Computable dyadic subbases

Arno Pauly and Hideki Tsuiki

Second Workshop on Mathematical Logic and its Applications 5-9 March 2018, Kanazawa

Arno Pauly and Hideki Tsuiki

Computable dyadic subbases

Kanazawa, March 2018 1 / 24

• Boolean Values
$$\{0,1\} = \begin{array}{c} \text{Yes } \text{No} \\ 0 & 1 \end{array}$$

Yes No

- Boolean Values $\{0,1\} = 0 1$
 - ▶ $\psi :\subseteq \{0,1\}^{\omega} \to X : \{0,1\}^{\omega}$ -representation (partial surjective map from $\{0,1\}^{\omega}$ to X). Foundation of TTE theory [Weihrauch,...].

- Boolean Values $\{0,1\} = \begin{array}{c} \text{Yes} & \text{No} \\ 0 & 1 \end{array}$
 - ▶ $\psi :\subseteq \{0,1\}^{\omega} \to X : \{0,1\}^{\omega}$ -representation (partial surjective map from $\{0,1\}^{\omega}$ to X). Foundation of TTE theory [Weihrauch,...].

- Boolean Values $\{0,1\} = \begin{array}{c} \text{Yes} & \text{No} \\ 0 & 1 \end{array}$
 - ▶ $\psi :\subseteq \{0,1\}^{\omega} \to X : \{0,1\}^{\omega}$ -representation (partial surjective map from $\{0,1\}^{\omega}$ to X). Foundation of TTE theory [Weihrauch,...].
- Sierpinski Space $S = \downarrow$ \perp Undefined
 - $\varphi: X \hookrightarrow \mathbb{S}^{\omega}$: embedding into $\mathbb{S}^{\omega} (= \mathcal{P} \omega)$.
 - ★ Every second countable space (X, (B_n)_{n∈ℕ}) can be embedded into S^ω by φ(x)(n) = 1 iff x ∈ B_n.

- Boolean Values $\{0,1\} = \begin{array}{c} \text{Yes No} \\ 0 & 1 \end{array}$
 - ▶ $\psi :\subseteq \{0,1\}^{\omega} \to X : \{0,1\}^{\omega}$ -representation (partial surjective map from $\{0,1\}^{\omega}$ to X). Foundation of TTE theory [Weihrauch,...].
- Sierpinski Space \mathbb{S} = $\begin{array}{c} 1 & \text{Yes} \\ \downarrow & \\ & \downarrow & \\ & \\ & & \\$
 - $\varphi: X \hookrightarrow \mathbb{S}^{\omega}$: embedding into $\mathbb{S}^{\omega} (= \mathcal{P} \omega)$.
 - ★ Every second countable space (X, (B_n)_{n∈ℕ}) can be embedded into S^ω by φ(x)(n) = 1 iff x ∈ B_n.
 - $\psi :\subseteq \mathbb{S}^{\omega} \to X : \mathbb{S}^{\omega}$ -representation.

- Boolean Values $\{0,1\} = \begin{array}{c} \text{Yes No} \\ 0 & 1 \end{array}$
 - ▶ $\psi :\subseteq \{0,1\}^{\omega} \to X : \{0,1\}^{\omega}$ -representation (partial surjective map from $\{0,1\}^{\omega}$ to X). Foundation of TTE theory [Weihrauch,...].
- Sierpinski Space \mathbb{S} = $\begin{array}{c} 1 & \text{Yes} \\ \downarrow & \\ & \downarrow & \\ & \\ & & \\$
 - $\varphi: X \hookrightarrow \mathbb{S}^{\omega}$: embedding into $\mathbb{S}^{\omega} (= \mathcal{P} \omega)$.
 - ★ Every second countable space (X, (B_n)_{n∈ℕ}) can be embedded into S^ω by φ(x)(n) = 1 iff x ∈ B_n.
 - $\psi :\subseteq \mathbb{S}^{\omega} \to X : \mathbb{S}^{\omega}$ -representation.
 - ★ A S^{ω}-embedding φ induces a S^{ω}-representation φ^{-1} .

