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What is Mathematical Morphology?

@ A technique for image processing.
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Set-based Mathematical Morphology

@ Let U =72, a grid of pixels.
@ A subset X of Z2: a binary image (black and white).




Structuring Element

@ is also called a probe or lens.
@ induces a binary relation R on X = Z2.

Example of Structuring Element
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Structuring Element

@ is also called a probe or lens.
@ induces a binary relation R on X = Z2.

R induced by the Structuring Element



Dilation by R
Let Ube aset, RC U?and X C U.

XeoR = {ueU|3v.(vRuandve X)}
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Erosion by R
Let Ube aset, RC U?and X C U.

RoX = {ueU|VYv.(uRvimpliesv e X)}
= 0OX
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Mathematical Morphology for Graphs

@ A graph consists of nodes and edges.
@ A subgraph is naturally defined.
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@ A graph consists of nodes and edges.
@ A subgraph is naturally defined.

What is a relation of a graph?



Stell (2015)’s Approach: Hypergraphs

Let us “mix” nodes and edges into one domain!



Stell (2015)’s Approach: Hypergraphs

Let us “mix” nodes and edges into one domain!

(U, H) is a hypergraph if:
@ (U, H) is a preorder (reflexive and transitive);
@ If xHy and yHzthen x =y ory =z forall x,y,z € U.
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How to Recover Edges and Nodes
Let (U, H) be a hypergraph.
@ u € Uis anode if uis an H-maximal element, i.e.,

Vv.(uHv implies u = v)
@ u € Uis an edge if u has a proper H-successor, i.e.,

v.(uHv and u # v)
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Graphs From Viewpoints of Hypergraphs
Let (U, H) be a hypergraph.

An edge v and a node u is incident if vHu holds

(U, H) is a graph if all edges are incident w/ one or two nodes.
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Graphs From Viewpoints of Hypergraphs
Let (U, H) be a hypergraph.

An edge v and a node u is incident if vHu holds

(U, H) is a graph if all edges are incident w/ one or two nodes.
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Subgraph of a Hypergraph

Let (U, H) be a hypergraph.
@ X C Uis a subgraph of (U, H) if X is H-closed, i.e.,
X is closed under taking H-successors.
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Binary Relation on a Hypergraph

Over Sets: it is known that

{ all binary rel.s on U } = { all U-preserving maps on P(U) }
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Binary Relation on a Hypergraph

Over Sets: it is known that

{ all binary rel.s on U } = { all U-preserving maps on P(U) }
Over (Hyper) Graphs: Let (U, H) be a preorder.

{ all stable rel.s on U } = { all U-preserving maps on PT(U) }

where PT(U) is the set of all H-closed sets.
@ R C UPis stable if:

HRHCR

where ; is a relational composition.



What is Bi-intuitionistic Stable Tense Logic?
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@ Labelled tableau calculus of BiSKt
@ Semantic completeness and decidability of it
@ Frame definability results



Background & Contribution of This Talk

For BiSKt, Stell, Schmidt & Rydeheard (2016) provided
@ Labelled tableau calculus of BiSKt
@ Semantic completeness and decidability of it
@ Frame definability results
For BiSKt, this talk provides:
@ Hilbert-style axiomatization of BiSKt.
@ Strong completeness results of extensions of BiSKt
© FMP via filtration for extensions of BiSKt
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Syntax of BiSKt

Let Prop be a countable set of propositional variables.

pu=TILIp|leAe|eVele = ¢le<p| #¢|0Op  (p € Prop).

@ ~pi=p— L.
@ p <1 isread as: “p excludes ¢”: Coimplication
@ _ =T <1: Conegation



H-Frame and H-Model

F = (U, H,R) is an H-frame if:
@ (U, H) is a preorder;
@ Ris a stable relation, i.e., H: R; H C R.



H-Frame and H-Model

F = (U, H,R) is an H-frame if:
@ (U, H) is a preorder;
@ Ris a stable relation, i.e., H: R; H C R.

