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Buchholz’ Ω-rule (1981)

{ ∆ ⇒ Πθ }∆ ⇒LI

Y ϕθ(Y )

∀X.ϕ(X) ⇒ Π

where ∆ is 1st order and Π is 2nd order,

is similar to

a characteristic property of MacNeille completion A ⊆ A:

{a ≤ y}a ≤ x

x ≤ y

where a ∈ A and x, y ∈ A.
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Syntactic cut elimination

1. Ordinal assignment
2. Ω-rule technique (Buchholz, Aehlig, Mints, Akiyoshi,

. . . ). Works only for fragments of higher order
logic/arithmetic (so far).

Semantic cut elimination

1. Semi-valuation (Schütte, Takahashi, Prawitz).
3-valued semantics (Girard 74) = Kleene’s semantics.
Employs reductio ad absurdum and WKL.
Destroys the proof structure.

2. MacNeille completion and reducibility candidates
(Maehara 91, Okada 96, after Girard 71). Fully
constructive. Extends to strong normalization.
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Syntactic cut elimination

1. Ordinal assignment
2. Ω-rule technique (Buchholz, Aehlig, Mints, Akiyoshi,

. . . ). Works only for fragments of higher order
logic/arithmetic (so far).

Semantic cut elimination

1. Semi-valuation (Schütte, Takahashi, Prawitz).
3-valued semantics (Girard 74) = Kleene’s semantics.
Employs reductio ad absurdum and WKL.
Destroys the proof structure.

2. MacNeille completion and reducibility candidates
(Maehara 91, Okada 96, after Girard 71). Fully
constructive. Extends to strong normalization.

What is the relationship? (Mints’ question)
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Target system Fragments Full higher-order logics
Algebraic proof ??? MacNeille completion

+ reducibility candidates
Syntactic proof Ω-rule Takeuti’s Conjecture

In this talk we fill in the ??? slot by introducing the concept
of Ω-valuation. The target systems are parameter-free 2nd
order intuitionistic logics.
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Target system Fragments Full higher-order logics
Algebraic proof ??? MacNeille completion

+ reducibility candidates
Syntactic proof Ω-rule Takeuti’s Conjecture

In this talk we fill in the ??? slot by introducing the concept
of Ω-valuation. The target systems are parameter-free 2nd
order intuitionistic logics.

Notice: It is mostly a reworking of known results (especially
those of Klaus Aehlig). Our purpose is just to provide an
algebraic perspective on them.
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� MacNeille completion
� Parameter-free 2nd order intuitionistic logics
� Ω-rule technique (syntactic)
� Ω-valuation technique (semantic)
� For the lambda calculus audience
� For the nonclassical logics audience
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A: a lattice.
A completion of A is an embedding e : A −→ B into a
complete lattice B (we often assume A ⊆ B).

Examples:

� Q ⊆ R ∪ {±∞}
� e : A −→ ℘(uf(A))

(A: Boolean algebra, uf = ultrafilters).

A ⊆ B is a MacNeille completion if for any x ∈ B,

x =
∧

{a ∈ A : x ≤B a} =
∨

{a ∈ A : a ≤B x}.

Theorem (Banachewski 56, Schmidt 56)

Every lattice A has a unique MacNeille completion A.
MacNeille completion is regular, i.e., preserves

∧
and

∨
that

already exist in A.
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(Recap) A ⊆ B is a MacNeille completion if for any x ∈ B,

x =
∧

{a ∈ A : a ≤B x} =
∨

{a ∈ A : x ≤B a}.

� Q ⊆ R ∪ {±∞} is MacNeille, since

x = inf{a ∈ Q : x ≤ a} = sup{a ∈ Q : a ≤ x}

for any x ∈ R. It is regular, e.g.,

0 = lim
n→∞

1

n
(in Q) = lim

n→∞

1

n
(in R).

� e : A −→ ℘(uf(A)) is not regular, hence not MacNeille
(actually a canonical extension).
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DL: the class of distributive lattices.
HA: the class of Heyting algebras.
BA: the class of Boolean algebras.

Theorem

� DL is not closed under MacNeille (Funayama 44).

� HA and BA are closed under MacNeille completions.

� These are the only nontrivial subvarieties of HA closed
under MacNeille (Harding-Bezhanishvili 04).

Conservative extension by MacNeille completion does not
work for proper intermediate logics.
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Fact

A completion A ⊆ B is MacNeille iff the inferences below are

valid:
{a ≤ y}a ≤ x

x ≤ y

{x ≤ a}y ≤ a

x ≤ y

where x, y range over B and a over A.