- Boolean Values $\{0,1\} = \begin{array}{c} \text{Yes No} \\ 0 & 1 \end{array}$
 - ▶ $\psi :\subseteq \{0,1\}^{\omega} \to X : \{0,1\}^{\omega}$ -representation (partial surjective map from $\{0,1\}^{\omega}$ to X). Foundation of TTE theory [Weihrauch,...].
- Sierpinski Space S = |
 Undefined
 - $\varphi: X \hookrightarrow \mathbb{S}^{\omega}$: embedding into $\mathbb{S}^{\omega} (= \mathcal{P} \omega)$.
 - ★ Every second countable space (X, (B_n)_{n∈ℕ}) can be embedded into S^ω by φ(x)(n) = 1 iff x ∈ B_n.
 - $\psi :\subseteq \mathbb{S}^{\omega} \to X : \mathbb{S}^{\omega}$ -representation.
 - ★ A S^{ω}-embedding φ induces a S^{ω}-representation φ^{-1} .
 - ★ Enumeration-based $\{0,1\}^{\omega}$ -representation $\psi_{\mathbb{S}^{\omega}} :\subseteq \{0,1\}^{\omega} \to \mathbb{S}^{\omega}$. A \mathbb{S}^{ω} -representation ψ induces a $\{0,1\}^{\omega}$ -representation $\psi_{\mathbb{S}^{\omega}} \circ \psi$.

 $\blacktriangleright \ \varphi: X \hookrightarrow \mathbb{T}^{\omega} : \text{ embedding into } \mathbb{T}^{\omega}.$

- $\varphi: X \hookrightarrow \mathbb{T}^{\omega}$: embedding into \mathbb{T}^{ω} .
- $\psi :\subseteq \mathbb{T}^{\omega} \to X : \mathbb{T}^{\omega}$ -representation.

★ A \mathbb{T}^{ω} -embedding φ induces a \mathbb{T}^{ω} -representation φ^{-1} .

- $\blacktriangleright \ \varphi: X \hookrightarrow \mathbb{T}^{\omega} : \text{ embedding into } \mathbb{T}^{\omega}.$
- $\psi :\subseteq \mathbb{T}^{\omega} \to X : \mathbb{T}^{\omega}$ -representation.

★ A \mathbb{T}^{ω} -embedding φ induces a \mathbb{T}^{ω} -representation φ^{-1} .

- \bullet However, $\mathbb T$ can be encoded in $\mathbb S\times\mathbb S$
 - \mathbb{T} can be embed into $\mathbb{S} \times \mathbb{S}$ $(0 \mapsto (1, \bot), 1 \mapsto (\bot, 1), \bot \mapsto (\bot, \bot)).$

$$\blacktriangleright \iota : \mathbb{T}^{\omega} \hookrightarrow \mathbb{S}^{\omega}.$$

- $\blacktriangleright \ \varphi: X \hookrightarrow \mathbb{T}^{\omega} : \text{ embedding into } \mathbb{T}^{\omega}.$
- $\psi :\subseteq \mathbb{T}^{\omega} \to X : \mathbb{T}^{\omega}$ -representation.
 - ★ A \mathbb{T}^{ω} -embedding φ induces a \mathbb{T}^{ω} -representation φ^{-1} .
- \bullet However, $\mathbb T$ can be encoded in $\mathbb S\times\mathbb S$
 - \mathbb{T} can be embed into $\mathbb{S} \times \mathbb{S}$ $(0 \mapsto (1, \bot), 1 \mapsto (\bot, 1), \bot \mapsto (\bot, \bot)).$

$$\blacktriangleright \iota : \mathbb{T}^{\omega} \hookrightarrow \mathbb{S}^{\omega}.$$

Therefore,

- $\varphi: X \hookrightarrow \mathbb{T}^{\omega}$ induces an embedding $\iota \circ \varphi: X \hookrightarrow \mathbb{S}^{\omega}$.
- ▶ $\psi :\subseteq \mathbb{T}^{\omega} \to X$ induces a \mathbb{S}^{ω} -representation $\psi \circ \iota^{-1} :\subseteq \mathbb{S}^{\omega} \to X$.
- They indue $\{0,1\}^{\omega}$ -representations.

