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Discrete and continuous time systems

We study dynamical systems Φt(x) over the reals, in particular:

Discrete-time dynamical system

Time t ∈ N and the evolution is described by a map f : X → X for
some X ⊆ Rd such that

Φt(x) = f t(x) = f ◦ · · · ◦ f (x)

Continuous-time dynamical system

Time t ∈ R+ and the evolution Φt is described by the solution to an
autonomous ordinary differential equation

ẋ(t) = g(x(t))

for some g : X → Rd .

We are interested in statistical properties of the system for t →∞.
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Example

Consider X = [0, 1] and the logistic map f (x) = 4x(1− x).

Figure: 50 Iterations of the logistic map
with inital value x0 = 0.4 and
x0 = 0.400001
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Figure: 50 Iterations of the logistic map
with inital value x0 = 0.4 and
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Example

Consider X = [0, 1] and the logistic map f (x) = 4x(1− x).

Figure: 50 Iterations of the logistic map
with inital value x0 = 0.4 and
x0 = 0.400001

Figure: Histogram for 106 iterations
and inital value x0 = 0.2
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Example

Consider X = [0, 1] and the logistic map f (x) = 4x(1− x).

Figure: 50 Iterations of the logistic map
with inital value x0 = 0.4 and
x0 = 0.400001

Figure: Histogram for 106 iterations
and inital value x0 = 0.2

It can be shown that the limit density is p(x) = 1

π
√

x(1−x)
.
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Ergodic Theory

Definition

Let Φt be a dynamical system and X a measurable space. A probability
measure µ is invariant for Φt if

µ(Φ−t(A)) = µ(A)

for all t ∈ T and all measurable sets A.

Definition

An invariant measure is called ergodic if

Φ−t(A) = A for all t ∈ T ⇒ µ(A) = 0 ∨ µ(A) = 1
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Computable measures

Definition (Computable metric space)

A computable metric space is a triple (X , d ,S) where

(X , d) is a separable complete metric space

S = {si : i ∈ N} is a countable dense subset

The reals d(si , sj) are uniformly computable in i , j

Elements of S are called ideal points.

Let M(X ) be the set of Borel probability measures over X .
For a compact, seperable and complete metric space X , there is a metric
that makes M(X ) a compact, separable and complete metric space.

Definition

We say a probability measure is computable if it is a computable point in
M(X ).
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Computability of Invariant Measures

Theorem (Gelatolo, Hoyrup, Rojas)

There is a computable map T : [0, 1]→ [0, 1] such that the system
([0, 1],T ) has an ergodic measure that is not computable.

However, if a computable system T : X → X is uniquely ergodic, then the
invariant measure is computable.

Definition

We say a probability measure is polynomial-time computable if the
function F (x) = µ([0, x ]) is polynomial-time computable.
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Dynamical systems with noise

Instead of a deterministic system consider probabilities Pt(A|x) to be in
set A at time t when starting at x at time 0.

Pt has to fulfill some properties:

1 For each measurable A ⊆ X , the function (t, x) 7→ Pt(A|x) is
measurable.

2 For each t, x , A 7→ Pt(A|x) is a probability measure.

3 For any s, t ∈ T it is Ps+t(A|x) =
∫
X Pt(dy |x)Ps(A|y).

This defines a Markov process (xt)t∈T .

Definition

Given µ ∈M(X ) the push forward is defined by

(Stµ)(A) =

∫
X
Pt(A|x) dµ

µ is invariant if Stµ = µ for all t > 0.
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Discrete-time dynamical systems with noise

Definition

For ε > 0 consider a family of Borel probability measures (Qε
x )x∈X over X .

A random perturbation Sε of the dynamic system (X ,T ) is a Markov
Chain Xt with transition probabilities

P(A|x) = P{Xt+1 ∈ A : Xt = x} = Qε
f (x)(A)

for any x ∈ X and Borel set A ⊆ M.

