Strong Completeness & the Finite Model Property for Bi-Intuitionistic Stable Tense Logics (**BiSKt**s)

Katsuhiko Sano

v-sano@let.hokudai.ac.jp Graduate School of Letters, Hokkaido University, Japan

2nd Workshop on MLA @ Kanazawa, 8th March 2018 Joint Work w/ John G. Stell (University of Leeds)

Outline

Mathematical Morphology: From Sets to Graphs

Hilbert System of BiSKt: Strong Completeness & FMP

Outline

Syntax and Semantics of BiSKt

3 Hilbert System of BiSKt: Strong Completeness & FMP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▼ ◇ ◇ ◇

What is Mathematical Morphology?

• A technique for image processing.

Set-based Mathematical Morphology

- Let $U = \mathbb{Z}^2$, a grid of pixels.
- A subset X of \mathbb{Z}^2 : a binary image (black and white).

Structuring Element

- is also called a probe or lens.
- induces a binary relation R on $X = \mathbb{Z}^2$.

Example of Structuring Element

Structuring Element

- is also called a probe or lens.
- induces a binary relation R on $X = \mathbb{Z}^2$.

R induced by the Structuring Element

Dilation by RLet U be a set, $R \subseteq U^2$ and $X \subseteq U$.

 $X \oplus R := \{ u \in U \mid \exists v.(vRu \text{ and } v \in X) \}$

Х

Dilation by RLet U be a set, $R \subseteq U^2$ and $X \subseteq U$.

$$X \oplus R := \{ u \in U \mid \exists v.(vRu \text{ and } v \in X) \}$$
$$:= \blacklozenge X$$

where "
 "
 is a backward looking (past tense) operator.

Х

Dilation by RLet U be a set, $R \subseteq U^2$ and $X \subseteq U$.

$$X \oplus R := \{ u \in U \mid \exists v.(vRu \text{ and } v \in X) \}$$
$$:= \blacklozenge X$$

where "
 "
 is a backward looking (past tense) operator.

$$X \oplus R$$

Erosion by RLet U be a set, $R \subseteq U^2$ and $X \subseteq U$.

 $R \ominus X := \{ u \in U | \forall v.(uRv \text{ implies } v \in X) \}$

Х

Erosion by RLet U be a set, $R \subseteq U^2$ and $X \subseteq U$.

$$R \ominus X := \{ u \in U \mid \forall v.(uRv \text{ implies } v \in X) \}$$
$$:= \Box X$$

Х

Erosion by RLet U be a set, $R \subseteq U^2$ and $X \subseteq U$.

$$R \ominus X := \{ u \in U \mid \forall v.(uRv \text{ implies } v \in X) \}$$
$$:= \Box X$$

 $R \ominus X$

Mathematical Morphology for Graphs

- A graph consists of nodes and edges.
- A subgraph is naturally defined.

Mathematical Morphology for Graphs

- A graph consists of nodes and edges.
- A subgraph is naturally defined.

What is a relation of a graph?

Stell (2015)'s Approach: Hypergraphs

Let us "mix" nodes and edges into one domain!

Stell (2015)'s Approach: Hypergraphs

Let us "mix" nodes and edges into one domain!

- (U, H) is a hypergraph if:
 - (*U*, *H*) is a preorder (reflexive and transitive);
 - If *xHy* and *yHz* then x = y or y = z for all $x, y, z \in U$.

How to Recover Edges and Nodes Let (U, H) be a hypergraph.

• $u \in U$ is a node if u is an H-maximal element, i.e.,

 $\forall v.(uHv \text{ implies } u = v)$

• $u \in U$ is an edge if u has a proper H-successor, i.e.,

 $\exists v.(uHv \text{ and } u \neq v)$

How to Recover Edges and Nodes Let (U, H) be a hypergraph.

• $u \in U$ is a node if u is an H-maximal element, i.e.,

 $\forall v.(uHv \text{ implies } u = v)$

• $u \in U$ is an edge if u has a proper H-successor, i.e.,

 $\exists v.(uHv \text{ and } u \neq v)$

Graphs From Viewpoints of Hypergraphs Let (U, H) be a hypergraph.

