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What is Mathematical Morphology?
A technique for image processing.

© John G. Stell



Set-based Mathematical Morphology
Let U = Z2, a grid of pixels.
A subset X of Z2: a binary image (black and white).

X



Structuring Element

is also called a probe or lens.
induces a binary relation R on X = Z2.

Example of Structuring Element
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induces a binary relation R on X = Z2.

R induced by the Structuring Element



Dilation by R
Let U be a set, R ⊆ U2 and X ⊆ U.

X ⊕ R := {u ∈ U | ∃ v .(vRu and v ∈ X ) }

:= ♦X

where “♦” is a backward looking (past tense) operator.
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Erosion by R
Let U be a set, R ⊆ U2 and X ⊆ U.

R ⊖ X := {u ∈ U | ∀ v .(uRv implies v ∈ X ) }

:= □X
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Mathematical Morphology for Graphs
A graph consists of nodes and edges.
A subgraph is naturally defined.

What is a relation of a graph?
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Stell (2015)’s Approach: Hypergraphs

Let us “mix” nodes and edges into one domain!

(U,H) is a hypergraph if:
(U,H) is a preorder (reflexive and transitive);
If xHy and yHz then x = y or y = z for all x , y , z ∈ U.
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How to Recover Edges and Nodes
Let (U,H) be a hypergraph.

u ∈ U is a node if u is an H-maximal element, i.e.,

∀v .(uHv implies u = v)

u ∈ U is an edge if u has a proper H-successor, i.e.,

∃v .(uHv and u ̸= v)
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Graphs From Viewpoints of Hypergraphs
Let (U,H) be a hypergraph.

An edge v and a node u is incident if vHu holds

(U,H) is a graph if all edges are incident w/ one or two nodes.
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Subgraph of a Hypergraph

Let (U,H) be a hypergraph.
X ⊆ U is a subgraph of (U,H) if X is H-closed, i.e.,

X is closed under taking H-successors.



Binary Relation on a Hypergraph

Over Sets: it is known that

{ all binary rel.s on U } ∼= { all ∪-preserving maps on P(U) }

Over (Hyper) Graphs: Let (U,H) be a preorder.

??? ∼= { all ∪-preserving maps on P↑(U) }

where P↑(U) is the set of all H-closed sets.
R ⊆ U2 is stable if:

H;R;H ⊆ R

where ; is a relational composition.
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What is Bi-intuitionistic Stable Tense Logic?

The logic of all preorders (U,H) with a stable relation R!

BiSKt = Bi-intuitionistic logic + ♦ + □.

Why “bi”-intuitionistic logic (Rauszer 1974)?

∵ We can cover several ways of “complementation”

X ¬X ¬X
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Background & Contribution of This Talk

For BiSKt, Stell, Schmidt & Rydeheard (2016) provided
Labelled tableau calculus of BiSKt
Semantic completeness and decidability of it
Frame definability results

For BiSKt, this talk provides:
1 Hilbert-style axiomatization of BiSKt.
2 Strong completeness results of extensions of BiSKt
3 FMP via filtration for extensions of BiSKt
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Syntax of BiSKt

Let Prop be a countable set of propositional variables.

φ ::= ⊤ |⊥ |p |φ∧φ |φ∨φ |φ→ φ |φ�φ | ♦φ |□φ (p ∈ Prop).

¬φ := φ→ ⊥.
φ � ψ is read as: “φ excludes ψ”: Coimplication
¬ψ := ⊤ � ψ: Conegation



H-Frame and H-Model

F = (U,H,R) is an H-frame if:
(U,H) is a preorder;
R is a stable relation, i.e., H;R;H ⊆ R.

