Strong Completeness \& the Finite Model Property for Bi-Intuitionistic Stable Tense Logics (BiSKts)

Katsuhiko Sano

v-sano@let.hokudai.ac.jp
Graduate School of Letters, Hokkaido University, Japan

2nd Workshop on MLA @ Kanazawa, 8th March 2018 Joint Work w/ John G. Stell (University of Leeds)

Outline

(1) Mathematical Morphology: From Sets to Graphs

2 Syntax and Semantics of BiSKt

3 Hilbert System of BiSKt: Strong Completeness \& FMP

Outline

(1) Mathematical Morphology: From Sets to Graphs
(2) Syntax and Semantics of BiSKt

3 Hilbert System of BiSKt: Strong Completeness \& FMP

What is Mathematical Morphology?

- A technique for image processing.

© John G. Stell

Set-based Mathematical Morphology

- Let $U=\mathbb{Z}^{2}$, a grid of pixels.
- A subset X of \mathbb{Z}^{2} : a binary image (black and white).

X

Structuring Element

- is also called a probe or lens.
- induces a binary relation R on $X=\mathbb{Z}^{2}$.

Example of Structuring Element

Structuring Element

- is also called a probe or lens.
- induces a binary relation R on $X=\mathbb{Z}^{2}$.

R induced by the Structuring Element

Dilation by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$. $X \oplus R:=\quad\{u \in U \mid \exists v .(v R u$ and $v \in X)\}$

Dilation by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$.

$$
\begin{aligned}
X \oplus R & := \\
& :=\langle u \in U| \exists v \cdot(v R u \text { and } v \in X)\} \\
& \forall X
\end{aligned}
$$

where " \downarrow " is a backward looking (past tense) operator.

Dilation by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$.

$$
\begin{aligned}
X \oplus R & := \\
& :=\langle u \in U| \exists v \cdot(v R u \text { and } v \in X)\} \\
& \forall X
\end{aligned}
$$

where " \downarrow " is a backward looking (past tense) operator.

$X \oplus R$

Erosion by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$. $R \ominus X:=\quad\{u \in U \mid \forall v .(u R v$ implies $v \in X)\}$

Erosion by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$.

$$
\begin{aligned}
R \ominus X & :=\quad\{u \in U \mid \forall v .(u R v \text { implies } v \in X)\} \\
& :=\square X
\end{aligned}
$$

X

Erosion by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$. $R \ominus X:=\quad\{u \in U \mid \forall v .(u R v$ implies $v \in X)\}$ $:=\square X$

$R \ominus X$

Mathematical Morphology for Graphs

- A graph consists of nodes and edges.
- A subgraph is naturally defined.

Mathematical Morphology for Graphs

- A graph consists of nodes and edges.
- A subgraph is naturally defined.

What is a relation of a graph?

Stell (2015)'s Approach: Hypergraphs

Let us "mix" nodes and edges into one domain!

Stell (2015)'s Approach: Hypergraphs

Let us "mix" nodes and edges into one domain!
(U, H) is a hypergraph if:

- (U, H) is a preorder (reflexive and transitive);
- If $x H y$ and $y H z$ then $x=y$ or $y=z$ for all $x, y, z \in U$.

How to Recover Edges and Nodes

Let (U, H) be a hypergraph.

- $u \in U$ is a node if u is an H-maximal element, i.e.,
$\forall v .(u H v$ implies $u=v)$
- $u \in U$ is an edge if u has a proper H-successor, i.e.,

$$
\exists v .(u H v \text { and } u \neq v)
$$

How to Recover Edges and Nodes

Let (U, H) be a hypergraph.

- $u \in U$ is a node if u is an H-maximal element, i.e.,

$$
\forall v .(u H v \text { implies } u=v)
$$

- $u \in U$ is an edge if u has a proper H-successor, i.e.,

$$
\exists v .(u H v \text { and } u \neq v)
$$

Graphs From Viewpoints of Hypergraphs

 Let (U, H) be a hypergraph.An edge v and a node u is incident if $v H u$ holds
(U, H) is a graph if all edges are incident $w /$ one or two nodes.