An edge *v* and a node *u* is incident if *vHu* holds

(U, H) is a graph if all edges are incident w/ one or two nodes.

Graphs From Viewpoints of Hypergraphs Let (U, H) be a hypergraph.

An edge *v* and a node *u* is incident if *vHu* holds

(U, H) is a graph if all edges are incident w/ one or two nodes.

Graphs From Viewpoints of Hypergraphs Let (U, H) be a hypergraph.

An edge *v* and a node *u* is incident if *vHu* holds

(U, H) is a graph if all edges are incident w/ one or two nodes.

Subgraph of a Hypergraph

Let (U, H) be a hypergraph.

• $X \subseteq U$ is a subgraph of (U, H) if X is H-closed, i.e.,

X is closed under taking H-successors.

Binary Relation on a Hypergraph

Over Sets: it is known that

{ all binary rel.s on U } \cong { all \cup -preserving maps on $\mathcal{P}(U)$ }

Binary Relation on a Hypergraph

Over Sets: it is known that

{ all binary rel.s on U } \cong { all \cup -preserving maps on $\mathcal{P}(U)$ }

Over (Hyper) Graphs: Let (U, H) be a preorder.

??? \cong { all \cup -preserving maps on $\mathcal{P}^{\uparrow}(U)$ }

where $\mathcal{P}^{\uparrow}(U)$ is the set of all *H*-closed sets.

Binary Relation on a Hypergraph

Over Sets: it is known that

{ all binary rel.s on U } \cong { all \cup -preserving maps on $\mathcal{P}(U)$ }

Over (Hyper) Graphs: Let (U, H) be a preorder.

{ all stable rel.s on U } \cong { all \cup -preserving maps on $\mathcal{P}^{\uparrow}(U)$ }

where $\mathcal{P}^{\uparrow}(U)$ is the set of all *H*-closed sets.

• $R \subseteq U^2$ is stable if:

H; R; $H \subseteq R$

where ; is a relational composition.

The logic of all preorders (U, H) with a stable relation R!

• **BiSKt** = Bi-intuitionistic logic + \blacklozenge + \Box .

The logic of all preorders (U, H) with a stable relation R!

- **BiSKt** = Bi-intuitionistic logic + \blacklozenge + \Box .
- Why "bi"-intuitionistic logic (Rauszer 1974)?

The logic of all preorders (U, H) with a stable relation R!

- **BiSKt** = Bi-intuitionistic logic + \blacklozenge + \Box .
- Why "bi"-intuitionistic logic (Rauszer 1974)?
 - : We can cover several ways of "complementation"

The logic of all preorders (U, H) with a stable relation R!

- **BiSKt** = Bi-intuitionistic logic + \blacklozenge + \Box .
- Why "bi"-intuitionistic logic (Rauszer 1974)?
 - : We can cover several ways of "complementation"

The logic of all preorders (U, H) with a stable relation R!

- **BiSKt** = Bi-intuitionistic logic + \blacklozenge + \Box .
- Why "bi"-intuitionistic logic (Rauszer 1974)?
 - : We can cover several ways of "complementation"

The logic of all preorders (U, H) with a stable relation R!

- **BiSKt** = Bi-intuitionistic logic + \blacklozenge + \Box .
- Why "bi"-intuitionistic logic (Rauszer 1974)?
 - : We can cover several ways of "complementation"

Background & Contribution of This Talk

For BiSKt, Stell, Schmidt & Rydeheard (2016) provided

- Labelled tableau calculus of BiSKt
- Semantic completeness and decidability of it
- Frame definability results

Background & Contribution of This Talk

For BiSKt, Stell, Schmidt & Rydeheard (2016) provided

- <u>Labelled</u> tableau calculus of **BiSKt**
- Semantic completeness and decidability of it
- Frame definability results
- For **BiSKt**, this talk provides:
 - Hilbert-style axiomatization of **BiSKt**.
 - Strong completeness results of extensions of BiSKt

FMP via filtration for extensions of BiSKt

Outline

Mathematical Morphology: From Sets to Graphs

2 Syntax and Semantics of **BiSKt**

3 Hilbert System of BiSKt: Strong Completeness & FMP

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let Prop be a countable set of propositional variables.