- $\blacktriangleright \ \varphi: X \hookrightarrow \mathbb{T}^{\omega} : \text{ embedding into } \mathbb{T}^{\omega}.$
- $\psi :\subseteq \mathbb{T}^{\omega} \to X : \mathbb{T}^{\omega}$ -representation.
 - ★ A \mathbb{T}^{ω} -embedding φ induces a \mathbb{T}^{ω} -representation φ^{-1} .
- \bullet However, $\mathbb T$ can be encoded in $\mathbb S\times\mathbb S$
 - \mathbb{T} can be embed into $\mathbb{S} \times \mathbb{S}$ $(0 \mapsto (1, \bot), 1 \mapsto (\bot, 1), \bot \mapsto (\bot, \bot)).$

$$\blacktriangleright \iota : \mathbb{T}^{\omega} \hookrightarrow \mathbb{S}^{\omega}.$$

Therefore,

- $\varphi: X \hookrightarrow \mathbb{T}^{\omega}$ induces an embedding $\iota \circ \varphi: X \hookrightarrow \mathbb{S}^{\omega}$.
- ▶ $\psi :\subseteq \mathbb{T}^{\omega} \to X$ induces a \mathbb{S}^{ω} -representation $\psi \circ \iota^{-1} :\subseteq \mathbb{S}^{\omega} \to X$.
- They indue $\{0,1\}^{\omega}$ -representations.

• If X is represented over \mathbb{T}^{ω} , then X is also represented over $\{0,1\}^{\omega}$.

- $\blacktriangleright \ \varphi: X \hookrightarrow \mathbb{T}^{\omega} : \text{ embedding into } \mathbb{T}^{\omega}.$
- $\psi :\subseteq \mathbb{T}^{\omega} \to X : \mathbb{T}^{\omega}$ -representation.
 - ★ A \mathbb{T}^{ω} -embedding φ induces a \mathbb{T}^{ω} -representation φ^{-1} .
- \bullet However, $\mathbb T$ can be encoded in $\mathbb S\times\mathbb S$
 - \mathbb{T} can be embed into $\mathbb{S} \times \mathbb{S}$ $(0 \mapsto (1, \bot), 1 \mapsto (\bot, 1), \bot \mapsto (\bot, \bot)).$

$$\blacktriangleright \iota : \mathbb{T}^{\omega} \hookrightarrow \mathbb{S}^{\omega}.$$

Therefore,

- $\varphi: X \hookrightarrow \mathbb{T}^{\omega}$ induces an embedding $\iota \circ \varphi: X \hookrightarrow \mathbb{S}^{\omega}$.
- ▶ $\psi :\subseteq \mathbb{T}^{\omega} \to X$ induces a \mathbb{S}^{ω} -representation $\psi \circ \iota^{-1} :\subseteq \mathbb{S}^{\omega} \to X$.
- They indue $\{0,1\}^{\omega}$ -representations.
- If X is represented over \mathbb{T}^{ω} , then X is also represented over $\{0,1\}^{\omega}$.
- Why do we study \mathbb{T}^{ω} -representation?

- \mathbb{T}^{ω} is more close to the space, so some information of the space can be reflected into the representation.
 - Every n-dimensional second countable metrizable space can be embed into T^ω_n, which is a subspace of T^ω with up to n copies of ⊥ [T 2002].

- \mathbb{T}^{ω} is more close to the space, so some information of the space can be reflected into the representation.
 - Every n-dimensional second countable metrizable space can be embed into T^ω_n, which is a subspace of T^ω with up to n copies of ⊥ [T 2002].
- Order structures (\mathbb{T}, \preceq) and $(\mathbb{T}^{\omega}, \preceq)$.
 - Natural representation of a space with order.