Graphs From Viewpoints of Hypergraphs

 Let (U, H) be a hypergraph.An edge v and a node u is incident if $v H u$ holds
(U, H) is a graph if all edges are incident $w /$ one or two nodes.

Graphs From Viewpoints of Hypergraphs Let (U, H) be a hypergraph.

An edge v and a node u is incident if $v H u$ holds
(U, H) is a graph if all edges are incident $w /$ one or two nodes.

Subgraph of a Hypergraph

Let (U, H) be a hypergraph.

- $X \subseteq U$ is a subgraph of (U, H) if X is H-closed, i.e., X is closed under taking H-successors.

Binary Relation on a Hypergraph

Over Sets: it is known that
$\{$ all binary rel.s on $U\} \cong\{$ all \cup-preserving maps on $\mathcal{P}(U)\}$

Binary Relation on a Hypergraph

Over Sets: it is known that
$\{$ all binary rel.s on $U\} \cong\{$ all \cup-preserving maps on $\mathcal{P}(U)\}$
Over (Hyper) Graphs: Let (U, H) be a preorder.
??? $\cong\left\{\right.$ all \cup-preserving maps on $\left.\mathcal{P}^{\uparrow}(U)\right\}$
where $\mathcal{P}^{\uparrow}(U)$ is the set of all H-closed sets.

Binary Relation on a Hypergraph

Over Sets: it is known that
$\{$ all binary rel.s on $U\} \cong\{$ all \cup-preserving maps on $\mathcal{P}(U)\}$
Over (Hyper) Graphs: Let (U, H) be a preorder.
$\{$ all stable rel.s on $U\} \cong\left\{\right.$ all \cup-preserving maps on $\left.\mathcal{P}^{\uparrow}(U)\right\}$
where $\mathcal{P}^{\uparrow}(U)$ is the set of all H-closed sets.

- $R \subseteq U^{2}$ is stable if:

$$
H ; R ; H \subseteq R
$$

where ; is a relational composition.

What is Bi-intuitionistic Stable Tense Logic?

The logic of all preorders (U, H) with a stable relation R !

- BiSKt $=$ Bi-intuitionistic logic $+\downarrow+\square$.

What is Bi-intuitionistic Stable Tense Logic?

The logic of all preorders (U, H) with a stable relation R !

- $\mathrm{BiSKt}=\mathrm{Bi}$-intuitionistic logic $+\downarrow+\square$.
- Why "bi"-intuitionistic logic (Rauszer 1974)?

What is Bi-intuitionistic Stable Tense Logic?

The logic of all preorders (U, H) with a stable relation R !

- $\operatorname{BiSKt}=$ Bi-intuitionistic logic $+\downarrow+\square$.
- Why "bi"-intuitionistic logic (Rauszer 1974)?
\because We can cover several ways of "complementation"

What is Bi-intuitionistic Stable Tense Logic?

The logic of all preorders (U, H) with a stable relation R !

- $\mathrm{BiSKt}=\mathrm{Bi}$-intuitionistic logic $+\downarrow+\square$.
- Why "bi"-intuitionistic logic (Rauszer 1974)?
\because We can cover several ways of "complementation"

What is Bi-intuitionistic Stable Tense Logic?

The logic of all preorders (U, H) with a stable relation R !

- $\mathrm{BiSKt}=\mathrm{Bi}$-intuitionistic logic $+\downarrow+\square$.
- Why "bi"-intuitionistic logic (Rauszer 1974)?
\because We can cover several ways of "complementation"

$$
\neg X
$$

What is Bi-intuitionistic Stable Tense Logic?

The logic of all preorders (U, H) with a stable relation R !

