds ℓ_{n}, r_{n} for the b-distances of all nodes of the same length n that are left / right of $\overline{s_{d}}(n)$.
Proof. For $n=0$ there are no such nodes.

Consider $\overline{s_{d}}(n+1)=\left(s_{d}\right)_{n} u$ of length $n+1$. Assume $\left(s_{d}\right)_{n}=0$. Then every node to the left of $0 u$ is a successor node of one to the left of u, and hence $\ell_{n+1}=\ell_{n}-1$. The nodes to the right of $0 u$ are $1 u$ and then nodes which are all successor nodes of one to the right of u. Since $1 u$ is $d(u) u$, by assumption we have its b-distance m. Let $r_{n+1}=\max \left(m, r_{n}-1\right)$.

Extracted term for BoundL
[hit,d,n] (Rec nat=>nat)n 0
([n0, n1] [case (d(U d n0))
(True -> Pred n1 max hit(True::U d n0)cCoSTConstFalse)
(False -> Pred n1)])
and for BoundR
[hit, d,n] (Rec nat=>nat)n 0 ([n0, n1] [case (d(U d n0))
(True -> Pred n1)
(False -> Pred n1 max hit(False::U d n0)cCoSTConstTrue)])
with hit of type $\mathbb{C}(\mathbb{B}) \rightarrow \mathbb{\mathbb { C }} \rightarrow \mathbb{N}$.

Theorem
Let b be a uniformly coconvex bar with modulus d. Then b is a uniform bar, i.e.,

$$
\exists_{m} \forall_{u}(|u|=m \rightarrow u \in b) .
$$

Let s_{d} be the escape path. Since b is a bar, the escape path s_{d} hits b at some length n. Use lemma Bounds: the uniform bound is $n+\max \left(\ell_{n}, r_{n}\right)$

Extracted term

```
[hit,d]
    cBoundL hit d(hit Nil(cEscCoST d)) max
    cBoundR hit d(hit Nil(cEscCoST d))+
    hit Nil(cEscCoST d)
with hit of type \(\mathbb{L}(\mathbb{B}) \rightarrow \mathbb{\square} \rightarrow \mathbb{N}\).
```


Reference

Josef Berger and Gregor Svindland,
Constructive convex programming.
To appear: Proof-Computation - Digitalization in Mathematics, Computer Science and Philosophy (eds. Mainzer. Schuster, S.) World Scientific, Singapore, 2018