- \mathbb{T}^{ω} is more close to the space, so some information of the space can be reflected into the representation.
 - Every n-dimensional second countable metrizable space can be embed into T^ω_n, which is a subspace of T^ω with up to n copies of ⊥ [T 2002].
- Order structures (\mathbb{T}, \preceq) and $(\mathbb{T}^{\omega}, \preceq)$.
 - Natural representation of a space with order.
- Contains $\{0,1\}^{\omega}$ as top elements.
 - Sub-structure of the space can be represented with {0,1}^ω.

- \mathbb{T}^{ω} is more close to the space, so some information of the space can be reflected into the representation.
 - Every n-dimensional second countable metrizable space can be embed into T^ω_n, which is a subspace of T^ω with up to n copies of ⊥ [T 2002].
- Order structures (\mathbb{T}, \preceq) and $(\mathbb{T}^{\omega}, \preceq)$.
 - Natural representation of a space with order.
- Contains $\{0,1\}^{\omega}$ as top elements.
 - Sub-structure of the space can be represented with {0,1}^ω.
- A bottomed sequence is an unspecified sequence.
 - ▶ $10 \bot 10.. = \{10010..., 10110...\}.$

Matching-representation

 $\mathcal{K}(\mathbf{X})$: the set of compact subsets of a topological space \mathbf{X} .

Definition

A matching representation is a pair of a representation $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ and an order-preserving \mathbb{T}^{ω} -representation $\psi :\subseteq \mathbb{T}^{\omega} \to \mathcal{K}(\mathbf{X}) \setminus \{\emptyset\}$ with an upper-closed domain such that

$$\psi(p) = \{\delta(q) \mid p \preceq q \in \{0,1\}^{\omega}\}.$$

- Furthermore, if ψ(p) = A and A is a finite set, then the number of bottoms in p is exactly |A| 1.
- cf. domain representation[Blanck 2000].

Represented Space [P 2015]

- A-represented space X = (X, δ_X) is a pair of a set X and a partial surjection δ_X :⊆ A → X.
- We say that two ({0,1}, T, S, N^ω)- represented spaces are computably isomorphic if the conversion of the names is computable.
- For represented spaces X and Y, we define represented spaces
 - $C(\mathbf{X}, \mathbf{Y})$: the space of continuous functions from **X** to **Y**.
 - $\mathcal{O}(\mathbf{X})(=\mathcal{C}(\mathbf{X},\mathbb{S}))$: the space of open subsets of **X**.
 - $\mathcal{A}(\mathbf{X})$: the space of closed subsets of **X** (negative information).
 - ▶ V(X) : the space of closed subsets of X (positive information), which we call overt sets.
 - $\mathcal{K}(\mathbf{X})$: the space of compact subsets of \mathbf{X} .
- Our goal: given a represented space X, construct a matching representation (δ :⊆ {0,1}^ω → X, ψ :⊆ T^ω → K(X) \ {∅}) which are computably isomorphic to the given X and the K(X) \ {∅}.

The Theorem

Theorem

Every computably compact computable metric space X admits matching representations of X and $\mathcal{K}(\mathbf{X}) \setminus \{\emptyset\}$.

- A computable metric space (X, d, α) is a separable metric space (X, d) with some computable structure. (We give the definition later.)
- A computable metric space has the Cauchy representation δ_X and we consider the represented space $\mathbf{X} = (X, \delta_X)$.
- X is computably compact: isEmpty : $\mathcal{A}(X) \to \mathbb{S}$ is computable.
- We can compute a matching representation from the structure of a computably compact computable metric space.
- This theorem has applications to finite closed choice and Weihrauch reducibility.

