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* Every second countable space (X, (Bn)nen) can be embedded into S*
by ¢(x)(n) = 1iff x € B,.
> 1) :CSY — X : S“-representation.

* A S”-embedding ¢ induces a S¥-representation ¢!,

* Enumeration-based {0, 1}“-representation ¢sw :C {0,1}¥ — S¥.
A S*-representation v induces a {0, 1}*-representation t)sw o 9.
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o If X is represented over T%, then X is also represented over {0, 1}*.

@ Why do we study T“-representation?
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Why T*“-representation?

@ T“ is more close to the space, so some information of the space can
be reflected into the representation.

» Every n-dimensional second countable metrizable space can be embed
into T%, which is a subspace of T“ with up to n copies of L [T 2002].
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Why T*“-representation?

@ T“ is more close to the space, so some information of the space can
be reflected into the representation.

» Every n-dimensional second countable metrizable space can be embed
into T, which is a subspace of T with up to n copies of L [T 2002].

@ Order structures (T, <) and (T, <).
» Natural representation of a space with order.
e Contains {0,1}“ as top elements.
» Sub-structure of the space can be represented with {0, 1}*.

@ A bottomed sequence is an unspecified sequence.
» 10110.. = {10010..,10110...}.

0 1

\/

L

Arno Pauly and Hideki Tsuiki Computable dyadic subbases Kanazawa, March 2018 4 /24



Matching-representation

KC(X) : the set of compact subsets of a topological space X.
Definition

A matching representation is a pair of a representation ¢ :C {0,1}¥ — X

and an order-preserving T*-representation ¢ :C T« — KC(X) \ {#} with an
upper-closed domain such that

Y(p) ={d(q) | p = q € {0,1}*}.

e Furthermore, if ¥)(p) = A and A is a finite set, then the number of
bottoms in p is exactly |A] — 1.

o cf. domain representation[Blanck 2000].
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Represented Space [P 2015]

@ A-represented space X = (X, dx) is a pair of a set X and a partial
surjection dx :C A — X.

e We say that two ({0,1}, T, S, N“)- represented spaces are computably
isomorphic if the conversion of the names is computable.

@ For represented spaces X and Y, we define represented spaces

C(X,Y) : the space of continuous functions from X to Y.

O(X)(=C(X,S)) : the space of open subsets of X.

A(X) : the space of closed subsets of X (negative information).

V(X) : the space of closed subsets of X (positive information), which

we call overt sets.

» KC(X) : the space of compact subsets of X.

v

v vy

@ Our goal: given a represented space X, construct a matching
representation (¢ :C {0,1}* — X, ¢ :C T¥ — K(X) \ {0}) which are
computably isomorphic to the given X and the K(X) \ {0}.
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The Theorem

Every computably compact computable metric space X admits matching
representations of X and IC(X) \ {0} .

@ A computable metric space (X, d, «) is a separable metric space
(X, d) with some computable structure. (We give the definition later.)

@ A computable metric space has the Cauchy representation dx and we
consider the represented space X = (X, dx).

e X is computably compact: isEmpty : A(X) — S is computable.

@ We can compute a matching representation from the structure of a
computably compact computable metric space.

@ This theorem has applications to finite closed choice and Weihrauch
reducibility.
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The Procedure

Computably compact computable metric space

4

proper computable dyadic subbase

4

Pruned-tree representation

4

Matching representation
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Computable dyadic subbase

Definition ([T 2004])

A dyadic subbase over a set X is amap S : N x {0,1} — P(X) such that
SnoN Sp1 =0 for every n € N and
if {(n,i)|x€Sni}={(ni)|ye€Sni} for x,y € X, then x = y.
S5, =X \ (5,,,0 U 5,,71).
0 (X S Sn,O)a

° ps(x)(n) =4 1 (x€S5n)
1 (X € 5,,71_).

o ps: X — T : embedding into T*.

o Xs = (X,¢s") is an admissible
T“-represented space.

@ We say that S is a computable dyadic {_ )
subbase of a represented space X if n-th coordinate
Xs is computably isomorphic to X.
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Two kinds of informations.

@ Each finite sequence p € T* specifies

S(p) = m 5n,p(n)

nedom(p)
g(p) = ﬂ (X \ Sn,l—p(n)) = ﬂ (Sn,p(n) U Sn,L)
nedom(p) nedom(p)

® ) @

Example: For p = 0110, S(p)=S0,0 N S2,1 N S3,0 and
S(p)=X\ (So0,1 U S20U S31).

e {S(p) | p € T*} is the base generated by the subbase
{S,,,O,Sn,l ‘ ne N}
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Proper dyadic subbase

Definition

A dyadic subbase S is proper if S(p) = cl S(p) for every p € T*.

@ Generalization of Gray-code.
@ Sp0 and S, are exteriors of each other. (The case p = 1"1.)
Sp, 1 is the common boundary.

Snl

)

bad
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Computability notions of S(p) and cl S(p)

Two computability notions A(X) and V(X) for closed sets.

o 5(p) € A(X) because 5(p) = X\ (Unedom(p) Sn1—p(n))-
» Ac AX) & A€ € O(X).
» Representation by negative information.
» A(X) and K(X) computably isomorphic if X is computably compact
Hausdorff spaces.
» For a continuous function f and A € KC(X), maximum value of f(A)
approximated from above.

o cl5(p) € V(X) because cl S(p) = cl((Nscdom(p) Sn.p(n))-

» A€ V(X) is represented by enumeration of {U | UN A # 0}.

» Representation by positive information.