- $\operatorname{BiSKt}=$ Bi-intuitionistic logic $+\downarrow+\square$.
- Why "bi"-intuitionistic logic (Rauszer 1974)?
\because We can cover several ways of "complementation"

$-X$

Background \& Contribution of This Talk

For BiSKt, Stell, Schmidt \& Rydeheard (2016) provided

- Labelled tableau calculus of BiSKt
- Semantic completeness and decidability of it
- Frame definability results

Background \& Contribution of This Talk

For BiSKt, Stell, Schmidt \& Rydeheard (2016) provided

- Labelled tableau calculus of BiSKt
- Semantic completeness and decidability of it
- Frame definability results

For BiSKt, this talk provides:
(Hilbert-style axiomatization of BiSKt.
(2) Strong completeness results of extensions of BiSKt
(3) FMP via filtration for extensions of BiSKt

Outline

Mathematical Morphology: From Sets to Graphs

(2) Syntax and Semantics of BiSKt

3 Hilbert System of BiSKt: Strong Completeness \& FMP

Syntax of BiSKt

Let Prop be a countable set of propositional variables.
$\varphi::=\top|\perp| p|\varphi \wedge \varphi| \varphi \vee \varphi|\varphi \rightarrow \varphi| \varphi \prec \varphi|\vee| \square \varphi \quad(p \in \operatorname{Prop})$.

- $\neg \varphi:=\varphi \rightarrow \perp$.
- $\varphi \prec \psi$ is read as: " φ excludes ψ ": Coimplication
- $\lrcorner \psi:=\top \prec \psi$: Conegation

H-Frame and H-Model

$F=(U, H, R)$ is an H-frame if:

- (U, H) is a preorder;
- R is a stable relation, i.e., $H ; R ; H \subseteq R$.

H-Frame and H-Model

$F=(U, H, R)$ is an H-frame if:

- (U, H) is a preorder;
- R is a stable relation, i.e., $H ; R ; H \subseteq R$.

An H-model M consists of:
an H-frame (U, H, R) and a valuation V :
$V: \operatorname{Prop} \rightarrow \mathcal{P}^{\uparrow}(U)=\{$ all H-closed sets on $U\}$.

Kripke Semantics of BiSKt

Let $M=(U, H, R, V)$ be an H-model. For a state $u \in U$ and a formula φ, the satisfaction $M, u \models \varphi$ is defined as:

$$
\begin{array}{ll}
M, u \models \varphi \rightarrow \psi & \text { iff } \quad \forall v \in U((u H v \& M, v \models \varphi) \Rightarrow M, v \models \psi), \\
M, u \models \varphi \prec \psi \quad \text { iff } \quad \exists v \in U(v H u \& M, v \models \varphi \& M, v \not \models \psi),
\end{array}
$$

Kripke Semantics of BiSKt

Let $M=(U, H, R, V)$ be an H-model. For a state $u \in U$ and a formula φ, the satisfaction $M, u \models \varphi$ is defined as:
$M, u \models \varphi \rightarrow \psi \quad$ iff $\quad \forall v \in U((u H v \& M, v \models \varphi) \Rightarrow M, v \models \psi)$,
$M, u \models \varphi \prec \psi \quad$ iff $\quad \exists v \in U(v H u \& M, v \models \varphi \& M, v \not \vDash \psi)$,
$M, u \models \varphi \quad$ iff $\quad \exists v \in U(v R u$ and $M, v \models \varphi)$,
$M, u \models \square \varphi \quad$ iff $\quad \forall v \in U(u R v \Rightarrow M, v \models \varphi)$.

Kripke Semantics of BiSKt

Let $M=(U, H, R, V)$ be an H-model. For a state $u \in U$ and a formula φ, the satisfaction $M, u \models \varphi$ is defined as:
$M, u \models \varphi \rightarrow \psi \quad$ iff $\quad \forall v \in U((u H v \& M, v \models \varphi) \Rightarrow M, v \models \psi)$,
$M, u \models \varphi \prec \psi \quad$ iff $\quad \exists v \in U(v H u \& M, v \models \varphi \& M, v \not \vDash \psi)$,
$M, u \models \varphi \quad$ iff $\quad \exists v \in U(v R u$ and $M, v \models \varphi)$,
$M, u \models \square \varphi \quad$ iff $\quad \forall v \in U(u R v \Rightarrow M, v \models \varphi)$.
Define $\llbracket \varphi \rrbracket:=\{u \in U \mid M, u \models \varphi\}$.