The Procedure

Computably compact computable metric space $\downarrow \downarrow$ proper computable dyadic subbase $\downarrow \downarrow$ Pruned-tree representation $\downarrow \downarrow$ Matching representation

Definition ([T 2004])

A dyadic subbase over a set X is a map $S : \mathbb{N} \times \{0, 1\} \to \mathcal{P}(X)$ such that $S_{n,0} \cap S_{n,1} = \emptyset$ for every $n \in \mathbb{N}$ and if $\{(n,i) \mid x \in S_{n,i}\} = \{(n,i) \mid y \in S_{n,i}\}$ for $x, y \in X$, then x = y.

•
$$S_{n,\perp} = X \setminus (S_{n,0} \cup S_{n,1}).$$

• $\varphi_S(x)(n) = \begin{cases} 0 & (x \in S_{n,0}), \\ 1 & (x \in S_{n,1}), \\ \perp & (x \in S_{n,\perp}). \end{cases}$

- $\varphi_{S}: X \hookrightarrow \mathbb{T}^{\omega}$: embedding into \mathbb{T}^{ω} .
- $\mathbf{X}_{S} = (X, \varphi_{S}^{-1})$ is an admissible \mathbb{T}^{ω} -represented space.
- We say that S is a computable dyadic subbase of a represented space X if X_S is computably isomorphic to X.

n-th coordinate

Two kinds of informations.

• Each finite sequence $p \in \mathbb{T}^*$ specifies

$$S(p) = \bigcap_{n \in \text{dom}(p)} S_{n,p(n)}$$

$$\overline{S}(p) = \bigcap_{n \in \text{dom}(p)} (X \setminus S_{n,1-p(n)}) = \bigcap_{n \in \text{dom}(p)} (S_{n,p(n)} \cup S_{n,\perp})$$

$$\overbrace{S_{n,0}}_{X} (S_{n,1})$$

$$\overbrace{S_{n,0}}_{X} (S_{n,1})$$

$$\overbrace{S_{n,0}}_{X} (S_{n,1})$$

$$\overbrace{S_{n,0}}_{X} (S_{n,1})$$

$$\overbrace{S_{n,0}}_{X} (S_{n,1})$$

Example: For $p = 0 \perp 10$, $S(p) = S_{0,0} \cap S_{2,1} \cap S_{3,0}$ and $\bar{S}(p) = X \setminus (S_{0,1} \cup S_{2,0} \cup S_{3,1})$.

• $\{S(p) \mid p \in \mathbb{T}^*\}$ is the base generated by the subbase $\{S_{n,0}, S_{n,1} \mid n \in \mathbb{N}\}.$

Proper dyadic subbase

Definition

A dyadic subbase S is proper if $\overline{S}(p) = \operatorname{cl} S(p)$ for every $p \in \mathbb{T}^*$.

- Generalization of Gray-code.
- $S_{n,0}$ and $S_{n,1}$ are exteriors of each other. (The case $p = \perp^n 1$.) $S_{n,\perp}$ is the common boundary.

• $S_{0,\perp}$ and $S_{1,\perp}$ do not touch. (The case p=00.)

Arno Pauly and Hideki Tsuiki

Computability notions of $\bar{S}(p)$ and $\operatorname{cl} S(p)$

Two computability notions $\mathcal{A}(\mathbf{X})$ and $\mathcal{V}(\mathbf{X})$ for closed sets.

- $\bar{S}(p) \in \mathcal{A}(X)$ because $\bar{S}(p) = X \setminus (\bigcup_{n \in \text{dom}(p)} S_{n,1-p(n)})$.
 - $\blacktriangleright \ A \in \mathcal{A}(\mathbf{X}) \iff A^{C} \in \mathcal{O}(\mathbf{X}).$
 - Representation by negative information.
 - ► A(X) and K(X) computably isomorphic if X is computably compact Hausdorff spaces.
 - For a continuous function f and $A \in \mathcal{K}(\mathbf{X})$, maximum value of f(A) approximated from above.
- $\operatorname{cl} S(p) \in \mathcal{V}(\mathsf{X})$ because $\operatorname{cl} S(p) = \operatorname{cl} (\bigcap_{n \in \operatorname{dom}(p)} S_{n,p(n)}).$
 - $A \in \mathcal{V}(\mathbf{X})$ is represented by enumeration of $\{U \mid U \cap A \neq \emptyset\}$.
 - Representation by positive information.
 - For a continuous function f and $A \in \mathcal{V}(\mathbf{X})$, maximum value of f(A) approximated from below.
- If S is a proper dyadic subbase, then $\bar{S}(p) \in \mathcal{V}(\mathbf{X}) \land \mathcal{K}(\mathbf{X})$.
 - Maximum value of f(A) computable.