 $\varphi ::= \top |\bot| p | \varphi \land \varphi | \varphi \lor \varphi | \varphi \to \varphi | \varphi \prec \varphi | \blacklozenge \varphi | \Box \varphi \quad (p \in \mathsf{Prop}).$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

•
$$\neg \varphi := \varphi \to \bot$$
.

- $\varphi \prec \psi$ is read as: " φ excludes ψ ": Coimplication
- $\neg \psi := \top \prec \psi$: Conegation

H-Frame and H-Model

- F = (U, H, R) is an *H*-frame if:
 - (U, H) is a preorder;
 - *R* is a stable relation, i.e., H; R; $H \subseteq R$.

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

H-Frame and H-Model

F = (U, H, R) is an *H*-frame if:

- (U, H) is a preorder;
- *R* is a stable relation, i.e., H; R; $H \subseteq R$.

An *H*-model *M* consists of:

an *H*-frame (U, H, R) and a valuation *V*:

 $V : \operatorname{Prop} \to \mathcal{P}^{\uparrow}(U) = \{ \text{ all } H \text{-closed sets on } U \}.$

Let M = (U, H, R, V) be an *H*-model. For a state $u \in U$ and a formula φ , the satisfaction $M, u \models \varphi$ is defined as:

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \rightarrow \psi \quad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U}((\boldsymbol{uHv} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi) \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \psi),$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \prec \psi \quad \text{iff} \quad \exists \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{v} H \boldsymbol{u} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi \& \boldsymbol{M}, \boldsymbol{v} \not\models \psi),$

Let M = (U, H, R, V) be an *H*-model. For a state $u \in U$ and a formula φ , the satisfaction $M, u \models \varphi$ is defined as:

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \rightarrow \psi \quad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U}((\boldsymbol{u}\boldsymbol{H}\boldsymbol{v} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi) \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \psi),$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \prec \psi \quad \text{iff} \quad \exists \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{v} H \boldsymbol{u} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi \& \boldsymbol{M}, \boldsymbol{v} \not\models \psi),$

 $M, u \models \blacklozenge \varphi \qquad \text{iff} \quad \exists v \in U(vRu \text{ and } M, v \models \varphi),$

 $\boldsymbol{M}, \boldsymbol{u} \models \Box \varphi \qquad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{u} \boldsymbol{R} \boldsymbol{v} \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \varphi).$

Let M = (U, H, R, V) be an *H*-model. For a state $u \in U$ and a formula φ , the satisfaction $M, u \models \varphi$ is defined as:

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \rightarrow \psi \quad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U}((\boldsymbol{uHv} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi) \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \psi),$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \prec \psi \quad \text{ iff } \quad \exists \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{v} H \boldsymbol{u} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi \& \boldsymbol{M}, \boldsymbol{v} \not\models \psi),$

 $M, u \models \blacklozenge \varphi \qquad \text{iff} \quad \exists v \in U(v R u \text{ and } M, v \models \varphi),$

 $\boldsymbol{M}, \boldsymbol{u} \models \Box \varphi \qquad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{u} \boldsymbol{R} \boldsymbol{v} \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \varphi).$

Define $\llbracket \varphi \rrbracket := \{ u \in U \mid M, u \models \varphi \}.$

Let M = (U, H, R, V) be an *H*-model. For a state $u \in U$ and a formula φ , the satisfaction $M, u \models \varphi$ is defined as:

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \rightarrow \psi \quad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U}((\boldsymbol{uHv} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi) \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \psi),$

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \prec \psi \quad \text{iff} \quad \exists \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{v} H \boldsymbol{u} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi \& \boldsymbol{M}, \boldsymbol{v} \not\models \psi),$