Kripke Semantics of BiSKt

Let $M=(U, H, R, V)$ be an H-model. For a state $u \in U$ and a formula φ, the satisfaction $M, u \models \varphi$ is defined as:
$M, u \models \varphi \rightarrow \psi \quad$ iff $\quad \forall v \in U((u H v \& M, v \models \varphi) \Rightarrow M, v \models \psi)$,
$M, u \models \varphi \prec \psi \quad$ iff $\quad \exists v \in U(v H u \& M, v \models \varphi \& M, v \not \vDash \psi)$,
$M, u \models \varphi \quad$ iff $\quad \exists v \in U(v R u$ and $M, v \models \varphi)$,
$M, u \models \square \varphi \quad$ iff $\quad \forall v \in U(u R v \Rightarrow M, v \models \varphi)$.
Define $\llbracket \varphi \rrbracket:=\{u \in U \mid M, u \models \varphi\}$.
$\llbracket \varphi \rrbracket$ is H -closed.

Kripke Semantics of BiSKt

Let $M=(U, H, R, V)$ be an H-model. For a state $u \in U$ and a formula φ, the satisfaction $M, u \models \varphi$ is defined as:
$M, u \models \varphi \rightarrow \psi \quad$ iff $\quad \forall v \in U((u H v \& M, v \models \varphi) \Rightarrow M, v \models \psi)$,
$M, u \models \varphi \prec \psi \quad$ iff $\quad \exists v \in U(v H u \& M, v \models \varphi \& M, v \not \vDash \psi)$,
$M, u \models \varphi \quad$ iff $\quad \exists v \in U(v R u$ and $M, v \models \varphi)$,
$M, u \models \square \varphi \quad$ iff $\quad \forall v \in U(u R v \Rightarrow M, v \models \varphi)$.
Define $\llbracket \varphi \rrbracket:=\{u \in U \mid M, u \models \varphi\}$.
$\llbracket \varphi \rrbracket$ is H -closed.
$\llbracket \varphi \rrbracket$ is a subgraph when (U, H, R) is a hypergraph.

Frame Definability (Stell, Schmidt \& Rydeheard 2016)

Define the frame validity $F \models \varphi$ as in ordinary modal logic.
Let $F=(U, H, R)$ be an H-frame. TFAE:
(1) $R^{m} \subseteq R^{n}$.
(2) $F \models{ }^{m} p \rightarrow{ }^{n} p$.
where $R^{k}:=\underbrace{R ; \cdots ; R}_{k}\left(R^{0}:=H\right)$ and ${ }^{k}:=\underbrace{\cdots}_{k}$.
Note: this talk simplifies their more general results.

Outline

Mathematical Morphology: From Sets to Graphs

(2) Syntax and Semantics of BiSKt
(3) Hilbert System of BiSKt: Strong Completeness \& FMP

Residuation or Adjunction

Let $\models \varphi$ mean that $F \models \varphi$ for all H-frames F. We have:

$$
\vDash(p \wedge q) \rightarrow r \quad \Longleftrightarrow \quad \models p \rightarrow(q \rightarrow r)
$$

For coimplication,

$$
\models(p \prec q) \rightarrow r \quad \Longleftrightarrow \quad \models p \rightarrow(q \vee r) .
$$

For \leqslant and \square,

$$
\vDash \gg q \quad \Longleftrightarrow \quad \vDash p \rightarrow \square q .
$$

Hilbert System of BiSKt

To Hilbert system of Int (w/ uniform substitution), we add:

Hilbert System of BiSKt

To Hilbert system of Int (w/ uniform substitution), we add:

For \downarrow and \square,
(A12) $p \rightarrow \square>p$
(A13) $\square p \rightarrow p$
(Mon $>$) From $\varphi \rightarrow \psi$, infer $\varphi \rightarrow \psi$.
(Mon \square) From $\varphi \rightarrow \psi$, infer $\square \varphi \rightarrow \square \psi$.

Hilbert System of BiSKt

To Hilbert system of Int (w/ uniform substitution), we add: For coimplicaiton,

$$
\begin{aligned}
& \text { (A10) } p \rightarrow(q \vee(p \prec q)) \\
& (\mathrm{A} 11)((q \vee r) \prec q) \rightarrow r
\end{aligned}
$$

(Mon-<) From $\delta_{1} \rightarrow \delta_{2}$, infer $\left(\delta_{1} \prec \psi\right) \rightarrow\left(\delta_{2} \prec \psi\right)$,
For and \square,
(A12) $p \rightarrow \square>p$
(A13) $\square p \rightarrow p$
(Mon $>$) From $\varphi \rightarrow \psi$, infer $\varphi \rightarrow \psi$.
(Mon \square) From $\varphi \rightarrow \psi$, infer $\square \varphi \rightarrow \square \psi$.