$$S(p) = \bigcap_{n \in \text{dom}(p)} S_{n,p(n)}$$

$$\bar{S}(p) = \bigcap_{n \in \text{dom}(p)} (X \setminus S_{n,1-p(n)}) = \bigcap_{n \in \text{dom}(p)} \text{cl } S_{n,p(n)}.$$

$$S_{\text{ex}}(p) = \bigcap_{n < |p|} S_{n,p(n)},$$

$$\bar{S}_{\text{ex}}(p) = \bigcap_{n < |p|} \text{cl } S_{n,p(n)}.$$

$$p = 0 \perp 0$$

*S*_{0,0}

 $S_{2,0}$

$$S(p) = \bigcap_{n \in \text{dom}(p)} S_{n,p(n)}$$

$$\bar{S}(p) = \bigcap_{n \in \text{dom}(p)} (X \setminus S_{n,1-p(n)}) = \bigcap_{n \in \text{dom}(p)} \text{cl } S_{n,p(n)}.$$

$$S_{\text{ex}}(p) = \bigcap_{n < |p|} S_{n,p(n)}.$$

$$\bar{S}_{\text{ex}}(p) = \bigcap_{n < |p|} \text{cl } S_{n,p(n)}.$$

$$S(0 \perp 0)$$

$$S(p) = \bigcap_{n \in \text{dom}(p)} S_{n,p(n)}$$

$$\bar{S}(p) = \bigcap_{n \in \text{dom}(p)} (X \setminus S_{n,1-p(n)}) = \bigcap_{n \in \text{dom}(p)} \text{cl } S_{n,p(n)}.$$

$$S_{\text{ex}}(p) = \bigcap_{n < |p|} S_{n,p(n)}.$$

$$\bar{S}_{\text{ex}}(p) = \bigcap_{n < |p|} \text{cl } S_{n,p(n)}.$$

$$\bar{S}(0 \perp 0)$$

$$S(p) = \bigcap_{n \in \text{dom}(p)} S_{n,p(n)}$$

$$\overline{S}(p) = \bigcap_{n \in \text{dom}(p)} (X \setminus S_{n,1-p(n)}) = \bigcap_{n \in \text{dom}(p)} \text{cl } S_{n,p(n)}.$$

$$S_{\text{ex}}(p) = \bigcap_{n < |p|} S_{n,p(n)}.$$

$$\overline{S}_{\text{ex}}(p) = \bigcap_{n < |p|} \text{cl } S_{n,p(n)}.$$

$$S_{\text{ex}}(0 \perp 0)$$

$$S(p) = \bigcap_{n \in \operatorname{dom}(p)} S_{n,p(n)}$$

$$\overline{S}(p) = \bigcap_{n \in \operatorname{dom}(p)} (X \setminus S_{n,1-p(n)}) = \bigcap_{n \in \operatorname{dom}(p)} \operatorname{cl} S_{n,p(n)}.$$

$$S_{\operatorname{ex}}(p) = \bigcap_{n < |p|} S_{n,p(n)}.$$

$$\overline{S}_{\operatorname{ex}}(p) = \bigcap_{n < |p|} \operatorname{cl} S_{n,p(n)}.$$

$$\overline{S}_{\operatorname{ex}}(0 \perp 0)$$

$$\overline{S}_{\operatorname{ex}}(p) \in \mathcal{A}(X) \text{ if } S \text{ is proper.}$$

