Some results on the computational complexity of noisy dynamical systems

Holger Thies Joint work with Jon Schneider

University of Tokyo

March 5, 2018

We study dynamical systems $\Phi_t(x)$ over the reals, in particular:

We study dynamical systems $\Phi_t(x)$ over the reals, in particular:

Discrete-time dynamical system

Time $t \in \mathbb{N}$ and the evolution is described by a map $f : X \to X$ for some $X \subseteq \mathbb{R}^d$ such that

$$\Phi_t(x) = f^t(x) = f \circ \cdots \circ f(x)$$

We study dynamical systems $\Phi_t(x)$ over the reals, in particular:

Discrete-time dynamical system

Time $t \in \mathbb{N}$ and the evolution is described by a map $f : X \to X$ for some $X \subseteq \mathbb{R}^d$ such that

$$\Phi_t(x) = f^t(x) = f \circ \cdots \circ f(x)$$

Continuous-time dynamical system

Time $t \in \mathbb{R}^+$ and the evolution Φ_t is described by the solution to an autonomous ordinary differential equation

$$\dot{x}(t) = g(x(t))$$

for some $g: X \to \mathbb{R}^d$.

We study dynamical systems $\Phi_t(x)$ over the reals, in particular:

Discrete-time dynamical system

Time $t \in \mathbb{N}$ and the evolution is described by a map $f : X \to X$ for some $X \subseteq \mathbb{R}^d$ such that

$$\Phi_t(x) = f^t(x) = f \circ \cdots \circ f(x)$$

Continuous-time dynamical system

Time $t \in \mathbb{R}^+$ and the evolution Φ_t is described by the solution to an autonomous ordinary differential equation

$$\dot{x}(t) = g(x(t))$$

for some $g: X \to \mathbb{R}^d$.

We are interested in statistical properties of the system for $t \to \infty$.

Consider X = [0, 1] and the logistic map f(x) = 4x(1 - x).

Figure: 50 Iterations of the logistic map with initial value $x_0 = 0.4$ and $x_0 = 0.400001$

Figure: 50 Iterations of the logistic map with initial value $x_0 = 0.4$ and $x_0 = 0.400001$

Figure: Histogram for 10^6 iterations and initial value $x_0 = 0.4$

Figure: 50 Iterations of the logistic map with initial value $x_0 = 0.4$ and $x_0 = 0.400001$

Figure: Histogram for 10^6 iterations and initial value $x_0 = 0.3$

Figure: 50 Iterations of the logistic map with initial value $x_0 = 0.4$ and $x_0 = 0.400001$

Figure: Histogram for 10^6 iterations and initial value $x_0 = 0.2$

Consider X = [0, 1] and the logistic map f(x) = 4x(1 - x).

Figure: 50 Iterations of the logistic map with initial value $x_0 = 0.4$ and $x_0 = 0.400001$

Figure: Histogram for 10⁶ iterations and initial value $x_0 = 0.2$

0.4

0.6

0.8

It can be shown that the limit density is
$$p(x) = \frac{1}{\pi \sqrt{x(1-x)}}$$
.

80

0.2

Ergodic Theory

Definition

Let Φ_t be a dynamical system and X a measurable space. A probability measure μ is **invariant** for Φ_t if

$$\mu(\Phi_{-t}(A)) = \mu(A)$$

for all $t \in T$ and all measurable sets A.

Ergodic Theory

Definition

Let Φ_t be a dynamical system and X a measurable space. A probability measure μ is **invariant** for Φ_t if

$$\mu(\Phi_{-t}(A)) = \mu(A)$$

for all $t \in T$ and all measurable sets A.

Definition

An invariant measure is called ergodic if

$$\Phi_{-t}(A) = A$$
 for all $t \in T \Rightarrow \mu(A) = 0 \lor \mu(A) = 1$

Computable measures

Definition (Computable metric space)

A computable metric space is a triple (X, d, S) where

- (X, d) is a separable complete metric space
- $S = \{s_i : i \in \mathbb{N}\}$ is a countable dense subset
- The reals $d(s_i, s_j)$ are uniformly computable in i, j

Elements of *S* are called **ideal points**.

Computable measures

Definition (Computable metric space)

A computable metric space is a triple (X, d, S) where

- (X, d) is a separable complete metric space
- $S = \{s_i : i \in \mathbb{N}\}$ is a countable dense subset
- The reals $d(s_i, s_j)$ are uniformly computable in i, j

Elements of S are called **ideal points**.