An H-model M consists of:
an H-frame (U,H,R) and a valuation V :

V : Prop → P↑(U) = {all H-closed sets on U }.
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Kripke Semantics of BiSKt
Let M = (U,H,R,V ) be an H-model. For a state u ∈ U
and a formula φ, the satisfaction M,u |= φ is defined as:

M,u |= φ→ ψ iff ∀v ∈ U ((uHv &M, v |= φ) ⇒ M, v |= ψ),

M,u |= φ � ψ iff ∃v ∈ U (vHu &M, v |= φ&M, v ̸|= ψ),

M,u |= ♦φ iff ∃v ∈ U (vRu and M, v |= φ),

M,u |= □φ iff ∀v ∈ U (uRv ⇒ M, v |= φ).

Define JφK := {u ∈ U |M,u |= φ }.

JφK is H-closed.

JφK is a subgraph when (U,H,R) is a hypergraph.
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Frame Definability (Stell, Schmidt & Rydeheard 2016)

Define the frame validity F |= φ as in ordinary modal logic.

Let F = (U,H,R) be an H-frame. TFAE:
1 Rm ⊆ Rn.
2 F |= ♦m p → ♦n p.

where Rk := R; · · · ;R︸ ︷︷ ︸
k

(R0 := H) and ♦k := ♦ · · ·♦︸ ︷︷ ︸
k

.

Note: this talk simplifies their more general results.
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Residuation or Adjunction

Let |= φ mean that F |= φ for all H-frames F . We have:

|= (p ∧ q) → r ⇐⇒ |= p → (q → r).

For coimplication,

|= (p � q) → r ⇐⇒ |= p → (q ∨ r).

For ♦ and □,

|= ♦p → q ⇐⇒ |= p → □q.



Hilbert System of BiSKt

To Hilbert system of Int (w/ uniform substitution), we add:

For coimplicaiton,
(A10) p → (q ∨ (p � q))
(A11) ((q ∨ r) � q) → r

(Mon�) From δ1 → δ2, infer (δ1 � ψ) → (δ2 � ψ),
For ♦ and □,

(A12) p → □♦p
(A13) ♦□p → p

(Mon♦) From φ→ ψ, infer ♦φ→ ♦ψ.
(Mon□) From φ→ ψ, infer □φ→ □ψ.

For BiInt, it’s much simpler than Rauszer (1974)’s system.
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Strong Completeness for Extensions of BiSKt
Let Σ be a set of axioms of the form:

♦mp → ♦np

Then BiSKt + Σ is strongly complete for the class of
H-frames defined by Σ.

BiSKt + Σ is strongly complete for a class F of H-frames if
every consistent set Γ in the extension is satisfiable in F.



FMP for Extensions of BiSKt
Let Σ be a finite set of axioms of the form:

♦p → ♦np or p → ♦np

Then BiSKt + Σ enjoys the finite model property for the
class of H-frames defined by Σ, so it is decidable.

BiSKt + Σ enjoys FMP for a class F of H-frames if
every consistent formula φ in the extension is

satisfiable in a finite frame in F.

(∵) By filtration technique
by Hasimoto (2001) for intuitionistic modal logic.
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Further Directions
Strong Comp. & FMP resutls can be extended even if
we mix ♢ := ¬□¬ (“for some future”) with ♦.
More applications (in my last visit to Leeds):

Formalize spatial relationship over discrete space
Discrete ver. RCC8. Universal modalities are needed.

(Done) Sequent calculus w/ the analytic cut rule
(cf.) Kowalski & Ono (2016): Craig Interpolation for BiInt
Joint work w/ Hiroakira Ono

More general results on completeness & FMP
(cf.) Wolter (1998): On Logics with Coimplication

(Modal Expansion of BiInt)
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Application to Mathematical Morphology

Recall that “♦□” corresponds to “opening by R”.

⊢BiSKt

︷︸︸︷
♦□ φ→ φ.

⊢BiSKt

︷︸︸︷
♦□ φ↔

︷︸︸︷
♦□

︷︸︸︷
♦□ φ.

Once we take the opening of X by R,
it becomes a fixed point of the opening by R!
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