Theorem (Braverman, Grigo, Rojas)

Let S = (X ,T ) be a computable system over a compact subset X ⊆ Rd .
Assume Qε

x is uniform on the ε-ball around x. Then, for almost every
ε > 0, the ergodic measures of Sε are all computable.
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Complexity of noisy systems

Previous results (mainly by Braverman, Grigo, Rojas and Schneider) can
be summarized as follows:
It is assumed that the noise is Gaussian.

TIME upper bound lower bound

f poly-time exp-time ?

f poly-int poly-time poly-time

SPACE upper bound lower bound

f log-space PSPACE ?

f log-int log-space log-space

Additionally there are complexity bounds in the noise-parameter ε.
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Non poly-time integrable transition function

What if f is poly-time computable but not poly-time integrable?

If P = #P then poly-time computable implies poly-time integrable.

We want to show that computing invariant measures can be #P hard.

We first show a construction for uniform noise, then extend to
Gaussian noise.

Recall

A function ϕ ∈ #P if there is some set A ∈ P and a polynomial p :
N→ N such that for all u ∈ Σ∗, ϕ(u) = #{w ∈ Σp(|u|) : uw ∈ A}.

First, assume that X = [0, 1] and the noise is uniform with radius 1
6 .

For each u ∈ Σ∗ we define a function fu : [0, 1]→ [0, 1].

The value of the invariant measure µfu on [0, 1/3] encodes ϕ(u).

fu(x) can be approximated to precision 2−n in time poly(n + |u|).

It suffices to approximate µfu([0, 1/3]) with precision poly(|u|) to
extract ϕ(u).
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Construction of fu

0 1

1

0

What about Gaussian noise?

ϕ ∈ #P, u ∈ Σ∗, A ∈ P “witness function” for ϕ, p : N→ N length of witness.

µ: invariant measure for Sfu, 16 . Want µ([0, 1/3])=̂ϕ(u).
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Note

f not continuous ⇒ not computable!
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Let γ = 2−2p(|u|)−5.
f is polynomial time computable in n + |u|.
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Markov chain

1 2

3

4

Constants computable from the Gaussians.
Functions depending on ϕ(u).



Future work

1 Show how to find a computable constant λ that works for all regions.

2 Show that the construction can be done in small time/space.

3 Replace the function by a polynomial-time computable one.

4 Do the computations for the invariant measure.

5 Study complexity depending on noise parameter ε.

6 Instead of function sequence fu, encode everything in one function.
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Continuous-time dynamical systems with noise

Definition

A Wiener-process is a stochastic process (Wt)t∈R+ such that

1 W0 = 0

2 Wt −Ws is independent of Wu for all 0 ≤ u ≤ s and t > s

3 Wt −Ws ∼ N (0, t − s)

Definition

A stochastic ordinary differential equation (SDE) is an equation of the form

dXt = f (Xt , t)dt + σ(Xt , t)dWt .

The solution of a stochastic ODE is defined by Ito Integrals.

14



The Fokker-Planck equation

The probability densitities for the transition properties of the solution Xt

to the SDE
dXt = f (Xt , t)dt + σ(Xt , t)dWt .

satisfy the Fokker-Planck equation

∂p(x , t)

∂t
= −

N∑
i=1

∂

∂xi
[fi (x , t)p(x , t)] +

N∑
i=1

N∑
j=1

∂2

∂xi ∂xj
[Dij(x , t)p(x , t)]

where

D =
1

2
σσT

Invariant density: ∂p
∂t = 0.
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Invariant measure for time-continuous noisy systems

Consider an SDE of the form

dXt = f (Xt)dt + εdWt .

If f is a convervative vector field, i.e., there is an F : Rd → Rd such that
f = ∇F , then the Fokker-Planck equation has the solution

p(x) =
1

N
e−2F (x)ε

−2

In other cases there is usually no closed form solution.
Future work: Complexity for the general case.
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