Let $\mathcal{M}(X)$ be the set of Borel probability measures over X. For a compact, seperable and complete metric space X, there is a metric that makes $\mathcal{M}(X)$ a compact, separable and complete metric space.

Computable measures

Definition (Computable metric space)

A computable metric space is a triple (X, d, S) where

- (X, d) is a separable complete metric space
- $S = \{s_i : i \in \mathbb{N}\}$ is a countable dense subset
- The reals $d(s_i, s_j)$ are uniformly computable in i, j

Elements of S are called **ideal points**.

Let $\mathcal{M}(X)$ be the set of Borel probability measures over X. For a compact, seperable and complete metric space X, there is a metric that makes $\mathcal{M}(X)$ a compact, separable and complete metric space.

Definition

We say a probability measure is **computable** if it is a computable point in $\mathcal{M}(X)$.

Theorem (Gelatolo, Hoyrup, Rojas)

There is a computable map $T : [0,1] \rightarrow [0,1]$ such that the system ([0,1], T) has an ergodic measure that is not computable.

Theorem (Gelatolo, Hoyrup, Rojas)

There is a computable map $T : [0,1] \rightarrow [0,1]$ such that the system ([0,1], T) has an ergodic measure that is not computable.

However, if a computable system $T: X \to X$ is uniquely ergodic, then the invariant measure is computable.

Theorem (Gelatolo, Hoyrup, Rojas)

There is a computable map $T : [0,1] \rightarrow [0,1]$ such that the system ([0,1], T) has an ergodic measure that is not computable.

However, if a computable system $T: X \to X$ is uniquely ergodic, then the invariant measure is computable.

Definition

We say a probability measure is polynomial-time computable if the function $F(x) = \mu([0, x])$ is polynomial-time computable.

Dynamical systems with noise

Instead of a deterministic system consider probabilities $P_t(A|x)$ to be in set A at time t when starting at x at time 0.

Dynamical systems with noise

Instead of a deterministic system consider probabilities $P_t(A|x)$ to be in set A at time t when starting at x at time 0.

 P_t has to fulfill some properties:

- For each measurable A ⊆ X, the function (t, x) → P_t(A|x) is measurable.
- **2** For each $t, x, A \mapsto P_t(A|x)$ is a probability measure.
- For any $s, t \in T$ it is $P_{s+t}(A|x) = \int_X P_t(dy|x)P_s(A|y)$.

This defines a Markov process $(x_t)_{t \in T}$.

Dynamical systems with noise

Instead of a deterministic system consider probabilities $P_t(A|x)$ to be in set A at time t when starting at x at time 0.

 P_t has to fulfill some properties:

- For each measurable A ⊆ X, the function (t, x) → P_t(A|x) is measurable.
- **2** For each $t, x, A \mapsto P_t(A|x)$ is a probability measure.
- So For any $s, t \in T$ it is $P_{s+t}(A|x) = \int_X P_t(dy|x)P_s(A|y)$.

This defines a Markov process $(x_t)_{t \in T}$.

Definition

Given $\mu \in \mathcal{M}(X)$ the **push forward** is defined by

$$(S_t\mu)(A) = \int_X P_t(A|x) \,\mathrm{d}\mu$$

 μ is invariant if $S_t \mu = \mu$ for all t > 0.

Discrete-time dynamical systems with noise

Definition

For $\varepsilon > 0$ consider a family of Borel probability measures $(Q_x^{\varepsilon})_{x \in X}$ over X. A **random perturbation** S_{ε} of the dynamic system (X, T) is a Markov Chain X_t with transition probabilities

$$P(A|x) = P\{X_{t+1} \in A : X_t = x\} = Q_{f(x)}^{\varepsilon}(A)$$

for any $x \in X$ and Borel set $A \subseteq M$.

Discrete-time dynamical systems with noise

Definition

For $\varepsilon > 0$ consider a family of Borel probability measures $(Q_x^{\varepsilon})_{x \in X}$ over X. A **random perturbation** S_{ε} of the dynamic system (X, T) is a Markov Chain X_t with transition probabilities

$$P(A|x) = P\{X_{t+1} \in A : X_t = x\} = Q_{f(x)}^{\varepsilon}(A)$$

for any $x \in X$ and Borel set $A \subseteq M$.

Theorem (Braverman, Grigo, Rojas)

Let S = (X, T) be a computable system over a compact subset $X \subseteq \mathbb{R}^d$. Assume Q_x^{ε} is uniform on the ε -ball around x. Then, for almost every $\varepsilon > 0$, the ergodic measures of S_{ε} are all computable. Previous results (mainly by Braverman, Grigo, Rojas and Schneider) can be summarized as follows:

It is assumed that the noise is Gaussian.