 $M, u \models \blacklozenge \varphi \qquad \text{iff} \quad \exists v \in U(v R u \text{ and } M, v \models \varphi),$

 $\boldsymbol{M}, \boldsymbol{u} \models \Box \varphi \qquad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{u} \boldsymbol{R} \boldsymbol{v} \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \varphi).$

Define $\llbracket \varphi \rrbracket := \{ u \in U \mid M, u \models \varphi \}.$

 $\llbracket \varphi \rrbracket$ is *H*-closed.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let M = (U, H, R, V) be an *H*-model. For a state $u \in U$ and a formula φ , the satisfaction $M, u \models \varphi$ is defined as:

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \rightarrow \psi \quad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U}((\boldsymbol{uHv} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi) \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \psi),$

 $\boldsymbol{M}, \boldsymbol{u} \models \varphi \prec \psi \quad \text{ iff } \quad \exists \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{v} H \boldsymbol{u} \& \boldsymbol{M}, \boldsymbol{v} \models \varphi \& \boldsymbol{M}, \boldsymbol{v} \not\models \psi),$

 $M, u \models \blacklozenge \varphi \qquad \text{iff} \quad \exists v \in U(vRu \text{ and } M, v \models \varphi),$

 $\boldsymbol{M}, \boldsymbol{u} \models \Box \varphi \qquad \text{iff} \quad \forall \boldsymbol{v} \in \boldsymbol{U} (\boldsymbol{u} \boldsymbol{R} \boldsymbol{v} \Rightarrow \boldsymbol{M}, \boldsymbol{v} \models \varphi).$

Define $\llbracket \varphi \rrbracket := \{ u \in U \mid M, u \models \varphi \}.$

 $\llbracket \varphi \rrbracket$ is *H*-closed.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

 $\llbracket \varphi \rrbracket$ is a subgraph when (U, H, R) is a hypergraph.

Define the frame validity $F \models \varphi$ as in ordinary modal logic.

Let
$$F = (U, H, R)$$
 be an *H*-frame. TFAE:
1 $R^m \subseteq R^n$.
2 $F \models \blacklozenge^m p \rightarrow \blacklozenge^n p$.
where $R^k := \underbrace{R; \cdots; R}_k (R^0 := H)$ and $\blacklozenge^k := \underbrace{\diamondsuit \cdots \diamondsuit}_k$.

Note: this talk simplifies their more general results.

Outline

2 Syntax and Semantics of BiSKt

Hilbert System of BiSKt: Strong Completeness & FMP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▼ ◇ ◇ ◇

Residuation or Adjunction

Let $\models \varphi$ mean that $F \models \varphi$ for all *H*-frames *F*. We have:

$$\models (p \land q) \rightarrow r \iff \models p \rightarrow (q \rightarrow r).$$

For coimplication,

$$\models (p \prec q) \rightarrow r \iff \models p \rightarrow (q \lor r).$$

For \blacklozenge and \Box ,

$$\models \blacklozenge p \rightarrow q \iff \models p \rightarrow \Box q.$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

To Hilbert system of Int (w/ uniform substitution), we add:

To Hilbert system of Int (w/ uniform substitution), we add:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

To Hilbert system of **Int** (w/ uniform substitution), we add: For coimplication,

(A10) $p \rightarrow (q \lor (p \prec q))$ (A11) $((q \lor r) \prec q) \rightarrow r$ (Mon \prec) From $\delta_1 \rightarrow \delta_2$, infer $(\delta_1 \prec \psi) \rightarrow (\delta_2 \prec \psi)$, For \blacklozenge and \Box . (A12) $p \rightarrow \Box \blacklozenge p$ (A13) $\blacklozenge \Box p \rightarrow p$ (Mon) From $\varphi \to \psi$, infer $\blacklozenge \varphi \to \blacklozenge \psi$. (Mon) From $\varphi \to \psi$, infer $\Box \varphi \to \Box \psi$.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ●目目 のへで

To Hilbert system of **Int** (w/ uniform substitution), we add: For coimplication,