Definition

Let S be a dyadic subbase of a space **X**. Define

$$\begin{split} \widehat{K}_{\mathcal{S}} &= \{ e \in \mathbb{T}^* \mid \bar{S}_{\text{ex}}(e) \neq \emptyset \} \ (\subseteq \mathbb{T}^*), \\ \widehat{D}_{\mathcal{S}} &= \text{the ideal completion of } \widehat{K}_{\mathcal{S}} \ (\subseteq \mathbb{T}^{\omega}), \quad \widehat{L}_{\mathcal{S}} = \widehat{D}_{\mathcal{S}} \setminus \widehat{K}_{\mathcal{S}}. \end{split}$$

Theorem

Suppose that S is a proper computable dyadic subbase of a computably compact Hausdorff X.

- $\bar{S}_{ex}(e) = \emptyset$ is semi-decidable, and therefore \hat{K}_S is r.e.
- ② \widehat{K}_S is finitely branching (i.e., {e | d ≺¹ e} is finite for $\forall d \in \mathbb{T}^*$).
- Solution is given by a set of minimal elements of L̂_S. Moreover, X is a retract of L̂_S. Therefore, every infinite path e₀ ≺¹ e₁ ≺¹ ... in K̂_S identifies a unique point x. [T, Tsukamoto 2015].

These properties are used to expand \widehat{K}_S to a tree, and then form a matching representation of X.

Arno Pauly and Hideki Tsuiki

The Procedure

Computably compact computable metric space \downarrow Proper computable dyadic subbase \downarrow Pruned-tree representation \downarrow Matching representation

Non-effective version

Theorem

Every separable metric space has a proper dyadic subbase.

- Proved in [Ohta, Yamada, T 2011] for a special case and in [Ohta, Yamada, T 2013] for the full case.
- Tsukamoto gave an elegant proof in [Tsukamoto 2017]. (In that paper, he also proved that every locally compact separable metric space has a strongly proper dyadic subbase.)
- We effectivize his proof and show that every computably compact computable metric space has a computable proper dyadic subbase.

Tsukamoto's idea:

- Choose appropriate $a_n \in X$ and $c_n \in \mathbb{R}^{>0}$ and define $S_{n,0} = \{x \mid d(x, a_n) < c_n\}, S_{n,1} = \{x \mid d(x, a_n) > c_n\}.$
- In order that they form a (sub)base, consider a dense subset $(b_i)_{i \in \mathbb{N}}$ of X and a base $(U_j)_{j \in \mathbb{N}}$ of $\mathbb{R}^{>0}$, and for $n = \langle i, j \rangle$, set $a_n = b_j$ and choose c_n from U_j .
- In order that it is proper, avoid (1) boundary $\{x \mid d(x, a_n) = c_n\}$ has an interior and (2) for every p with |p| = n, boundaries do not touch.

- $c \in \mathbb{R}$ is a local maximum of a continuous function $f : X \to \mathbb{R}$ if c is the maximum value of $f|_V$ for some open subset V. Local maximum and local minimum values are called local extrema.
- In the above cases, c_n is a local extrema of $f(x) = d(x, a_n)$ restricted to $\overline{S}(p)$.

- Choose $c \in \mathbb{R}$ which is not a local extrema of $f(x) = d(x, a_n)$ restricted to $\overline{S}(p)$ for every $p \in \{0, 1, \bot\}^n$.
- Then, define $S_{n,0} = \{x \mid d(x, a_n) < c\}$ and $S_{n,1} = \{x \mid d(x, a_n) > c\}$.
- Since an extrema of f is a maximum (or minimum) value of f|_V for some open subset V, There are countably many local extrema for a countably based space. Therefore, we can avoid them to choose c.

Effectivization of the proof

Definition

1. A computable metric space (X, d, α) is a separable metric space (X, d) with a dense sequence $\alpha : \mathbb{N} \to X$ such that $d \circ (\alpha \times \alpha) : \mathbb{N}^2 \to \mathbb{R}$ is a computable double sequence of real numbers.

2. We define the Cauchy representation $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$.

Theorem

Every computably compact computable metric space admits a proper computable dyadic subbase.