TIME	upper bound	lower bound
f poly-time	exp-time	?
f poly-int	poly-time	poly-time

Previous results (mainly by Braverman, Grigo, Rojas and Schneider) can be summarized as follows:

It is assumed that the noise is Gaussian.

TIME	upper bound	lower bound
f poly-time	exp-time	?
f poly-int	poly-time	poly-time

SPACE	upper bound	lower bound
f log-space	PSPACE	?
f log-int	log-space	log-space

Previous results (mainly by Braverman, Grigo, Rojas and Schneider) can be summarized as follows:

It is assumed that the noise is Gaussian.

TIME	upper bound	lower bound
f poly-time	exp-time	?
f poly-int	poly-time	poly-time

SPACE	upper bound	lower bound
f log-space	PSPACE	?
f log-int	log-space	log-space

Additionally there are complexity bounds in the noise-parameter ϵ .

What if f is poly-time computable but not poly-time integrable?

• If $\mathcal{P} = \# \mathcal{P}$ then poly-time computable implies poly-time integrable.

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

What if f is poly-time computable but not poly-time integrable?

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

Recall

A function $\varphi \in \#\mathcal{P}$ if there is some set $A \in \mathcal{P}$ and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for all $u \in \Sigma^*$, $\varphi(u) = \#\{w \in \Sigma^{p(|u|)} : uw \in A\}$.

What if f is poly-time computable but not poly-time integrable?

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

Recall

A function $\varphi \in \#\mathcal{P}$ if there is some set $A \in \mathcal{P}$ and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for all $u \in \Sigma^*$, $\varphi(u) = \#\{w \in \Sigma^{p(|u|)} : uw \in A\}$.

What if f is poly-time computable but not poly-time integrable?

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

Recall

A function $\varphi \in \#\mathcal{P}$ if there is some set $A \in \mathcal{P}$ and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for all $u \in \Sigma^*$, $\varphi(u) = \#\{w \in \Sigma^{p(|u|)} : uw \in A\}$.

First, assume that X = [0, 1] and the noise is uniform with radius $\frac{1}{6}$. • For each $u \in \Sigma^*$ we define a function $f_u : [0, 1] \to [0, 1]$.

What if f is poly-time computable but not poly-time integrable?

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

Recall

A function $\varphi \in \#\mathcal{P}$ if there is some set $A \in \mathcal{P}$ and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for all $u \in \Sigma^*$, $\varphi(u) = \#\{w \in \Sigma^{p(|u|)} : uw \in A\}$.

- For each $u \in \Sigma^*$ we define a function $f_u : [0,1] \rightarrow [0,1]$.
- The value of the invariant measure μ_{f_u} on [0, 1/3] encodes $\varphi(u)$.

What if f is poly-time computable but not poly-time integrable?

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

Recall

A function $\varphi \in \#\mathcal{P}$ if there is some set $A \in \mathcal{P}$ and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for all $u \in \Sigma^*$, $\varphi(u) = \#\{w \in \Sigma^{p(|u|)} : uw \in A\}$.

- For each $u \in \Sigma^*$ we define a function $f_u : [0,1] \rightarrow [0,1]$.
- The value of the invariant measure μ_{f_u} on [0, 1/3] encodes $\varphi(u)$.
- $f_u(x)$ can be approximated to precision 2^{-n} in time poly(n+|u|).

What if f is poly-time computable but not poly-time integrable?

- If $\mathcal{P} = \#\mathcal{P}$ then poly-time computable implies poly-time integrable.
- We want to show that computing invariant measures can be $\#\mathcal{P}$ hard.
- We first show a construction for uniform noise, then extend to Gaussian noise.

Recall

A function $\varphi \in \#\mathcal{P}$ if there is some set $A \in \mathcal{P}$ and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for all $u \in \Sigma^*$, $\varphi(u) = \#\{w \in \Sigma^{p(|u|)} : uw \in A\}$.

- For each $u \in \Sigma^*$ we define a function $f_u : [0,1] \rightarrow [0,1]$.
- The value of the invariant measure μ_{f_u} on [0, 1/3] encodes $\varphi(u)$.
- $f_u(x)$ can be approximated to precision 2^{-n} in time poly(n+|u|).
- It suffices to approximate μ_{fu}([0, 1/3]) with precision poly(|u|) to extract φ(u).

 $\varphi \in \#\mathcal{P}, u \in \Sigma^*, A \in P$ "witness function" for $\varphi, p : \mathbb{N} \to \mathbb{N}$ length of witness. μ : invariant measure for $S_{f_u,\frac{1}{6}}$. Want $\mu([0, 1/3]) \widehat{=} \varphi(u)$.