“If a ≤ x implies a ≤ y for any a ∈ A, then x ≤ y.”

This looks similar to the Ω-rule.
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ID0 := PA.
ID1: Let ϕ(X, x) be a formula of PA(X) in which X
occurs positively and FV (ϕ) ⊆ {X, x}.
It can be seen as a monotone function

ϕ(Y ) := {n ∈ N : ϕ(Y, n) holds} : ℘(N) −→ ℘(N).

For each such ϕ, add to PA a new constant Iϕ and axioms

ϕ(Iϕ) ⊆ Iϕ, ϕ(T ) ⊆ T ⇒ Iϕ ⊆ T.

for every T = λx.ψ(x). This defines the theory ID1.

IDn+1 := IDn+ least fixpoints definable in IDn
...

ID<ω :=
⋃

n IDn.
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Tm: the set of terms
X,Y, Z, . . . : 2nd order variables
Fm : the formulas of 1st-order intuitionistic logic

ϕ, ψ ::= p(t) | t ∈ X | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ∀x.ϕ | ∃x.ϕ

FM−1:= Fm.
FMn+1:

ϕn+1 ::= p(t) | t ∈ X | · · · | ∀X.ϕn | ∃X.ϕn

where ϕn ∈ FMn doesn’t contain 2nd order variables except
X .
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(Recap) FMn+1:

ϕn+1 ::= · · · | ∀X.ϕn | ∃X.ϕn

where ϕn ∈ FMn doesn’t contain 2nd order variables except
X .

Examples (over LPA)

N(t) := ∀X.[∀x(x ∈ X → x+1 ∈ X)∧0 ∈ X → t ∈ X ] ∈ FM0

Any arithmetical formula ϕ translates to ϕN ∈ FM0.
If ϕ(X, x) is an arithmetical formula,

Iϕ(t) := ∀X.[∀x(ϕN(X, x) → x ∈ X) → t ∈ X ] ∈ FM1

Any formula ϕ of ID1 translates to ϕI ∈ FM1.
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FM: the set of all 2nd-order formulas.
G

1
LI: sequent calculus for 2nd order intuitionistic logic with

full comprehension

ϕ(λx.ψ),Γ ⇒ Π

∀X.ϕ(X),Γ ⇒ Π

Γ ⇒Y ϕ(Y )

Γ ⊢ ∀X.ϕ(X)

where

� Γ ⇒Y ϕ(Y ) means Y 6∈ FV (Γ) (eigenvariable).
� ϕ(λx.ψ) obtained by replacing t ∈ X 7→ ψ(t).

Theorem (Takeuti 53)

If Z2 ⊢ ϕ, then G
1
LC ⊢ Γ0 ⇒ ϕN for some universal Γ0.

Cut elimination for G
1
LC implies 1-consistency of Z2, i.e.,

provable Σ0
1-sentences are true.
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LI: sequent calculus for the 1st order intuitionistic logic.
G

1
LI−1:= LI.

G
1
LIn+1: sequent calculus G

1
LI restricted to FMn+1.

Theorem

If IDn ⊢ ϕ (∈ Π0
2), then G

1
LIn ⊢ Γ0 ⇒ ϕI.

Cut elimination for G1
LIn implies 1-consistency of IDn.
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LI: sequent calculus for the 1st order intuitionistic logic.
G

1
LI−1:= LI.

G
1
LIn+1: sequent calculus G

1
LI restricted to FMn+1.

Theorem

If IDn ⊢ ϕ (∈ Π0
2), then G

1
LIn ⊢ Γ0 ⇒ ϕI.

Cut elimination for G1
LIn implies 1-consistency of IDn.

We are now interested in proving cut elimination for G1
LIn

globally in IDn+1 and locally in IDn, as the latter will imply

1CON(IDn) ↔ CE(G1
LIn)

in a suitably weak metatheory (eg., PRA).
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Cut elimination for 2nd order logics is tricky, since the
reduction step

Γ ⇒Y ϕ(Y )

Γ ⊢ ∀X.ϕ(X)

ϕ(λx.ψ),Γ ⇒ Π

∀X.ϕ(X),Γ ⇒ Π

Γ ⇒ Π
(CUT )

⇓

Γ ⇒ ϕ(λx.ψ) ϕ(λx.ψ),Γ ⇒ Π

Γ ⇒ Π
(CUT )

may yield a BIGGER cut formula.
Ω-rule (Buchholz 81, Buchholz-Schütte 88, Buchholz 01,
Aehlig 04, Akiyoshi-Mints 16, . . . ) is a way to resolve this
difficulty.
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The (simplified) Ω-rule for G1
LI0:

{ ∆ ⇒ Πθ }∆⇒LI

Y
ϕθ(Y )

∀X.ϕ(X) ⇒ Π

where θ is any substitution for 1st order free variables and
∆ ⇒LI

Y ϕθ(Y ) means

� Y 6∈ FV(∆),
� ∆ ⊆ Fm (1st order formulas),
� LI ⊢ ∆ ⇒ ϕθ(Y ).