Hilbert System of BiSKt

To Hilbert system of Int (w/ uniform substitution), we add: For coimplicaiton,

$$
\begin{aligned}
& \text { (A10) } p \rightarrow(q \vee(p \prec q)) \\
& (\mathrm{A} 11) \quad((q \vee r) \prec q) \rightarrow r
\end{aligned}
$$

(Mon $\prec)$ From $\delta_{1} \rightarrow \delta_{2}$, infer $\left(\delta_{1} \prec \psi\right) \rightarrow\left(\delta_{2} \prec \psi\right)$,
For and \square,
(A12) $p \rightarrow \square>p$
(A13) $\square p \rightarrow p$
(Mon $\boldsymbol{*})$ From $\varphi \rightarrow \psi$, infer $\varphi \rightarrow \psi$.
(Mon \square) From $\varphi \rightarrow \psi$, infer $\square \varphi \rightarrow \square \psi$.
For Bilnt, it's much simpler than Rauszer (1974)'s system.

Strong Completeness for Extensions of BiSKt

Let Σ be a set of axioms of the form:

$$
\downarrow^{m} p \rightarrow{ }^{n} p
$$

Then $\mathbf{B i S K t}+\Sigma$ is strongly complete for the class of H-frames defined by Σ.

BiSKt $+\Sigma$ is strongly complete for a class \mathbb{F} of H-frames if every consistent set Γ in the extension is satisfiable in \mathbb{F}.

FMP for Extensions of BiSKt

Let Σ be a finite set of axioms of the form:

$$
\diamond p \rightarrow{ }^{n} p \text { or } p \rightarrow{ }^{n} p
$$

Then BiSKt $+\Sigma$ enjoys the finite model property for the class of H-frames defined by Σ, so it is decidable.

BiSKt $+\Sigma$ enjoys FMP for a class \mathbb{F} of H-frames if every consistent formula φ in the extension is
satisfiable in a finite frame in \mathbb{F}.

FMP for Extensions of BiSKt

Let Σ be a finite set of axioms of the form:

$$
\diamond p \rightarrow{ }^{n} p \text { or } p \rightarrow{ }^{n} p
$$

Then BiSKt $+\Sigma$ enjoys the finite model property for the class of H-frames defined by Σ, so it is decidable.

BiSKt $+\Sigma$ enjoys FMP for a class \mathbb{F} of H-frames if every consistent formula φ in the extension is
satisfiable in a finite frame in \mathbb{F}.
(\because) By filtration technique by Hasimoto (2001) for intuitionistic modal logic.

Further Directions

- Strong Comp. \& FMP resutls can be extended even if we mix $\diamond:=\lrcorner \square \neg$ ("for some future") with \diamond.
- More applications (in my last visit to Leeds):
- Formalize spatial relationship over discrete space
- Discrete ver. RCC8. Universal modalities are needed.
- (Done) Sequent calculus w/ the analytic cut rule
- (cf.) Kowalski \& Ono (2016): Craig Interpolation for Bilnt
- Joint work w/ Hiroakira Ono
- More general results on completeness \& FMP
- (cf.) Wolter (1998): On Logics with Coimplication (Modal Expansion of Bilnt)

Opening of X by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$.

$$
(R \ominus X) \oplus R \quad(=\triangle \square X)
$$

x

Opening of X by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$. $(R \ominus X) \oplus R \quad(=\square X)$

$R \ominus X$

Opening of X by R

Let U be a set, $R \subseteq U^{2}$ and $X \subseteq U$.
$(R \ominus X) \oplus R \quad(=\square X)$

$(R \ominus X) \oplus R$

Application to Mathematical Morphology

Recall that " \square " corresponds to "opening by R ".

Once we take the opening of X by R, it becomes a fixed point of the opening by R !