 $\varphi \in \#\mathcal{P}, u \in \Sigma^*, A \in P$ "witness function" for $\varphi, p : \mathbb{N} \to \mathbb{N}$ length of witness. μ : invariant measure for $S_{f_u,\frac{1}{6}}$. Want $\mu([0, 1/3]) \widehat{=} \varphi(u)$.

Note

What about Gaussian noise?

In each Region we want:

• $\mu_1(B_i) = \mu_1(R_i)$ • $\mu_2(B_i) = \mu_2(R_i)$ • $\mu_3(R_i) - \mu_3(B_i) = \lambda$ 1 $\frac{2}{3}$ $\frac{1}{3}$ 0 $\frac{1}{3}$ 0 01010 $2^{p(|u|)}$ intervals

In each Region we want:

In each Region we want:

() Show how to find a computable constant λ that works for all regions.

- **②** Show that the construction can be done in small time/space.

- $\textbf{ Show how to find a computable constant } \lambda \text{ that works for all regions. }$
- **②** Show that the construction can be done in small time/space.
- **③** Replace the function by a polynomial-time computable one.

- **()** Show how to find a computable constant λ that works for all regions.
- **②** Show that the construction can be done in small time/space.
- **③** Replace the function by a polynomial-time computable one.
- O the computations for the invariant measure.

- **()** Show how to find a computable constant λ that works for all regions.
- **②** Show that the construction can be done in small time/space.
- Seplace the function by a polynomial-time computable one.
- Oo the computations for the invariant measure.
- Study complexity depending on noise parameter ε .

- **()** Show how to find a computable constant λ that works for all regions.
- **2** Show that the construction can be done in small time/space.
- Seplace the function by a polynomial-time computable one.
- Oo the computations for the invariant measure.
- Study complexity depending on noise parameter ε .
- **(9)** Instead of function sequence f_u , encode everything in one function.

Continuous-time dynamical systems with noise

Definition

A Wiener-process is a stochastic process $(W_t)_{t \in \mathbb{R}^+}$ such that

1
$$W_0 = 0$$

2 $W_t - W_s$ is independent of W_u for all $0 \le u \le s$ and t > s

$$W_t - W_s \sim \mathcal{N}(0, t-s)$$

Definition

A stochastic ordinary differential equation (SDE) is an equation of the form

$$dX_t = f(X_t, t)dt + \sigma(X_t, t)dW_t.$$

The solution of a stochastic ODE is defined by Ito Integrals.

The Fokker-Planck equation

The probability densitities for the transition properties of the solution X_t to the SDE

$$dX_t = f(X_t, t)dt + \sigma(X_t, t)dW_t.$$

satisfy the Fokker-Planck equation

$$\frac{\partial p(x,t)}{\partial t} = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left[f_i(x,t) p(x,t) \right] + \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} \left[D_{ij}(x,t) p(x,t) \right]$$

where

$$D = \frac{1}{2}\sigma\sigma^{\mathsf{T}}$$

Invariant density: $\frac{\partial p}{\partial t} = 0$.

Invariant measure for time-continuous noisy systems

Consider an SDE of the form

 $dX_t = f(X_t)dt + \epsilon dW_t.$

Consider an SDE of the form

$$dX_t = f(X_t)dt + \epsilon dW_t.$$

If f is a convervative vector field, i.e., there is an $F : \mathbb{R}^d \to \mathbb{R}^d$ such that $f = \nabla F$, then the Fokker-Planck equation has the solution

$$p(x) = \frac{1}{N} e^{-2F(x)\varepsilon^{-2}}$$

Consider an SDE of the form

$$dX_t = f(X_t)dt + \epsilon dW_t.$$

If f is a convervative vector field, i.e., there is an $F : \mathbb{R}^d \to \mathbb{R}^d$ such that $f = \nabla F$, then the Fokker-Planck equation has the solution

$$p(x) = \frac{1}{N} e^{-2F(x)\varepsilon^{-2}}$$

In other cases there is usually no closed form solution.

Consider an SDE of the form

$$dX_t = f(X_t)dt + \epsilon dW_t.$$

If f is a convervative vector field, i.e., there is an $F : \mathbb{R}^d \to \mathbb{R}^d$ such that $f = \nabla F$, then the Fokker-Planck equation has the solution

$$p(x) = \frac{1}{N} e^{-2F(x)\varepsilon^{-2}}$$

In other cases there is usually no closed form solution. Future work: Complexity for the general case.