“If ∆ ⇒LI

Y ϕθ(Y ) implies ∆ ⇒ Πθ for any θ and ∆ ⊆ Fm,
then ∀X.ϕ(X) ⇒ Π.”
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Embedding: We have:

{ ∆ ⇒ ϕθ(λx.ψ) }∆⇒
LI

Y
ϕθ(Y )

∀X.ϕ(X) ⇒ ϕ(λx.ψ)

Hence ∀X-left can be simulated by Ω.

Collapsing: Consider

Γ ⇒Y ϕ(Y )

Γ ⇒ ∀X.ϕ(X)

{ ∆ ⇒ Πθ }∆⇒
LI

Y
ϕθ(Y )

∀X.ϕ(X) ⇒ Π

Γ ⇒ Π
(CUT )

If Γ ⇒LI

Y ϕ(Y ) holds, then Γ ⇒ Π is one of the premises
(with θ = id). Hence the (CUT) can be eliminated.
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Syntactic cut elimination for G1
LI0:

1. Introduce a new proof system based on the Ω-rule by
inductive definition.

2. Show that G
1
LI0 embeds into the new proof system.

3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents.

Theorem

ID1 proves that G
1
LI0 is a conservative extension of LI.

IDn+1 proves that G
1
LIn is a conservative extension of LI.

It can be extended to all derivations (Akiyoshi-Mints 16).
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Syntactic cut elimination for G1
LI0:

1. Introduce a new proof system based on the Ω-rule by
inductive definition.

2. Show that G
1
LI0 embeds into the new proof system.

3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents.

Theorem

ID1 proves that G
1
LI0 is a conservative extension of LI.

IDn+1 proves that G
1
LIn is a conservative extension of LI.

It can be extended to all derivations (Akiyoshi-Mints 16).
So the Ω-rule works, but is it logically valid?
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Let us first give an algebraic proof to

Fact

G
1
LI0 is a conservative extension of LI.
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Let us first give an algebraic proof to

Fact

G
1
LI0 is a conservative extension of LI.

(Proof)
Let L := Fm/∼ be the Lindenbaum algebra for LI.
Let L be the MacNeille completion of L.
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Let us first give an algebraic proof to

Fact

G
1
LI0 is a conservative extension of LI.

(Proof)
Let L := Fm/∼ be the Lindenbaum algebra for LI.
Let L be the MacNeille completion of L.
The canonical valuation f : Fm −→ L

f(ϕ) := [ϕ]

can be extended to f : FM0 −→ L since L is complete.
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Let us first give an algebraic proof to

Fact

G
1
LI0 is a conservative extension of LI.

(Proof)
Let L := Fm/∼ be the Lindenbaum algebra for LI.
Let L be the MacNeille completion of L.
The canonical valuation f : Fm −→ L

f(ϕ) := [ϕ]

can be extended to f : FM0 −→ L since L is complete.
If G1

LI0 ⊢ ϕ with ϕ ∈ Fm, then f(ϕ) = ⊤ by Soundness.
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Let us first give an algebraic proof to

Fact

G
1
LI0 is a conservative extension of LI.

(Proof)
Let L := Fm/∼ be the Lindenbaum algebra for LI.
Let L be the MacNeille completion of L.
The canonical valuation f : Fm −→ L

f(ϕ) := [ϕ]

can be extended to f : FM0 −→ L since L is complete.
If G1

LI0 ⊢ ϕ with ϕ ∈ Fm, then f(ϕ) = ⊤ by Soundness.
Since f = f for Fm (by regularity), we have
f(ϕ) = [ϕ] = ⊤.
That is, LI ⊢ ϕ.
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Difficulty: the definition of f involves

f(∀X.ϕ) =
∧

ξ:Tm→L

f [X 7→ξ](ϕ)

and Soundness requires comprehension. So does not
formalize in inductive theories.
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Difficulty: the definition of f involves

f(∀X.ϕ) =
∧

ξ:Tm→L

f [X 7→ξ](ϕ)

and Soundness requires comprehension. So does not
formalize in inductive theories.