» For a continuous function f and A € V(X), maximum value of f(A)
approximated from below.

o If S is a proper dyadic subbase, then S(p) € V(X) A K(X).

» Maximum value of f(A) computable.
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Exact subsets

S(P) = ﬂ Sn,p(n)

nedom(p)

Sy =N (X\ Sp1-p(n) = N ASnp)-
/ nedom(p) \ nedom(p)

Se;(’/(p) = m Sn,p(n)a \

n<|p|
5.éX(p) = m cl Sn,p(n)'
n<|p|
=010 f I I
P \ 50,0 g
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Exact subsets

S(P) = ﬂ Sn,p(n)

nedom(p)

m cl Sn,p(n)-

nedom(p)

o D
VLD,
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Exact subsets

S(P) = ﬂ Sn,p(n)

nedom(p)

§eX(OJ_O) 6%3
Sex(P) € A(X) if S is proper.

Arno Pauly and Hideki Tsuiki Computable dyadic subbases Kanazawa, March 2018 13 /24



Let S be a dyadic subbase of a space X. Define
Ks={e €T | Sex(e) # 0} (CT"),
55 = the ideal completion of Rs (C T%), Zs = 55 \ Rs.

Theorem

| \

Suppose that S is a proper computable dyadic subbase of a computably
compact Hausdorff X.

Q Sec(e) = 0 is semi-decidable, and therefore Ks s r.e.
@ Ks is finitely branching (i.e., {e | d < e} is finite for Vd € T*).
Q@ ¢s(X)C Eg is the set of minimal elements onS. Moreover, X is a

retract of Ls. Therefore, every infinite path ey < e; <' ... in Ks
identifies a unique point x. [T, Tsukamoto 2015].

These properties are used to expand Ks to a tree, and then form a
matching representation of X.
Kanazawa, March 2018 14 / 24
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Non-effective version

Every separable metric space has a proper dyadic subbase. \

@ Proved in [Ohta, Yamada, T 2011] for a special case and in [Ohta,
Yamada, T 2013] for the full case.

e Tsukamoto gave an elegant proof in [Tsukamoto 2017]. (In that
paper, he also proved that every locally compact separable metric
space has a strongly proper dyadic subbase.)

o We effectivize his proof and show that every computably compact
computable metric space has a computable proper dyadic subbase.
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Tsukamoto's idea:

e Choose appropriate a, € X and ¢, € R>? and define
Sno = {x|d(x,an) < cn}, Sn1={x|d(x,an) > cn}.

@ In order that they form a (sub)base, consider a dense subset (b;)jcn
of X and a base (U;)jen of R”?, and for n = (i, ), set a, = b; and
choose ¢, from U; .

@ In order that it is proper, avoid (1) boundary {x | d(x,a,) = cs} has
an interior and (2) for every p with |p| = n, bounda¥ ouch.

@ an

@ c € Ris a local maximum of a continuous function f: if cis
the maximum value of f|, for some open subset V. Local maximum
and local minimum values are called local extrema.

@ In the above cases, ¢, is a local extrema of f(x) = d(x, ap) restricted

to S(p).
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an

@ Choose ¢ Mlocal extrema of f(x) = d(x, ap)

restricted to S(p) for every p € {0,1, L}".
@ Then, define Spo = {x | d(x,an) < ¢} and Sp1 = {x | d(x, ap) > c}.
@ Since an extrema of f is a maximum (or minimum) value of f|y for

some open subset V/, There are countably many local extrema for a
countably based space. Therefore, we can avoid them to choose c.
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Effectivization of the proof

1. A computable metric space (X, d, «) is a separable metric space (X, d)
with a dense sequence o : N — X such that do (a x a) : N2 - R is a

computable double sequence of real numbers.
2. We define the Cauchy representation dx :C NN X,

Theorem

| N\

Every computably compact computable metric space admits a proper
computable dyadic subbase.

@ We cannot use the cardinality argument to choose c,.
@ We use the Computable Baire category theorem [Brattka 2001].
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Theorem (Computable Baire category theorem [Brattka 2001])

There exists a computable operation A :C A(X)N x O(X) = X such that,
for any sequence (Ap)nen of closed nowhere dense subsets of X and a
non-empty open subset |, A((Ap)nen, ) € '\ USZ(An.

@ Apply this to the case X is R.

@ We need to represent the set of local extrema of f as an element of
AX)N.
o Recall that f(x) is d(x, a) restricted to A= S(p) for each |p| = n.
@ The maximum value of f on A € K(X) is computable because
A € K(X) AV(X).
@ However, we want to compute not maximum value but local

maximum values of f on A. They are maximum values of f|any for
open V.
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o We denote by M(a, r) the maximum value of f on AN B(a,r).
@ We denote by M(a, r) the maximum value of f on AnclB(a,r).

@ For some a € X gnd r € Q29 a local maximum value of f on A is, at
the same time, M(a, r) and M(a,2r).

o Let D(a,r) = {x: M(a,2r) <x < M(a, r)}. Since
M(a,2r) > M(a,r) in general, it is a one-point set or an empty set.
It is a one-point set iff it is a local maximum value.

o AN B(a,r) € A(X) and thus M(a, r) is approximated from above

e AnclB(a,2r) € V(X) and thus M(a,2r) is approximated from below.

@ Thus, D(a,r) is approximated from above and below, and thus
D(a,r) € A(X).

e Now, consider all D(a, r) for a € a and r € Q>°, and apply the
computable Baire category theorem.
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Conclusion

o T“-representation and Matching representation.
@ Proper computable dyadic subbases.

@ Every computably compact computable metric space admits a proper
computable dyadic subbase.
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