An H-model M consists of:
an H-frame (U, H, R) and a valuation V:

V : Prop — P'(U) = { all H-closed sets on U }.



Kripke Semantics of BiSKt
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Kripke Semantics of BiSKt

Let M = (U, H, R, V) be an H-model. For a state u € U
and a formula ¢, the satisfaction M, u = ¢ is defined as:

MukEp—y iff Yve U(UHVE&M, v E )= M, v 1),
MulE=p<y iff Jve U(VHU M,V =& M, v [~ ),
Mubke¢ iff Jve U(vRuand M,v E ¢),

M, u = Op ifft Vve U(uRv = M,v = ).

Define [¢] ={uc U|M,ul=¢}.

[] is H-closed.
[«] is a subgraph when (U, H, R) is a hypergraph.



Frame Definability (stell, schmidt & Rydeheard 2016)

Define the frame validity F |= ¢ as in ordinary modal logic.

Let F = (U, H, R) be an H-frame. TFAE:

@ R"C R

QO F=¢"p—¢p.

where R := R;--- ;R (R®:= H)and ¢" := ¢ ---¢.
—— ~——

k k

Note: this talk simplifies their more general results.
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Residuation or Adjunction

Let = ¢ mean that F |= ¢ for all H-frames F. We have:
FPrg)—=r = Ep—=(Q—r)
For coimplication,
Fp<q)—=r < Ep—=>(qVr).
For ¢ and OO,

Fép—q = Ep—Laq
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Hiloert System of BiSKt

To Hilbert system of Int (w/ uniform substitution), we add:
For coimplicaiton,

(A10) p—(qV(p=<Qq))
(A11) ((qvr)<q)—r
(Mon<) From 61 — 82, infer (61 < ¢) — (02 < ¢),
For ¢ and OJ,
(A12) p—>Lep
(A13) ¢Op—p
(Mon¢) From ¢ — 1, infer ¢ o — 1.
(Mon(J) From ¢ — 4, infer Oy — [,
For Bilnt, it's much simpler than Rauszer (1974)’s system.



Strong Completeness for Extensions of BiSKt
Let X be a set of axioms of the form:

70— ¢"p
Then BiSKt + X is strongly complete for the class of

H-frames defined by .

BiSKt + ¥ is strongly complete for a class I of H-frames if
every consistent set I' in the extension is satisfiable in F.



FMP for Extensions of BiSKt
Let X be a finite set of axioms of the form:

¢p— ¢"porp— &"p

Then BiSKt + X enjoys the finite model property for the
class of H-frames defined by ¥, so it is decidable.

BiSKt + X enjoys FMP for a class F of H-frames if
every consistent formula ¢ in the extension is
satisfiable in a finite frame in F.



FMP for Extensions of BiSKt
Let X be a finite set of axioms of the form:

¢p— ¢"porp— &"p

Then BiSKt + X enjoys the finite model property for the
class of H-frames defined by ¥, so it is decidable.

BiSKt + X enjoys FMP for a class F of H-frames if
every consistent formula ¢ in the extension is
satisfiable in a finite frame in F.
(.") By filtration technique
by Hasimoto (2001) for intuitionistic modal logic.



Further Directions
@ Strong Comp. & FMP resutls can be extended even if
we mix ¢ = _[J- (“for some future”) with ¢.
@ More applications (in my last visit to Leeds):
e Formalize spatial relationship over discrete space
e Discrete ver. RCC8. Universal modalities are needed.
@ (Done) Sequent calculus w/ the analytic cut rule
o (cf.) Kowalski & Ono (2016): Craig Interpolation for Bilnt
e Joint work w/ Hiroakira Ono
@ More general results on completeness & FMP

@ (cf.) Wolter (1998): On Logics with Coimplication
(Modal Expansion of Bilnt)
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Application to Mathematical Morphology

Recall that “¢ [0” corresponds to “opening by R”.
~=
Feiskt 4L ¢ — .

P PN
Feiskt 4 @ < 60 0.

Once we take the opening of X by R,
it becomes a fixed point of the opening by R!
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