Key observation

The Ω-rule is valid w.r.t. f : FM0 −→ L.

The reason is that Ω-rule is “similar” to MacNeille.

{ ∆ ⇒ Πθ }∆⇒
LI

Y
ϕθ(Y )

∀X.ϕ(X) ⇒ Π

{a ≤ y}a ≤ x
x ≤ y
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Motivated by this, we introduce the Ω-valuation
fΩ : FM0 −→ L.

fΩ(p(t)) = [p(t)]
fΩ(t ∈ X) = [t ∈ X ]
fΩ(ϕ→ ψ) = fΩ(ϕ) → fΩ(ψ)
fΩ(∀x.ϕ(x)) =

∧
t∈Tm f

Ω(ϕ(t))
fΩ(∀X.ϕ(X)) =

∨
{[∆] ∈ L : ∆ ⇒LI

Y ϕ(Y ) for some Y }

Lemma

G
1
LI0 is sound w.r.t. the Ω-valuation.
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Motivated by this, we introduce the Ω-valuation
fΩ : FM0 −→ L.

fΩ(p(t)) = [p(t)]
fΩ(t ∈ X) = [t ∈ X ]
fΩ(ϕ→ ψ) = fΩ(ϕ) → fΩ(ψ)
fΩ(∀x.ϕ(x)) =

∧
t∈Tm f

Ω(ϕ(t))
fΩ(∀X.ϕ(X)) =

∨
{[∆] ∈ L : ∆ ⇒LI

Y ϕ(Y ) for some Y }

Lemma

G
1
LI0 is sound w.r.t. the Ω-valuation.

Remark: (Altenkirch-Coquand 01) made a similar
observation in the context of λ-calculus, but . . .
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Theorem (in PRA, Aehlig 04)

For any 1st order formula ϕ, if G1
LI0 ⊢ ϕ, then PA (= ID0)

proves “LI ⊢ ϕ.”

� Should not be confused with a wrong statement that
PA proves “G1

LI0 is a conservative extension of LI.”
� Each derivation contains finitely many formulas. So you

can describe each fΩ(ϕ) by a formula, not as a set. No
comprehension needed.
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We now introduce a uniform framework for MacNeille
completion and algebraic cut elimination.

A polarity is W = 〈W,W ′, R〉 where W,W ′ are sets and
R ⊆W ×W ′ (Birkhoff 40).
Given X ⊆W and Z ⊆ W ′,

X⊲ := {z ∈ W ′ : for all x ∈ X, x R z}
Z⊳ := {x ∈ W : for all z ∈ Z, x R z}

The pair (⊲,⊳) forms a Galois connection:

X ⊆ Z⊳ ⇐⇒ X⊲ ⊇ Z

so induces a closure operator on ℘(W ):

γ(X) := X⊲⊳.
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G(W) := {X ⊆W : X = γ(X)}
X ∪γ Y := γ(X ∪ Y )

Lemma

W
+ := 〈G(W),∩,∪γ〉 is a complete lattice.

It is a complete Heyting algebra under additional assumptions.

Given a lattice (or Heyting algebra) A,

WA := 〈A,A,≤〉

is a polarity. X⊲ is the upper bounds of X and Z⊳ is the
lower bounds of Z. Let γ(a) := {a}⊲⊳.

Theorem

γ : A −→ W
+
A

is the MacNeille completion of A.
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For example, consider

WQ := 〈Q,Q,≤〉

Then for each X ∈ G(W), (X,X⊲) is a Dedekind cut.
Hence

W
+
Q

∼= R ∪ {±∞}.
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We now give an algebraic proof to

Theorem

G
1
LI0 admits cut elimination.

