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We are interested in statistical properties of the system for t — oo.
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Example

Consider X = [0, 1] and the logistic map f(x) = 4x(1 — x).
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It can be shown that the limit density is p(x) = 1

w4/ x(1—x) '
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Definition

An invariant measure is called ergodic if

O_(A)=Aforallte T = u(A)=0Vvpu(A)=1
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@ S={s; : i € N} is a countable dense subset
@ The reals d(s;, s;) are uniformly computable in i,

Elements of S are called ideal points.

Let M(X) be the set of Borel probability measures over X.
For a compact, seperable and complete metric space X, there is a metric
that makes M(X) a compact, separable and complete metric space.

Definition
We say a probability measure is computable if it is a computable point in

M(X).
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Theorem (Gelatolo, Hoyrup, Rojas)

There is a computable map T : [0,1] — [0, 1] such that the system
([0,1], T) has an ergodic measure that is not computable.

However, if a computable system T : X — X is uniquely ergodic, then the
invariant measure is computable.

Definition

We say a probability measure is polynomial-time computable if the
function F(x) = ([0, x]) is polynomial-time computable.
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This defines a Markov process (x¢)teT-

Definition

Given u € M(X) the push forward is defined by

(Seps)(A) = /X Pe(Alx) du

W is invariant if Sgpp = p for all t > 0.
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Definition

For € > 0 consider a family of Borel probability measures (QS)xex over X.
A random perturbation S. of the dynamic system (X, T) is a Markov
Chain X; with transition probabilities

P(Alx) = P{Xer1 € A 1 Xe = x} = Qf((A)

for any x € X and Borel set A C M.

Theorem (Braverman, Grigo, Rojas)

Let S = (X, T) be a computable system over a compact subset X C RY.
Assume Q5 is uniform on the e-ball around x. Then, for almost every
e > 0, the ergodic measures of S. are all computable.
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Complexity of noisy systems

Previous results (mainly by Braverman, Grigo, Rojas and Schneider) can
be summarized as follows:

It is assumed that the noise is Gaussian.

TIME upper bound | lower bound
f poly-time exp-time ?
f poly-int poly-time poly-time

SPACE upper bound | lower bound
f log-space PSPACE 7
f log-int log-space log-space

Additionally there are complexity bounds in the noise-parameter e.
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What if f is poly-time computable but not poly-time integrable?
o If P = #P then poly-time computable implies poly-time integrable.
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A function ¢ € #P if there is some set A € P and a polynomial p:
N — N such that for all u € X*, p(u) = #{w € TP : yw e A}.

First, assume that X = [0,1] and the noise is uniform with radius .
@ For each u € ¥* we define a function f, : [0,1] — [0, 1].
@ The value of the invariant measure pf, on [0,1/3] encodes ¢(u).
e f,(x) can be approximated to precision 27" in time poly(n + |ul).

o It suffices to approximate pf, ([0, 1/3]) with precision poly(|u|) to
extract ¢(u).

10
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Let v = 272p(JuD=5,

f is polynomial time computable in n+ |u|.
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Construction for Gaussian noise
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Future work

© Show how to find a computable constant A that works for all regions.
@ Show that the construction can be done in small time/space.

© Replace the function by a polynomial-time computable one.

@ Do the computations for the invariant measure.

@ Study complexity depending on noise parameter &.

@ Instead of function sequence f,, encode everything in one function.

13



Continuous-time dynamical systems with noise

Definition

A Wiener-process is a stochastic process (W;)cr+ such that
QO Wo=0
Q@ W; — Wi is independent of W, forall 0 <u<sandt>s
Q@ Wi— W, ~ N(0,t—5)

Definition

A stochastic ordinary differential equation (SDE) is an equation of the form

dXt = f(Xt, t)dt I O'(Xt, t)th

The solution of a stochastic ODE is defined by Ito Integrals.

14



The Fokker-Planck equation

The probability densitities for the transition properties of the solution X;
to the SDE

dXt = f(Xt, t)dt + O'(Xt, t)th
satisfy the Fokker-Planck equation

N
Zaa (x, t)p Xt]+228x, [Djj(x, t)p(x, t)]

i=1 j=1

where

D= —-c0o

2

Invariant density: % =

15



Invariant measure for time-continuous noisy systems

Consider an SDE of the form

dXt = f(Xt)dt + Eth.
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Invariant measure for time-continuous noisy systems

Consider an SDE of the form
dXt = f(Xt)dt + Gth.

If f is a convervative vector field, i.e., there is an F : RY — R such that
f = VF, then the Fokker-Planck equation has the solution

L o 2F(x)e2
xX)=—e
p(x) =4
In other cases there is usually no closed form solution.

Future work: Complexity for the general case.
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