(A10) $p \rightarrow (q \lor (p \prec q))$ (A11) $((q \lor r) \prec q) \rightarrow r$ (Mon \prec) From $\delta_1 \rightarrow \delta_2$, infer $(\delta_1 \prec \psi) \rightarrow (\delta_2 \prec \psi)$, For \blacklozenge and \Box . (A12) $p \rightarrow \Box \blacklozenge p$ (A13) $\blacklozenge \Box p \rightarrow p$ (Mon) From $\varphi \to \psi$, infer $\blacklozenge \varphi \to \blacklozenge \psi$. (Mon \Box) From $\varphi \to \psi$, infer $\Box \varphi \to \Box \psi$. For **Bilnt**, it's much simpler than Rauszer (1974)'s system. Strong Completeness for Extensions of **BiSKt** Let Σ be a set of axioms of the form:

$$ig ^m p
ightarrow ig ^n p$$

Then **BiSKt** + Σ is strongly complete for the class of *H*-frames defined by Σ .

BiSKt + Σ is strongly complete for a class \mathbb{F} of *H*-frames if every consistent set Γ in the extension is satisfiable in \mathbb{F} .

FMP for Extensions of **BiSKt**

Let Σ be a finite set of axioms of the form:

$$\blacklozenge p \to \blacklozenge^n p \text{ or } p \to \blacklozenge^n p$$

Then **BiSKt** + Σ enjoys the finite model property for the class of *H*-frames defined by Σ , so it is decidable.

BISKt + Σ enjoys FMP for a class \mathbb{F} of *H*-frames if every consistent formula φ in the extension is satisfiable in a finite frame in \mathbb{F} .

FMP for Extensions of **BiSKt**

Let Σ be a finite set of axioms of the form:

$$\blacklozenge p \to \blacklozenge^n p \text{ or } p \to \blacklozenge^n p$$

Then **BiSKt** + Σ enjoys the finite model property for the class of *H*-frames defined by Σ , so it is decidable.

BiSKt + Σ enjoys FMP for a class \mathbb{F} of *H*-frames if every consistent formula φ in the extension is satisfiable in a finite frame in \mathbb{F} .

(∵) By filtration technique by Hasimoto (2001) for intuitionistic modal logic.

Further Directions

- Strong Comp. & FMP resutls can be extended even if we mix ◊ := □□¬ ("for some future") with ♦.
- More applications (in my last visit to Leeds):
 - Formalize spatial relationship over discrete space
 - Discrete ver. RCC8. Universal modalities are needed.
- (Done) Sequent calculus w/ the analytic cut rule
 - (cf.) Kowalski & Ono (2016): Craig Interpolation for Bilnt
 - Joint work w/ Hiroakira Ono
- More general results on completeness & FMP
 - (cf.) Wolter (1998): On Logics with Coimplication (Modal Expansion of **Bilnt**)

Opening of X by R Let U be a set, $R \subseteq U^2$ and $X \subseteq U$.

 $(R \ominus X) \oplus R \quad (= \blacklozenge \Box X)$

Χ

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Opening of X by R Let U be a set, $R \subseteq U^2$ and $X \subseteq U$.

 $(R \ominus X) \oplus R \quad (= \blacklozenge \Box X)$

 $R \ominus X$

Opening of X by R Let U be a set, $R \subseteq U^2$ and $X \subseteq U$.

 $(R \ominus X) \oplus R \quad (= \blacklozenge \Box X)$

 $(R \ominus X) \oplus R$

Application to Mathematical Morphology

Recall that " $\blacklozenge \square$ " corresponds to "opening by *R*".

$$\vdash_{\mathsf{BiSKt}} \widehat{\blacklozenge \Box} \varphi \to \varphi.$$
$$\vdash_{\mathsf{BiSKt}} \widehat{\blacklozenge \Box} \varphi \leftrightarrow \widehat{\blacklozenge \Box} \widehat{\blacklozenge \Box} \varphi$$

Once we take the opening of X by R, it becomes a fixed point of the opening by R!