Define a polarity by

Wcf := 〈Seq, Cxt,⇒cf 〉
Seq := FM∗

0

Cxt := FM∗

0 × (FM0 ∪ {∅})
Γ ⇒cf (Σ,Π) ⇔ Γ,Σ ⇒ Π is cut-free provable in G

1
LI0.

Fact

W
+
cf is a complete Heyting algebra such that

Γ ∈ ϕ⊳ ⇐⇒ Γ ⇒cf ϕ.
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One could use the “reducibility candidates” technique as in
(Maehara 91) and (Okada 96), but it is too strong for
G

1
LI0. It doesn’t formalize in PA.

Ω-valuation f : FM0 −→ W
+
cf

fΩ(p(t)) = p(t)⊳

fΩ(t ∈ X) = (t ∈ X)⊳

fΩ(ϕ→ ψ) = fΩ(ϕ) → fΩ(ψ)
fΩ(∀x.ϕ(x)) =

⋂
t∈Tm f

Ω(ϕ(t))
fΩ(∀X.ϕ(X)) = ∀X.ϕ(X)⊳

= {∆ ∈ Seq : ∆ ⇒cf
Y ϕ(Y ) for some Y }⊲⊳

Lemma

G
1
LI0 ⊢ Γ ⇒ Π implies fΩ(Γ) ⊆ fΩ(Π) (Soundness).

ϕ ∈ fΩ(ϕ) ⊆ ϕ⊳ for any ϕ ∈ FM0 (Completeness).
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Lemma (recap)

G
1
LI0 ⊢ Γ ⇒ Π implies fΩ(Γ) ⊆ fΩ(Π) (Soundness).

ϕ ∈ fΩ(ϕ) ⊆ ϕ⊳ for any ϕ ∈ FM0 (Completeness).

Now cut elimination for G1
LI0 follows easily.

(Proof) Suppose G
1
LI0 ⊢ ϕ⇒ ψ.

Then fΩ(ϕ) ⊆ fΩ(ψ) by Soundness.
ϕ ∈ fΩ(ϕ) ⊆ fΩ(ψ) ⊆ ψ⊳ by Completeness.
So ϕ⇒ ψ is cut-free provable.
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We have shown provability = cut-free provability.
So a fortiori we obtain:
Theorem

W
+
cf

∼= L0, the MacNeille completion of the Lindenbaum

algebra for G1
LI1.

algebraic c.elim for G1
LI0 = MacNeille compl. + Ω-valuation.
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We have shown provability = cut-free provability.
So a fortiori we obtain:
Theorem

W
+
cf

∼= L0, the MacNeille completion of the Lindenbaum

algebra for G1
LI1.

algebraic c.elim for G1
LI0 = MacNeille compl. + Ω-valuation.

By combining it with a syntactic argument based on Ω-rule:

Theorem (in PRA, Aehlig 04)

If G1
LIn ⊢ ϕ, then IDn proves “G1

LIn ⊢cf ϕ.”

Corollary (in PRA)

1-consistency of IDn is equivalent to cut elimination for
G

1
LIn.
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We have been careful in which metatheory the theorem is
proved.

Does it matter if one is only interested in the TRUTH?

Yes! Since a proper metatheory consideration often leads to
an interesting TRUTH such as

iterated System T = parameter-free System F.
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T0 := simply typed λ-calculus + basic inductive data types

inductive N := 0 : N | s : N ⇒ N

inductive T := leaf : T | node : T ⇒ T ⇒ T

T1 := T0 + T0-definable inductive data types

inductive L(N) := nil : L(N) | cons : N ⇒ L(N) ⇒ L(N)
inductive O := 0 : O | s : O ⇒ O | lim : (N ⇒ O) ⇒ O

T2 := T1 + T1-definable inductive data types
...

T<ω :=
⋃

nTn.
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Given a system X of typed λ-calculus:

Rep(X) := the functions f : N −→ N

definable by a term MN⇒N in system X.

Given a theory A of arithmetic:

Total(A) := the functions f : N −→ N

provably total in theory A.

Fact

Rep(T0) = Total(PA)
Rep(Tn) = Total(IDn)
Rep(T<ω) = Total(ID<ω)
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Type in System F is defined by:

A,B ::= α | A⇒ B | ∀α.A.

Inductive data types in T<ω are all definable in F.

N := ∀α.(α⇒ α) ⇒ (α ⇒ α)
O := ∀α.((N ⇒ α) ⇒ α) ⇒ (α ⇒ α) ⇒ (α ⇒ α)

Theorem

Rep(T<ω) ⊆ Rep(F).
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Type in System F is defined by:

A,B ::= α | A⇒ B | ∀α.A.

Inductive data types in T<ω are all definable in F.

N := ∀α.(α⇒ α) ⇒ (α ⇒ α)
O := ∀α.((N ⇒ α) ⇒ α) ⇒ (α ⇒ α) ⇒ (α ⇒ α)

Theorem

Rep(T<ω) ⊆ Rep(F).