- We cannot use the cardinality argument to choose c_n .
- We use the Computable Baire category theorem [Brattka 2001].

Theorem (Computable Baire category theorem [Brattka 2001])

There exists a computable operation $\Delta :\subseteq \mathcal{A}(\mathbf{X})^{\mathbb{N}} \times \mathcal{O}(\mathbf{X}) \rightrightarrows \mathbf{X}$ such that, for any sequence $(A_n)_{n \in \mathbb{N}}$ of closed nowhere dense subsets of X and a non-empty open subset I, $\Delta((A_n)_{n \in \mathbb{N}}, I) \in I \setminus \bigcup_{n=0}^{\infty} A_n$.

- Apply this to the case **X** is **R**.
- We need to represent the set of local extrema of f as an element of A(X)^ℕ.
- Recall that f(x) is d(x, a) restricted to $A = \overline{S}(p)$ for each |p| = n.
- The maximum value of f on $A \in \mathcal{K}(\mathbf{X})$ is computable because $A \in \mathcal{K}(\mathbf{X}) \land \mathcal{V}(\mathbf{X})$.
- However, we want to compute not maximum value but local maximum values of f on A. They are maximum values of f|_{A∩V} for open V.

- We denote by $\overline{M}(a, r)$ the maximum value of f on $A \cap \overline{B}(a, r)$.
- We denote by M(a, r) the maximum value of f on $A \cap \operatorname{cl} B(a, r)$.
- For some $a \in \mathbf{X}$ and $r \in \mathbb{Q}^{>0}$, a local maximum value of f on A is, at the same time, $\overline{M}(a, r)$ and M(a, 2r).
- Let D(a, r) = {x : M(a, 2r) ≤ x ≤ M(a, r)}. Since M(a, 2r) ≥ M(a, r) in general, it is a one-point set or an empty set. It is a one-point set iff it is a local maximum value.
- $A \cap \bar{B}(a,r) \in \mathcal{A}(\mathsf{X})$ and thus $\bar{M}(a,r)$ is approximated from above
- $A \cap \operatorname{cl} B(a,2r) \in \mathcal{V}(X)$ and thus M(a,2r) is approximated from below.
- Thus, D(a, r) is approximated from above and below, and thus $D(a, r) \in \mathcal{A}(\mathbf{X})$.
- Now, consider all D(a, r) for a ∈ α and r ∈ Q^{>0}, and apply the computable Baire category theorem.

Conclusion

- \mathbb{T}^{ω} -representation and Matching representation.
- Proper computable dyadic subbases.
- Every computably compact computable metric space admits a proper computable dyadic subbase.

- J. Blanck. *Domain representations of topological spaces*. Theoretical Computer Science, 247:229 255, 2000.
- Vasco Brattka, Computable versions of Baire's Category Theorem, Mathematical Foundations of Computer Science 2001, LNCS 2136, Springer, 2001, pp. 224 - 235.
- Haruto Ohta, Hideki Tsuiki, Kohzo Yamada. Every separable metrizable space has a proper dyadic subbase, arXiv:1305.3393, 2013.
- Haruto Ohta, Hideki Tsuiki, Shuji Yamada, Independent subbases and non-redundant codings of separable metrizable spaces, Topology and its applications, vol. 158 (2011), pp. 1 – 14.
- Arno Pauly, On the topological aspects of the theory of represented spaces. Computability vol. 5 (2016), no. 2, pp. 159–180.
- Arno Pauly and Hideki Tsuiki, T^{ω} -representations of compact sets, arXiv:1604.00258, 2016.

Hideki Tsuiki, Dyadic subbases and efficiency properties of the induced {0,1,⊥}^ω-representations, Topology Proceedings, vol. 28(2004), no.2, pp. 673 - 687.

Yasuyuki Tsukamoto, Existence of Strongly Proper Dyadic Subbases, Logical Methods in Computer Science, vol. 13(1:18) (2017), pp. 1 -11.