Which fragment of System F exactly corresponds to T<ω?
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Typen (n ∈ N ∪ {−1}) is defined by:

An, Bn ::= α | An ⇒ Bn | ∀α.An−1, (Fv(An−1) ⊆ {α})

N := ∀α.(α ⇒ α) ⇒ (α ⇒ α) ∈ Type
0

T := ∀α.(α ⇒ α ⇒ α) ⇒ (α ⇒ α) ∈ Type
0

L(N) := ∀α.(N ⇒ α ⇒ α) ⇒ (α ⇒ α) ∈ Type
1

O := ∀α.((N ⇒ α) ⇒ α) ⇒ (α ⇒ α) ⇒ (α ⇒ α) ∈ Type
1

L(β) := ∀α.(β ⇒ α ⇒ α) ⇒ (α ⇒ α) 6∈ Type
∀β.(L(β) ⇒ β) ⇒ β 6∈ Type
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Typen (n ∈ N ∪ {−1}) is defined by:

An, Bn ::= α | An ⇒ Bn | ∀α.An−1, (Fv(An−1) ⊆ {α})

N := ∀α.(α ⇒ α) ⇒ (α ⇒ α) ∈ Type
0

T := ∀α.(α ⇒ α ⇒ α) ⇒ (α ⇒ α) ∈ Type
0

L(N) := ∀α.(N ⇒ α ⇒ α) ⇒ (α ⇒ α) ∈ Type
1

O := ∀α.((N ⇒ α) ⇒ α) ⇒ (α ⇒ α) ⇒ (α ⇒ α) ∈ Type
1

L(β) := ∀α.(β ⇒ α ⇒ α) ⇒ (α ⇒ α) 6∈ Type
∀β.(L(β) ⇒ β) ⇒ β 6∈ Type

F
p
n := System F with types restricted to Typen.

F
p
<ω :=

⋃
nF

p
n.

F
p
−1 is just simply typed lambda calculus.

F
p
0 is studied by (Altenkirch-Coquand 2001).
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Theorem (Akiyoshi-T. 16)

IDn+1 ⊢ SN(Fp
n).

IDn ⊢ Φ-SN(Fp
n) for any finite Φ ⊆ Typen.

The proof consists of

� inductive definition of SN -terms + Ω-rule
� Tait’s computability predicate + “Ω-valuation”

The 2nd statement implies: for every closed term
M : N ⇒ N of Fp

n,

IDn ⊢ ∀x∃y. “Mx =β y
′′, hence Rep(Fp

n) ⊆ Total(IDn).

Theorem (Altenkirch-Coquand 01, Aehlig 08)

Rep(Fp
0) = Rep(T0) = Total(PA).

Rep(Fp
n) = Rep(Tn) = Total(IDn).

Rep(Fp
<ω) = Rep(T<ω) = Total(ID<ω).
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Recall:
Theorem (Harding-Bezhanishvili 04)

HA and BA are the only nontrivial subvarieties of HA closed
under MacNeille completions.

On the other hand, one finds abundant of examples in
substructural logics and associated residuated lattices.

Theorem (Ciabattoni-Galatos-T. 12)

� There are infinitely many varieties of residuated lattices
closed under MacNeille completions.

� So there are infinitely many substructural logics that admit
algebraic cut elimination.
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For intermediate logics, a useful framework is hypersequent
calculus. Associated completion is hyper-MacNeille
completion.

Theorem (Ciabattoni-Galatos-T. 08, 17)

� There are infinitely many subvarieties of HA closed under
hyper-MacNeille completions.

� So there are infinitely many intermediate logics that admit
algebraic cut elimination in hypersequent calculi.
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On the other hand, there are also counterexamples for cut
elimination/completion in substructural logics. That is WHY
substructural logics are interesting!

Theorem

� There is an MV algebra (Chang’s chain) which cannot be
embedded into a complete MV algebra.

� That is, MV is not closed under any completion
(cf. Litak-Kowalski 06 for more).

� Hence  Lukasiewicz infinite-valued logic cannot be conser-
vatively extended with infinitary

∧
.

� That is,  L has NO “good” proof system (although some
exist . . . ).
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� Ω-rule is valid for the MacNeille completion of the
Lindenbaum algebra.

� This leads to algebraic cut elimination for G1
LI1 based

on MacNeille completion + Ω-valuation.

Target system Fragments Full higher-order logics
Algebraic proof MacNeille MacNeille

+ Ω-valuation + reducibility candidates
Syntactic proof Ω-rule Takeuti’s Conjecture

1-consistency of IDn = cut-elimination for G1
LIn

iterated System T = parameter-free System F.
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